This file is indexed.

/usr/include/paraview/vtkGaussianSplatter.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkGaussianSplatter.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkGaussianSplatter - splat points into a volume with an elliptical, Gaussian distribution
// .SECTION Description
// vtkGaussianSplatter is a filter that injects input points into a
// structured points (volume) dataset. As each point is injected, it "splats"
// or distributes values to nearby voxels. Data is distributed using an
// elliptical, Gaussian distribution function. The distribution function is
// modified using scalar values (expands distribution) or normals
// (creates ellipsoidal distribution rather than spherical).
//
// In general, the Gaussian distribution function f(x) around a given
// splat point p is given by
//
//     f(x) = ScaleFactor * exp( ExponentFactor*((r/Radius)**2) )
//
// where x is the current voxel sample point; r is the distance |x-p|
// ExponentFactor <= 0.0, and ScaleFactor can be multiplied by the scalar
// value of the point p that is currently being splatted.
//
// If points normals are present (and NormalWarping is on), then the splat
// function becomes elliptical (as compared to the spherical one described
// by the previous equation). The Gaussian distribution function then
// becomes:
//
//     f(x) = ScaleFactor *
//               exp( ExponentFactor*( ((rxy/E)**2 + z**2)/R**2) )
//
// where E is a user-defined eccentricity factor that controls the elliptical
// shape of the splat; z is the distance of the current voxel sample point
// along normal N; and rxy is the distance of x in the direction
// prependicular to N.
//
// This class is typically used to convert point-valued distributions into
// a volume representation. The volume is then usually iso-surfaced or
// volume rendered to generate a visualization. It can be used to create
// surfaces from point distributions, or to create structure (i.e.,
// topology) when none exists.

// .SECTION Caveats
// The input to this filter is any dataset type. This filter can be used
// to resample any form of data, i.e., the input data need not be
// unstructured.
//
// Some voxels may never receive a contribution during the splatting process.
// The final value of these points can be specified with the "NullValue"
// instance variable.

// .SECTION See Also
// vtkShepardMethod

#ifndef __vtkGaussianSplatter_h
#define __vtkGaussianSplatter_h

#include "vtkImagingHybridModule.h" // For export macro
#include "vtkImageAlgorithm.h"

#define VTK_ACCUMULATION_MODE_MIN 0
#define VTK_ACCUMULATION_MODE_MAX 1
#define VTK_ACCUMULATION_MODE_SUM 2

class vtkDoubleArray;

class VTKIMAGINGHYBRID_EXPORT vtkGaussianSplatter : public vtkImageAlgorithm
{
public:
  vtkTypeMacro(vtkGaussianSplatter,vtkImageAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct object with dimensions=(50,50,50); automatic computation of
  // bounds; a splat radius of 0.1; an exponent factor of -5; and normal and
  // scalar warping turned on.
  static vtkGaussianSplatter *New();

  // Description:
  // Set / get the dimensions of the sampling structured point set. Higher
  // values produce better results but are much slower.
  void SetSampleDimensions(int i, int j, int k);
  void SetSampleDimensions(int dim[3]);
  vtkGetVectorMacro(SampleDimensions,int,3);

  // Description:
  // Set / get the (xmin,xmax, ymin,ymax, zmin,zmax) bounding box in which
  // the sampling is performed. If any of the (min,max) bounds values are
  // min >= max, then the bounds will be computed automatically from the input
  // data. Otherwise, the user-specified bounds will be used.
  vtkSetVector6Macro(ModelBounds,double);
  vtkGetVectorMacro(ModelBounds,double,6);

  // Description:
  // Set / get the radius of propagation of the splat. This value is expressed
  // as a percentage of the length of the longest side of the sampling
  // volume. Smaller numbers greatly reduce execution time.
  vtkSetClampMacro(Radius,double,0.0,1.0);
  vtkGetMacro(Radius,double);

  // Description:
  // Multiply Gaussian splat distribution by this value. If ScalarWarping
  // is on, then the Scalar value will be multiplied by the ScaleFactor
  // times the Gaussian function.
  vtkSetClampMacro(ScaleFactor,double,0.0,VTK_DOUBLE_MAX);
  vtkGetMacro(ScaleFactor,double);

  // Description:
  // Set / get the sharpness of decay of the splats. This is the
  // exponent constant in the Gaussian equation. Normally this is
  // a negative value.
  vtkSetMacro(ExponentFactor,double);
  vtkGetMacro(ExponentFactor,double);

