This file is indexed.

/usr/include/paraview/vtkDelaunay2D.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkDelaunay2D.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkDelaunay2D - create 2D Delaunay triangulation of input points
// .SECTION Description
// vtkDelaunay2D is a filter that constructs a 2D Delaunay triangulation from
// a list of input points. These points may be represented by any dataset of
// type vtkPointSet and subclasses. The output of the filter is a polygonal
// dataset. Usually the output is a triangle mesh, but if a non-zero alpha
// distance value is specified (called the "alpha" value), then only
// triangles, edges, and vertices laying within the alpha radius are
// output. In other words, non-zero alpha values may result in arbitrary
// combinations of triangles, lines, and vertices. (The notion of alpha value
// is derived from Edelsbrunner's work on "alpha shapes".) Also, it is
// possible to generate "constrained triangulations" using this filter.
// A constrained triangulation is one where edges and loops (i.e., polygons)
// can be defined and the triangulation will preserve them (read on for
// more information).
//
// The 2D Delaunay triangulation is defined as the triangulation that
// satisfies the Delaunay criterion for n-dimensional simplexes (in this case
// n=2 and the simplexes are triangles). This criterion states that a
// circumsphere of each simplex in a triangulation contains only the n+1
// defining points of the simplex. (See "The Visualization Toolkit" text
// for more information.) In two dimensions, this translates into an optimal
// triangulation. That is, the maximum interior angle of any triangle is less
// than or equal to that of any possible triangulation.
//
// Delaunay triangulations are used to build topological structures
// from unorganized (or unstructured) points. The input to this filter
// is a list of points specified in 3D, even though the triangulation
// is 2D. Thus the triangulation is constructed in the x-y plane, and
// the z coordinate is ignored (although carried through to the
// output). If you desire to triangulate in a different plane, you
// can use the vtkTransformFilter to transform the points into and
// out of the x-y plane or you can specify a transform to the Delaunay2D
// directly.  In the latter case, the input points are transformed, the
// transformed points are triangulated, and the output will use the
// triangulated topology for the original (non-transformed) points.  This
// avoids transforming the data back as would be required when using the
// vtkTransformFilter method.  Specifying a transform directly also allows
// any transform to be used: rigid, non-rigid, non-invertible, etc.
//
// If an input transform is used, then alpha values are applied (for the
// most part) in the original data space.  The exception is when
// BoundingTriangulation is on.  In this case, alpha values are applied in
// the original data space unless a cell uses a bounding vertex.
//
// The Delaunay triangulation can be numerically sensitive in some cases. To
// prevent problems, try to avoid injecting points that will result in
// triangles with bad aspect ratios (1000:1 or greater). In practice this
// means inserting points that are "widely dispersed", and enables smooth
// transition of triangle sizes throughout the mesh. (You may even want to
// add extra points to create a better point distribution.) If numerical
// problems are present, you will see a warning message to this effect at
// the end of the triangulation process.
//
// To create constrained meshes, you must define an additional
// input. This input is an instance of vtkPolyData which contains
// lines, polylines, and/or polygons that define constrained edges and
// loops. Only the topology of (lines and polygons) from this second
// input are used.  The topology is assumed to reference points in the
// input point set (the one to be triangulated). In other words, the
// lines and polygons use point ids from the first input point
// set. Lines and polylines found in the input will be mesh edges in
// the output. Polygons define a loop with inside and outside
// regions. The inside of the polygon is determined by using the
// right-hand-rule, i.e., looking down the z-axis a polygon should be
// ordered counter-clockwise. Holes in a polygon should be ordered
// clockwise. If you choose to create a constrained triangulation, the
// final mesh may not satisfy the Delaunay criterion. (Noted: the
// lines/polygon edges must not intersect when projected onto the 2D
// plane.  It may not be possible to recover all edges due to not
// enough points in the triangulation, or poorly defined edges
// (coincident or excessively long).  The form of the lines or
// polygons is a list of point ids that correspond to the input point
// ids used to generate the triangulation.)
//
// If an input transform is used, constraints are defined in the
// "transformed" space.  So when the right hand rule is used for a
// polygon constraint, that operation is applied using the transformed
// points.  Since the input transform can be any transformation (rigid
// or non-rigid), care must be taken in constructing constraints when
// an input transform is used.

// .SECTION Caveats
// Points arranged on a regular lattice (termed degenerate cases) can be
// triangulated in more than one way (at least according to the Delaunay
// criterion). The choice of triangulation (as implemented by
// this algorithm) depends on the order of the input points. The first three
// points will form a triangle; other degenerate points will not break
// this triangle.
//
// Points that are coincident (or nearly so) may be discarded by the algorithm.
// This is because the Delaunay triangulation requires unique input points.
// You can control the definition of coincidence with the "Tolerance" instance
// variable.
//
// The output of the Delaunay triangulation is supposedly a convex hull. In
// certain cases this implementation may not generate the convex hull. This
// behavior can be controlled by the Offset instance variable. Offset is a
// multiplier used to control the size of the initial triangulation. The
// larger the offset value, the more likely you will generate a convex hull;
// but the more likely you are to see numerical problems.

