This file is indexed.

/usr/include/paraview/vtkFastNumericConversion.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkFastNumericConversion.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkFastNumericConversion - Enables fast conversion of floating point to fixed point
// .SECTION Description
// vtkFastNumericConversion uses a portable (assuming IEEE format) method for
// converting single and double precision floating point values to a fixed
// point representation. This allows fast integer floor operations on
// platforms, such as Intel X86, in which CPU floating point conversion
// algorithms are very slow. It is based on the techniques described in Chris
// Hecker's article, "Let's Get to the (Floating) Point", in Game Developer
// Magazine, Feb/Mar 1996, and the techniques described in Michael Herf's
// website, http://www.stereopsis.com/FPU.html.  The Hecker article can be
// found at http://www.d6.com/users/checker/pdfs/gdmfp.pdf.  Unfortunately,
// each of these techniques is incomplete, and doesn't convert properly, in a
// way that depends on how many bits are reserved for fixed point fractional
// use, due to failing to properly account for the default round-towards-even
// rounding mode of the X86. Thus, my implementation incorporates some
// rounding correction that undoes the rounding that the FPU performs during
// denormalization of the floating point value. Note that the rounding affect
// I'm talking about here is not the effect on the fistp instruction, but
// rather the effect that occurs during the denormalization of a value that
// occurs when adding it to a much larger value. The bits must be shifted to
// the right, and when a "1" bit falls off the edge, the rounding mode
// determines what happens next, in order to avoid completely "losing" the
// 1-bit. Furthermore, my implementation works on Linux, where the default
// precision mode is 64-bit extended precision.

// This class is contributed to VTK by Chris Volpe of Applied Research
// Associates, Inc.  (My employer requires me to say that -- CRV)

// This code assumes that the FPU is in round-to-nearest mode. It assumes, on
// Linux, that the default extended precision mode is in effect, and it
// assumes, on Windows, that the default double precision mode is in effect.

#ifndef __vtkFastNumericConversion_h
#define __vtkFastNumericConversion_h

#include "vtkCommonMathModule.h" // For export macro
#include "vtkObject.h"

// Use the bit-representation trick only on X86, and only when producing
// optimized code
#if defined(NDEBUG) && (defined i386 || defined _M_IX86)
#define VTK_USE_TRICK
#endif

// Linux puts the FPU in extended precision. Windows and FreeBSD keep it in
// double precision.  If other operating systems for i386 (Solaris?) behave
// like Linux, add them below.  Special care needs to be taken when dealing
// with extended precision mode because even though we are eventually writing
// out to a double-precision variable to capture the fixed-point or integer
// results, the extra bits maintained in the internal computations disrupt
// the bit-playing that we're doing here.
#if defined(__linux__)
#define VTK_EXT_PREC
#endif

//#define VTK_TEST_HACK_TO_EMULATE_LINUX_UNDER_WINDOWS
#ifdef VTK_TEST_HACK_TO_EMULATE_LINUX_UNDER_WINDOWS
#define VTK_EXT_PREC
#endif


class VTKCOMMONMATH_EXPORT vtkFastNumericConversion : public vtkObject
{
public:
  static vtkFastNumericConversion *New();
  vtkTypeMacro(vtkFastNumericConversion, vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  int TestQuickFloor(double val)
    {
    return vtkFastNumericConversion::QuickFloor(val);
    }

  int TestSafeFloor(double val)
    {
    return vtkFastNumericConversion::SafeFloor(val);
    }

  int TestRound(double val)
    {
    return vtkFastNumericConversion::Round(val);
    }

  int TestConvertFixedPointIntPart(double val)
    {
    int frac;
    return ConvertFixedPoint(val, frac);
    }

  int TestConvertFixedPointFracPart(double val)
    {
    int frac;
    ConvertFixedPoint(val, frac);
    return frac;
    }

protected:
  //BTX
  // Description:
  // Internal use: multiply the denormalizer value by 1.5 to ensure that it
  // has a "1" bit, other than the implicit initial "1" bit, from which to
  // borrow when adding (flooring) a negative number, so that we don't borrow
  // from the implicit "1" bit, which would cause partial re-normalization,
  // resulting in a shift of our integer bits.
  static inline double BorrowBit() { return 1.5;};

  // Description:
  // Represent 2^30 as a double precision float. Use as a stepping
  // stone for computing 2^52 as a double, since we can't represent 2^52 as an
  // int before converting to double.
  static inline double two30()
    {
      return static_cast<double>(static_cast<unsigned long>(1) << 30);
    }

  // Description:
  // Represent 2^52 as a double precision float. This value is
  // significant because doubles have 52 bits of precision in the mantissa
  static inline double two52()
    {
      return (static_cast<unsigned long>(1) << (52-30)) * two30();
    }

