This file is indexed.

/usr/include/paraview/vtkDijkstraGraphGeodesicPath.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkDijkstraGraphGeodesicPath.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkDijkstraGraphGeodesicPath - Dijkstra algorithm to compute the graph geodesic.
// .SECTION Description
// Takes as input a polygonal mesh and performs a single source shortest
// path calculation. Dijkstra's algorithm is used. The implementation is
// similar to the one described in Introduction to Algorithms (Second Edition)
// by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
// Cliff Stein, published by MIT Press and McGraw-Hill. Some minor
// enhancement are added though. All vertices are not pushed on the heap
// at start, instead a front set is maintained. The heap is implemented as
// a binary heap. The output of the filter is a set of lines describing
// the shortest path from StartVertex to EndVertex.
//
// .SECTION Caveats
// The input polydata must have only triangle cells.
//
// .SECTION Thanks
// The class was contributed by Rasmus Paulsen.
// www.imm.dtu.dk/~rrp/VTK . Also thanks to Alexandre Gouaillard and Shoaib
// Ghias for bug fixes and enhancements.

#ifndef __vtkDijkstraGraphGeodesicPath_h
#define __vtkDijkstraGraphGeodesicPath_h

#include "vtkFiltersModelingModule.h" // For export macro
#include "vtkGraphGeodesicPath.h"

class vtkDijkstraGraphInternals;
class vtkIdList;

class VTKFILTERSMODELING_EXPORT vtkDijkstraGraphGeodesicPath :
                           public vtkGraphGeodesicPath
{
public:

  // Description:
  // Instantiate the class
  static vtkDijkstraGraphGeodesicPath *New();

  // Description:
  // Standard methids for printing and determining type information.
  vtkTypeMacro(vtkDijkstraGraphGeodesicPath,vtkGraphGeodesicPath);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // The vertex ids (of the input polydata) on the shortest path
  vtkGetObjectMacro(IdList, vtkIdList);

  // Description:
  // Stop when the end vertex is reached
  // or calculate shortest path to all vertices
  vtkSetMacro(StopWhenEndReached, int);
  vtkGetMacro(StopWhenEndReached, int);
  vtkBooleanMacro(StopWhenEndReached, int);

  // Description:
  // Use scalar values in the edge weight (experimental)
  vtkSetMacro(UseScalarWeights, int);
  vtkGetMacro(UseScalarWeights, int);
  vtkBooleanMacro(UseScalarWeights, int);

  // Description:
  // Use the input point to repel the path by assigning high costs.
  vtkSetMacro(RepelPathFromVertices, int);
  vtkGetMacro(RepelPathFromVertices, int);
  vtkBooleanMacro(RepelPathFromVertices, int);

  // Description:
  // Specify vtkPoints to use to repel the path from.
  virtual void SetRepelVertices(vtkPoints*);
  vtkGetObjectMacro(RepelVertices, vtkPoints);

  // Description:
  // TODO: Get the total geodesic length.
  virtual double GetGeodesicLength() { return 0.0; }

  //Description:
  //Fill the array with the cumulative weights.
  virtual void GetCumulativeWeights(vtkDoubleArray *weights);

protected:
  vtkDijkstraGraphGeodesicPath();
  ~vtkDijkstraGraphGeodesicPath();

  virtual int RequestData(vtkInformation *, vtkInformationVector **,
                          vtkInformationVector *);

  // Build a graph description of the input.
  virtual void BuildAdjacency( vtkDataSet *inData );

  vtkTimeStamp AdjacencyBuildTime;

  // The fixed cost going from vertex u to v.
  virtual double CalculateStaticEdgeCost( vtkDataSet *inData, vtkIdType u, vtkIdType v);

  // The cost going from vertex u to v that may depend on one or more vertices
  //that precede u.
  virtual double CalculateDynamicEdgeCost( vtkDataSet *, vtkIdType , vtkIdType )
  { return 0.0; }

  void Initialize( vtkDataSet *inData );

  void Reset();

  // Calculate shortest path from vertex startv to vertex endv.
  virtual void ShortestPath( vtkDataSet *inData, int startv, int endv );

  // Relax edge u,v with weight w.
  void Relax(const int& u, const int& v, const double& w);

  // Backtrace the shortest path
  void TraceShortestPath( vtkDataSet* inData, vtkPolyData* outPoly,
               vtkIdType startv, vtkIdType endv);

  // The number of vertices.
  int NumberOfVertices;

  // The vertex ids on the shortest path.
  vtkIdList *IdList;

  //Internalized STL containers.
  vtkDijkstraGraphInternals *Internals;

  int StopWhenEndReached;
  int UseScalarWeights;
  int RepelPathFromVertices;

  vtkPoints* RepelVertices;

private:
  vtkDijkstraGraphGeodesicPath(const vtkDijkstraGraphGeodesicPath&);  // Not implemented.
  void operator=(const vtkDijkstraGraphGeodesicPath&);  // Not implemented.

};

#endif