  // Description:
  // Turn on/off the generation of elliptical splats. If normal warping is
  // on, then the input normals affect the distribution of the splat. This
  // boolean is used in combination with the Eccentricity ivar.
  vtkSetMacro(NormalWarping,int);
  vtkGetMacro(NormalWarping,int);
  vtkBooleanMacro(NormalWarping,int);

  // Description:
  // Control the shape of elliptical splatting. Eccentricity is the ratio
  // of the major axis (aligned along normal) to the minor (axes) aligned
  // along other two axes. So Eccentricity > 1 creates needles with the
  // long axis in the direction of the normal; Eccentricity<1 creates
  // pancakes perpendicular to the normal vector.
  vtkSetClampMacro(Eccentricity,double,0.001,VTK_DOUBLE_MAX);
  vtkGetMacro(Eccentricity,double);

  // Description:
  // Turn on/off the scaling of splats by scalar value.
  vtkSetMacro(ScalarWarping,int);
  vtkGetMacro(ScalarWarping,int);
  vtkBooleanMacro(ScalarWarping,int);

  // Description:
  // Turn on/off the capping of the outer boundary of the volume
  // to a specified cap value. This can be used to close surfaces
  // (after iso-surfacing) and create other effects.
  vtkSetMacro(Capping,int);
  vtkGetMacro(Capping,int);
  vtkBooleanMacro(Capping,int);

  // Description:
  // Specify the cap value to use. (This instance variable only has effect
  // if the ivar Capping is on.)
  vtkSetMacro(CapValue,double);
  vtkGetMacro(CapValue,double);

  // Description:
  // Specify the scalar accumulation mode. This mode expresses how scalar
  // values are combined when splats are overlapped. The Max mode acts
  // like a set union operation and is the most commonly used; the Min
  // mode acts like a set intersection, and the sum is just weird.
  vtkSetClampMacro(AccumulationMode,int,
                   VTK_ACCUMULATION_MODE_MIN,VTK_ACCUMULATION_MODE_SUM);
  vtkGetMacro(AccumulationMode,int);
  void SetAccumulationModeToMin()
    {this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MIN);}
  void SetAccumulationModeToMax()
    {this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MAX);}
  void SetAccumulationModeToSum()
    {this->SetAccumulationMode(VTK_ACCUMULATION_MODE_SUM);}
  const char *GetAccumulationModeAsString();

  // Description:
  // Set the Null value for output points not receiving a contribution from the
  // input points. (This is the initial value of the voxel samples.)
  vtkSetMacro(NullValue,double);
  vtkGetMacro(NullValue,double);

  // Description:
  // Compute the size of the sample bounding box automatically from the
  // input data. This is an internal helper function.
  void ComputeModelBounds(vtkDataSet *input, vtkImageData *output,
                          vtkInformation *outInfo);

protected:
  vtkGaussianSplatter();
  ~vtkGaussianSplatter() {};

  virtual int FillInputPortInformation(int port, vtkInformation* info);
  virtual int RequestInformation (vtkInformation *,
                                  vtkInformationVector **,
                                  vtkInformationVector *);
  virtual int RequestData(vtkInformation *,
                          vtkInformationVector **,
                          vtkInformationVector *);
  void Cap(vtkDoubleArray *s);

  int SampleDimensions[3]; // dimensions of volume to splat into
  double Radius; // maximum distance splat propagates (as fraction 0->1)
  double ExponentFactor; // scale exponent of gaussian function
  double ModelBounds[6]; // bounding box of splatting dimensions
  int NormalWarping; // on/off warping of splat via normal
  double Eccentricity;// elliptic distortion due to normals
  int ScalarWarping; // on/off warping of splat via scalar
  double ScaleFactor; // splat size influenced by scale factor
  int Capping; // Cap side of volume to close surfaces
  double CapValue; // value to use for capping
  int AccumulationMode; // how to combine scalar values

  double Gaussian(double x[3]);
  double EccentricGaussian(double x[3]);
  double ScalarSampling(double s)
    {return this->ScaleFactor * s;}
  double PositionSampling(double)
    {return this->ScaleFactor;}
  void SetScalar(int idx, double dist2, vtkDoubleArray *newScalars);

//BTX
private:
  double Radius2;
  double (vtkGaussianSplatter::*Sample)(double x[3]);
  double (vtkGaussianSplatter::*SampleFactor)(double s);
  char *Visited;
  double Eccentricity2;
  double *P;
  double *N;
  double S;
  double Origin[3];
  double Spacing[3];
  double SplatDistance[3];
  double NullValue;
//ETX

private:
  vtkGaussianSplatter(const vtkGaussianSplatter&);  // Not implemented.
  void operator=(const vtkGaussianSplatter&);  // Not implemented.
};

#endif