  // Description:
  // Represent 2^51 as a double precision float. This value is significant
  // because doubles have 52 (explicit) bits of precision in the mantissa,
  // but we're going to pretend we only have 51 to play with when using safe
  // floor, since the default round-to-even on an X86 mucks with the LSB
  // during the denormalizing shift.
  static inline double two51()
    {
      return (static_cast<unsigned long>(1) << (51-30)) * two30();
    }

  // Description:
  // Represent 2^63 as a double precision float. We need this value to shift
  // unwanted fractional bits off the end of an extended precision value
  static inline double two63()
    {
      return (static_cast<unsigned long>(1) << (63-60)) * two30() * two30();
    }

  // Description:
  // Represent 2^62 as a double precision float. We need this value to shift
  // unwanted fractional bits off the end of an extended precision value. Use
  // when we're doing a SafeFloor.
  static inline double two62()
    {
      return (static_cast<unsigned long>(1) << (62-60)) * two30() * two30();
    }

  // Define number of bits of precision for various data types.
  // Note: INT_BITS is really 31, (rather than 32, since one of the bits is
  // just used for the two's-complement sign), but we say 30 because we don't
  // need to be able to handle 31-bit magnitudes correctly. I say that
  // because this is used for the QuickFloor code, and the SafeFloor code
  // retains an extra bit of fixed point precision which it shifts-out at the
  // end, thus reducing the magnitude of integers that it can handle. That's
  // an inherent limitation of using SafeFloor to prevent round-ups under any
  // circumstances, and there's no need to make QuickFloor handle a wider
  // range of numbers than SafeFloor.
#define INT_BITS 30
#define EXT_BITS 64
#define DBL_BITS 53

  // Description:
  // Small amount to use as a rounding tie-breaker to prevent
  // round-to-nearest-and-even mode from flooring-down odd numbered
  // integers. But number to nudge by depends on number of bits mantissa in
  // our floating point representation minus number of mantissa bits in the
  // range of signed ints we need to handle. In order to ensure that
  // flooring-down doesn't happen even for very large odd-integer values, the
  // number of bits used to represent the tie-breaker (i.e. to the right of
  // the binary-point), plus the number of bits needed to represent the
  // integer (to the left of the binary point), can not exceeds the number of
  // bits in the current precision mode. Thus, in selecting the tie-breaker
  // value, we select the largest number of bits to the right of the binary
  // point as possible while still maintaining that inequality. Thus, extended
  // precision mode allows a larger number of bits to the right of the binary
  // point.  This, in turn, implies a smaller value of the tie-breaker. And a
  // smaller tie-breaker will impose a tighter window on the range of values
  // that are erroneously rounded-up by a floor operation. Under double
  // precision, a QuickFloor of 0.9999998 (six 9's and an 8) correctly yields
  // 0. A value must be very close to 1.0, in fact, at least as close as
  // 0.9999999 (seven 9's)in order for the tie-breaker to bump it up to 1.
  // Under extended precision, an even smaller tie-breaker can be used. In
  // this mode, a QuickFloor of 0.9999999999 (ten 9's) correctly yields 0. A
  // QuickFloor of 0.99999999999 (eleven 9's) gets rounded up to 1. Since
  // these spurious round-ups occur only when the given value is virtually
  // indistinguishable from the next higher integer, the results should be
  // acceptable in most situations where performance is of the essence.
  // Make this public so that clients can account for the RoundingTieBreaker
  // if necessary
public:
#ifdef VTK_EXT_PREC
  // Compute (0.5 ^ (EXT_BITS-INT_BITS)) as a compile-time constant
  static inline double RoundingTieBreaker()
    {
      return 1.0 / (two30() * (static_cast<unsigned long>(1) << (EXT_BITS - INT_BITS - 30)));
    }
#else
  // Compute (0.5 ^ (DBL_BITS-INT_BITS)) as a compile-time constant
  static inline double RoundingTieBreaker()
    {
      return 1.0 / (static_cast<unsigned long>(1) << (DBL_BITS - INT_BITS));
    }
#endif

protected:
  // Description:
  // This is the magic floating point value which when added to any other
  // floating point value, causes the rounded integer portion of that
  // floating point value to appear in the least significant bits of the
  // mantissa, which is what we want.
  static inline double QuickFloorDenormalizer()
    {return two52() * BorrowBit(); };

  // Description:
  // This is the magic floating point value which when added to any other
  // floating point value, causes the rounded integer portion of that
  // floating point value to appear in the NEXT TO least significant bits of
  // the mantissa, which is what we want. This allows the CPU rounding mode
  // to muck with the LSB which we can then discard in SafeFloor
  static inline double SafeFloorDenormalizer()
    { return two51() * BorrowBit(); };