// .SECTION See Also
// vtkDelaunay3D vtkTransformFilter vtkGaussianSplatter

#ifndef __vtkDelaunay2D_h
#define __vtkDelaunay2D_h

#include "vtkFiltersCoreModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"

class vtkAbstractTransform;
class vtkCellArray;
class vtkIdList;
class vtkPointSet;

#define VTK_DELAUNAY_XY_PLANE 0
#define VTK_SET_TRANSFORM_PLANE 1
#define VTK_BEST_FITTING_PLANE 2

class VTKFILTERSCORE_EXPORT vtkDelaunay2D : public vtkPolyDataAlgorithm
{
public:
  vtkTypeMacro(vtkDelaunay2D,vtkPolyDataAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct object with Alpha = 0.0; Tolerance = 0.001; Offset = 1.25;
  // BoundingTriangulation turned off.
  static vtkDelaunay2D *New();

  // Description:
  // Specify the source object used to specify constrained edges and loops.
  // (This is optional.) If set, and lines/polygons are defined, a constrained
  // triangulation is created. The lines/polygons are assumed to reference
  // points in the input point set (i.e. point ids are identical in the
  // input and source).
  // Old style. See SetSourceConnection.
  void SetSourceData(vtkPolyData *);

  // Description:
  // Specify the source object used to specify constrained edges and loops.
  // (This is optional.) If set, and lines/polygons are defined, a constrained
  // triangulation is created. The lines/polygons are assumed to reference
  // points in the input point set (i.e. point ids are identical in the
  // input and source).
  // New style. This method is equivalent to SetInputConnection(1, algOutput).
  void SetSourceConnection(vtkAlgorithmOutput *algOutput);

  // Description:
  // Get a pointer to the source object.
  vtkPolyData *GetSource();

  // Description:
  // Specify alpha (or distance) value to control output of this filter.
  // For a non-zero alpha value, only edges or triangles contained within
  // a sphere centered at mesh vertices will be output. Otherwise, only
  // triangles will be output.
  vtkSetClampMacro(Alpha,double,0.0,VTK_DOUBLE_MAX);
  vtkGetMacro(Alpha,double);

  // Description:
  // Specify a tolerance to control discarding of closely spaced points.
  // This tolerance is specified as a fraction of the diagonal length of
  // the bounding box of the points.
  vtkSetClampMacro(Tolerance,double,0.0,1.0);
  vtkGetMacro(Tolerance,double);

  // Description:
  // Specify a multiplier to control the size of the initial, bounding
  // Delaunay triangulation.
  vtkSetClampMacro(Offset,double,0.75,VTK_DOUBLE_MAX);
  vtkGetMacro(Offset,double);

  // Description:
  // Boolean controls whether bounding triangulation points (and associated
  // triangles) are included in the output. (These are introduced as an
  // initial triangulation to begin the triangulation process. This feature
  // is nice for debugging output.)
  vtkSetMacro(BoundingTriangulation,int);
  vtkGetMacro(BoundingTriangulation,int);
  vtkBooleanMacro(BoundingTriangulation,int);

  // Description:
  // Set / get the transform which is applied to points to generate a
  // 2D problem.  This maps a 3D dataset into a 2D dataset where
  // triangulation can be done on the XY plane.  The points are
  // transformed and triangulated.  The topology of triangulated
  // points is used as the output topology.  The output points are the
  // original (untransformed) points.  The transform can be any
  // subclass of vtkAbstractTransform (thus it does not need to be a
  // linear or invertible transform).
  virtual void SetTransform(vtkAbstractTransform*);
  vtkGetObjectMacro(Transform, vtkAbstractTransform);

  // Description:
  // Define
  vtkSetClampMacro(ProjectionPlaneMode,int,
                   VTK_DELAUNAY_XY_PLANE,VTK_BEST_FITTING_PLANE);
  vtkGetMacro(ProjectionPlaneMode,int);

protected:
  vtkDelaunay2D();
  ~vtkDelaunay2D();

  virtual int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *);

  vtkAbstractTransform * ComputeBestFittingPlane(vtkPointSet *input);

  double Alpha;
  double Tolerance;
  int BoundingTriangulation;
  double Offset;

  vtkAbstractTransform *Transform;

  int ProjectionPlaneMode; //selects the plane in 3D where the Delaunay triangulation will be computed.

private:
  vtkPolyData *Mesh; //the created mesh
  double *Points;    //the raw points in double precision
  void SetPoint(vtkIdType id, double *x)
    {vtkIdType idx=3*id;
    this->Points[idx] = x[0];
    this->Points[idx+1] = x[1];
    this->Points[idx+2] = x[2];
    }

  void GetPoint(vtkIdType id, double x[3])
    {double *ptr = this->Points + 3*id;
    x[0] = *ptr++;
    x[1] = *ptr++;
    x[2] = *ptr;
    }

  int NumberOfDuplicatePoints;
  int NumberOfDegeneracies;

  int *RecoverBoundary(vtkPolyData *source);
  int RecoverEdge(vtkIdType p1, vtkIdType p2);
  void FillPolygons(vtkCellArray *polys, int *triUse);

  int InCircle (double x[3], double x1[3], double x2[3], double x3[3]);
  vtkIdType FindTriangle(double x[3], vtkIdType ptIds[3], vtkIdType tri,
                         double tol, vtkIdType nei[3], vtkIdList *neighbors);
  void CheckEdge(vtkIdType ptId, double x[3], vtkIdType p1, vtkIdType p2,
                 vtkIdType tri);

  virtual int FillInputPortInformation(int, vtkInformation*);

private:
  vtkDelaunay2D(const vtkDelaunay2D&);  // Not implemented.
  void operator=(const vtkDelaunay2D&);  // Not implemented.
};

#endif