/usr/include/paraview/vtkDijkstraGraphGeodesicPath.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkDijkstraGraphGeodesicPath.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkDijkstraGraphGeodesicPath - Dijkstra algorithm to compute the graph geodesic.
// .SECTION Description
// Takes as input a polygonal mesh and performs a single source shortest
// path calculation. Dijkstra's algorithm is used. The implementation is
// similar to the one described in Introduction to Algorithms (Second Edition)
// by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
// Cliff Stein, published by MIT Press and McGraw-Hill. Some minor
// enhancement are added though. All vertices are not pushed on the heap
// at start, instead a front set is maintained. The heap is implemented as
// a binary heap. The output of the filter is a set of lines describing
// the shortest path from StartVertex to EndVertex.
//
// .SECTION Caveats
// The input polydata must have only triangle cells.
//
// .SECTION Thanks
// The class was contributed by Rasmus Paulsen.
// www.imm.dtu.dk/~rrp/VTK . Also thanks to Alexandre Gouaillard and Shoaib
// Ghias for bug fixes and enhancements.
#ifndef __vtkDijkstraGraphGeodesicPath_h
#define __vtkDijkstraGraphGeodesicPath_h
#include "vtkFiltersModelingModule.h" // For export macro
#include "vtkGraphGeodesicPath.h"
class vtkDijkstraGraphInternals;
class vtkIdList;
class VTKFILTERSMODELING_EXPORT vtkDijkstraGraphGeodesicPath :
public vtkGraphGeodesicPath
{
public:
// Description:
// Instantiate the class
static vtkDijkstraGraphGeodesicPath *New();
// Description:
// Standard methids for printing and determining type information.
vtkTypeMacro(vtkDijkstraGraphGeodesicPath,vtkGraphGeodesicPath);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// The vertex ids (of the input polydata) on the shortest path
vtkGetObjectMacro(IdList, vtkIdList);
// Description:
// Stop when the end vertex is reached
// or calculate shortest path to all vertices
vtkSetMacro(StopWhenEndReached, int);
vtkGetMacro(StopWhenEndReached, int);
vtkBooleanMacro(StopWhenEndReached, int);
// Description:
// Use scalar values in the edge weight (experimental)
vtkSetMacro(UseScalarWeights, int);
vtkGetMacro(UseScalarWeights, int);
vtkBooleanMacro(UseScalarWeights, int);
// Description:
// Use the input point to repel the path by assigning high costs.
vtkSetMacro(RepelPathFromVertices, int);
vtkGetMacro(RepelPathFromVertices, int);
vtkBooleanMacro(RepelPathFromVertices, int);
// Description:
// Specify vtkPoints to use to repel the path from.
virtual void SetRepelVertices(vtkPoints*);
vtkGetObjectMacro(RepelVertices, vtkPoints);
// Description:
// TODO: Get the total geodesic length.
virtual double GetGeodesicLength() { return 0.0; }
//Description:
//Fill the array with the cumulative weights.
virtual void GetCumulativeWeights(vtkDoubleArray *weights);
protected:
vtkDijkstraGraphGeodesicPath();
~vtkDijkstraGraphGeodesicPath();
virtual int RequestData(vtkInformation *, vtkInformationVector **,
vtkInformationVector *);
// Build a graph description of the input.
virtual void BuildAdjacency( vtkDataSet *inData );
vtkTimeStamp AdjacencyBuildTime;
// The fixed cost going from vertex u to v.
virtual double CalculateStaticEdgeCost( vtkDataSet *inData, vtkIdType u, vtkIdType v);
// The cost going from vertex u to v that may depend on one or more vertices
//that precede u.
virtual double CalculateDynamicEdgeCost( vtkDataSet *, vtkIdType , vtkIdType )
{ return 0.0; }
void Initialize( vtkDataSet *inData );
void Reset();
// Calculate shortest path from vertex startv to vertex endv.
virtual void ShortestPath( vtkDataSet *inData, int startv, int endv );
// Relax edge u,v with weight w.
void Relax(const int& u, const int& v, const double& w);
// Backtrace the shortest path
void TraceShortestPath( vtkDataSet* inData, vtkPolyData* outPoly,
vtkIdType startv, vtkIdType endv);
// The number of vertices.
int NumberOfVertices;
// The vertex ids on the shortest path.
vtkIdList *IdList;
//Internalized STL containers.
vtkDijkstraGraphInternals *Internals;
int StopWhenEndReached;
int UseScalarWeights;
int RepelPathFromVertices;
vtkPoints* RepelVertices;
private:
vtkDijkstraGraphGeodesicPath(const vtkDijkstraGraphGeodesicPath&); // Not implemented.
void operator=(const vtkDijkstraGraphGeodesicPath&); // Not implemented.
};
#endif
|