  // Description:
  // This value is added to and then subtracted from an extended precision
  // value in order to clear the fractional bits so that they do not
  // adversely affect the final double-precision result.
  static inline double QuickExtPrecTempDenormalizer()
    {return two63() * BorrowBit(); };

  // Description:
  // Just like QuickExtPrecTempDenormalizer(), but preserves one extra bit of
  // fixed point precision to guard against the CPU mucking with the LSB
  static inline double SafeExtPrecTempDenormalizer()
    {return two62() * BorrowBit(); };

  static inline double QuickRoundAdjust() {return 0.5;};
  static inline double SafeRoundAdjust() {return 0.25;};
  static inline int SafeFinalShift() {return 1;};


#ifdef VTK_WORDS_BIGENDIAN
  enum {exponent_pos = 0, mantissa_pos = 1};
#else
  enum {exponent_pos = 1, mantissa_pos = 0};
#endif
  //ETX

public:

  // Description:
  // Set the number of bits reserved for fractional precision that are
  // maintained as part of the flooring process. This number affects the
  // flooring arithmetic. It may be useful if the factional part is to be
  // used to index into a lookup table of some sort. However, if you are only
  // interested in knowing the fractional remainder after flooring, there
  // doesn't appear to be any advantage to using these bits, either in terms
  // of a lookup table, or by directly multiplying by some unit fraction,
  // over simply subtracting the floored value from the original value. Note
  // that since only 32 bits are used for the entire fixed point
  // representation, increasing the number of reserved fractional bits
  // reduces the range of integer values that can be floored to.
  void SetReservedFracBits(int bits)
    {
    // Add one to the requested number of fractional bits, to make
    // the conversion safe with respect to rounding mode. This is the
    // same as the difference between QuickFloor and SafeFloor.
    bits++;
    unsigned long mtime = this->GetMTime();
    this->SetinternalReservedFracBits(bits);
    if (mtime != this->GetMTime())
      {
      this->InternalRebuild();
      }
    };

  //BTX
  // Description:
  // Perform a quick flooring of the double-precision floating point
  // value. The result is sometimes incorrect, but in a way that makes it
  // acceptable for most uses. The naive way to implement floor(), given that
  // the x86 FPU does round() by default, is to define floor(x) as
  // round(x-.5).  This would work fine except for the fact that the x86 FPU
  // breaks rounding ties by selecting the even number. Thus, floor(4.0) =
  // round(3.5) = 4, but floor(3.0) = round(2.5) = 2. As a result,
  // subtracting .5 gives the wrong answer for odd integers. So, let's
  // subtract just a TEENSY bit less than .5, to swing the odd-integer
  // results up to their corect value. How teensy? Well, if it's too teensy,
  // it will be insignificant compared to 0.5, and will become equivalent to
  // 0.5.  And if it's not teensy enough, we'll overshoot, causing results
  // like floor(N-epsilon)==N, for some epsilon. Furthermore, the "too
  // teensy" problem is exacerbated when trying to floor larger numbers, due
  // to limitations of the representation's dynamic range. See the definition
  // of RoundingTieBreaker() for details.
  static int QuickFloor(const double &val);

  // Description:
  // Perform a SAFE flooring. Similar to QuickFloor, but modified to return
  // the correct result always. Use this when it absolutely positively needs
  // to be the correct answer all the time, and considering 0.9999999 as
  // being equal to 1.0 is simply not acceptable.  It works similarly to
  // QuickFloor, but it retains one extra bit of fixed point precision in the
  // conversion process, so that the problem with QuickFloor affects only an
  // unneeded bit, and then it ditches that bit from the resulting integer
  // with a right-shift. In other words, it rounds to the nearest one-half,
  // choosing the EVEN one-half (i.e. the integer) as a tie-breaker, and then
  // shifting off that half-integer bit. As a result of maintaining one extra
  // bit of fixed point precision in the intermediate calculation, the range
  // of integers supported is reduced by one bit. Plus, it takes a little
  // longer to execute, due to the final bit shift.
  static int SafeFloor(const double &val);

  // Description:
  // Round to nearest int.  This is pretty sweet in the default
  // round-to-nearest FPU mode, since it is generally immaterial how ties are
  // broken when rounding. I.e., either "2" or "3" are acceptable results for
  // "Round(2.5)", but only one of them (the one naively not chosen without
  // jumping through the hoops in QuickFloor and SafeFloor) is the acceptable
  // result for the analogous "Floor(3)". Therefore, we don't need to worry
  // at all about adding a teensy but not too teensy tie breaker, or shifting
  // off a half-integer bit. This makes it exceptionally fast.
  static int Round(const double &val);

  // Description:
  // Convert the value to a fixed point representation, returning the
  // integer portion as function value, and returning the fractional
  // part in the second parameter.
  inline int ConvertFixedPoint(const double &val, int &fracPart)
    {
      union { int i[2]; double d; } u;
#ifdef VTK_EXT_PREC
      u.d = (((val - fixRound)
              + this->epTempDenormalizer)
             - this->epTempDenormalizer)
        + this->fpDenormalizer;
#else // ! VTK_EXT_PREC
      u.d = (val - fixRound)
        + this->fpDenormalizer;
#endif // VTK_EXT_PREC
    fracPart = (u.i[mantissa_pos] & fracMask) >> 1;
    return u.i[mantissa_pos] >> this->internalReservedFracBits;
    }
  //ETX


protected:
  //BTX
  vtkFastNumericConversion();
  ~vtkFastNumericConversion() {};
  void InternalRebuild(void);

private:
  vtkSetMacro(internalReservedFracBits, int);
  vtkGetMacro(internalReservedFracBits, int);

#ifndef VTK_LEGACY_SILENT
  static int QuickFloorInline(const double &val);
  static int SafeFloorInline(const double &val);
  static int RoundInline(const double &val);
#endif

  int internalReservedFracBits;
  int fracMask;

  // Used when doing fixed point conversions with a certain number of bits
  // remaining for the fractional part, as opposed to the pure integer
  // flooring
  double fpDenormalizer;

  // Used when doing fixed point conversions in extended precision mode
  double epTempDenormalizer;

  // Adjustment for rounding based on the number of bits reserved for
  // fractional representation
  double fixRound;
  //ETX

  vtkFastNumericConversion(const vtkFastNumericConversion&); // Not implemented
  void operator=(const vtkFastNumericConversion&); // Not implemented
};

#ifndef VTK_LEGACY_SILENT
inline int vtkFastNumericConversion::QuickFloorInline(const double &val)
#else
inline int vtkFastNumericConversion::QuickFloor(const double &val)
#endif
{
#ifdef VTK_USE_TRICK
  union { int i[2]; double d; } u;
#ifdef VTK_EXT_PREC
  u.d = (((val - (QuickRoundAdjust() - RoundingTieBreaker()))
          // Push off those extended precision bits
          + QuickExtPrecTempDenormalizer())
         // Pull back the wanted bits into double range
         - QuickExtPrecTempDenormalizer())
    + QuickFloorDenormalizer();
#else // ! VTK_EXT_PREC
  u.d = (val - (QuickRoundAdjust() - RoundingTieBreaker()))
    + QuickFloorDenormalizer();
#endif // VTK_EXT_PREC
  return u.i[mantissa_pos];
#else // ! VTK_USE_TRICK
  return static_cast<int>(val);
#endif // VTK_USE_TRICK
}

#ifndef VTK_LEGACY_SILENT
inline int vtkFastNumericConversion::SafeFloorInline(const double &val)
#else
inline int vtkFastNumericConversion::SafeFloor(const double &val)
#endif
{
#ifdef VTK_USE_TRICK
  union { int i[2]; double d; } u;
#ifdef VTK_EXT_PREC
  u.d = (((val - SafeRoundAdjust())
          + SafeExtPrecTempDenormalizer())
         - SafeExtPrecTempDenormalizer())
    + SafeFloorDenormalizer();
#else // ! VTK_EXT_PREC
  u.d = (val - SafeRoundAdjust())
    + SafeFloorDenormalizer();
#endif // VTK_EXT_PREC
  return u.i[mantissa_pos] >> SafeFinalShift();
#else // ! VTK_USE_TRICK
  return static_cast<int>(val);
#endif // VTK_USE_TRICK
}

#ifndef VTK_LEGACY_SILENT
inline int vtkFastNumericConversion::RoundInline(const double &val)
#else
inline int vtkFastNumericConversion::Round(const double &val)
#endif
{
#ifdef VTK_USE_TRICK
  union { int i[2]; double d; } u;
#ifdef VTK_EXT_PREC
  u.d = ((val
          + QuickExtPrecTempDenormalizer())
         - QuickExtPrecTempDenormalizer())
    + QuickFloorDenormalizer();
#else // ! VTK_EXT_PREC
  u.d = val
    + QuickFloorDenormalizer();
#endif // VTK_EXT_PREC
return u.i[mantissa_pos];
#else // ! VTK_USE_TRICK
if (val>=0)
  {
  return static_cast<int>(val + 0.5);
  }
else
  {
  return static_cast<int>(val - 0.5);
  }
#endif // VTK_USE_TRICK
}

#endif