/usr/include/paraview/vtkGenericAdaptorCell.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkGenericAdaptorCell.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGenericAdaptorCell - defines cell interface
// .SECTION Description
// In VTK, spatial-temporal data is defined in terms of a dataset which is
// composed of cells. The cells are topological entities over which an
// interpolation field is applied. Cells are defined in terms of a topology
// (e.g., vertices, lines, triangles, polygons, tetrahedra, etc.), points
// that instantiate the geometry of the cells, and interpolation fields
// (in the general case one interpolation field is for geometry, the other
// is for attribute data associated with the cell).
//
// Currently most algorithms in VTK use vtkCell and vtkDataSet, which make
// assumptions about the nature of datasets, cells, and attributes. In
// particular, this abstraction assumes that cell interpolation functions
// are linear, or products of linear functions. Further, VTK implements
// most of the interpolation functions. This implementation starts breaking
// down as the complexity of the interpolation (or basis) functions
// increases.
//
// vtkGenericAdaptorCell addresses these issues by providing more general
// abstraction for cells. It also adopts modern C++ practices including using
// iterators. The vtkGenericAdaptorCell is designed to fit within the adaptor
// framework; meaning that it is meant to adapt VTK to external simulation
// systems (see the GenericFiltering/README.html).
//
// Please note that most cells are defined in terms of other cells (the
// boundary cells). They are also defined in terms of points, which are
// not the same as vertices (vertices are a 0-D cell; points represent a
// position in space).
//
// Another important concept is the notion of DOFNodes. These concept
// supports cell types with complex interpolation functions. For example,
// higher-order p-method finite elements may have different functions on each
// of their topological features (edges, faces, region). The coefficients of
// these polynomial functions are associated with DOFNodes. (There is a
// single DOFNode for each topological feature.) Note that from this
// perspective, points are used to establish the topological form of the
// cell; mid-side nodes and such are considered DOFNodes.
// .SECTION See Also
// vtkGenericDataSet
#ifndef __vtkGenericAdaptorCell_h
#define __vtkGenericAdaptorCell_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"
class vtkLine;
class vtkTetra;
class vtkPoints;
class vtkVertex;
class vtkTriangle;
class vtkCellData;
class vtkPointData;
class vtkCellArray;
class vtkDoubleArray;
class vtkGenericCellIterator;
class vtkIncrementalPointLocator;
class vtkContourValues;
class vtkImplicitFunction;
class vtkGenericCellTessellator;
class vtkGenericAttributeCollection;
class vtkGenericAttribute;
class vtkGenericPointIterator;
class vtkIdList;
class vtkOrderedTriangulator;
class vtkPolygon;
class vtkUnsignedCharArray;
class vtkQuad;
class vtkHexahedron;
class vtkWedge;
class vtkPyramid;
class VTKCOMMONDATAMODEL_EXPORT vtkGenericAdaptorCell : public vtkObject
{
public:
vtkTypeMacro(vtkGenericAdaptorCell,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Unique identification number of the cell over the whole
// data set. This unique key may not be contiguous.
virtual vtkIdType GetId() = 0;
// Description:
// Does `this' a cell of a dataset? (otherwise, it is a boundary cell)
virtual int IsInDataSet()=0;
// Description:
// Return the type of the current cell.
// \post (result==VTK_HIGHER_ORDER_EDGE)||
// (result==VTK_HIGHER_ORDER_TRIANGLE)||
// (result==VTK_HIGHER_ORDER_TETRAHEDRON)
virtual int GetType()=0;
// Description:
// Return the topological dimension of the current cell.
// \post valid_result: result>=0 && result<=3
virtual int GetDimension() = 0;
// Description:
// Return the interpolation order of the geometry.
// \post positive_result: result>=0
virtual int GetGeometryOrder()=0;
// Description:
// Does the cell have a non-linear interpolation for the geometry?
// \post definition: result==(GetGeometryOrder()==1)
int IsGeometryLinear();
// Description:
// Return the interpolation order of attribute `a' on the cell
// (may differ by cell).
// \pre a_exists: a!=0
// \post positive_result: result>=0
virtual int GetAttributeOrder(vtkGenericAttribute *a)=0;
// Description:
// Return the index of the first point centered attribute with the highest
// order in `ac'.
// \pre ac_exists: ac!=0
// \post valid_result: result>=-1 && result<ac->GetNumberOfAttributes()
virtual int GetHighestOrderAttribute(vtkGenericAttributeCollection *ac);
// Description:
// Does the attribute `a' have a non-linear interpolation?
// \pre a_exists: a!=0
// \post definition: result==(GetAttributeOrder()==1)
int IsAttributeLinear(vtkGenericAttribute *a);
// Description:
// Is the cell primary (i.e. not composite) ?
virtual int IsPrimary()=0;
// Description:
// Return the number of corner points that compose the cell.
// \post positive_result: result>=0
virtual int GetNumberOfPoints()=0;
// Description:
// Return the number of boundaries of dimension `dim' (or all dimensions
// greater than 0 and less than GetDimension() if -1) of the cell.
// When \a dim is -1, the number of vertices is not included in the
// count because vertices are a special case: a vertex will have
// at most a single field value associated with it; DOF nodes may have
// an arbitrary number of field values associated with them.
// \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
// \post positive_result: result>=0
virtual int GetNumberOfBoundaries(int dim=-1)=0;
// Description:
// Accumulated number of DOF nodes of the current cell. A DOF node is
// a component of cell with a given topological dimension. e.g.: a triangle
// has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF:
// 1 region, 6 faces, and 12 edges.
//
// The number of vertices is not included in the
// count because vertices are a special case: a vertex will have
// at most a single field value associated with it; DOF nodes may have
// an arbitrary number of field values associated with them.
// \post valid_result: result==GetNumberOfBoundaries(-1)+1
virtual int GetNumberOfDOFNodes()=0;
// Description:
// Return the points of cell into `it'.
// \pre it_exists: it!=0
virtual void GetPointIterator(vtkGenericPointIterator *it)=0;
// Description:
// Create an empty cell iterator. The user is responsible for deleting it.
// \post result_exists: result!=0
virtual vtkGenericCellIterator *NewCellIterator()=0;
// Description:
// Return the `boundaries' cells of dimension `dim' (or all dimensions
// less than GetDimension() if -1) that are part of the boundary of the cell.
// \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
// \pre boundaries_exist: boundaries!=0
virtual void GetBoundaryIterator(vtkGenericCellIterator *boundaries,
int dim=-1)=0;
// Description:
// Number of cells (dimension>boundary->GetDimension()) of the dataset
// that share the boundary `boundary' of `this'.
// `this' IS NOT INCLUDED.
// \pre boundary_exists: boundary!=0
// \pre real_boundary: !boundary->IsInDataSet()
// \pre cell_of_the_dataset: IsInDataSet()
// \pre boundary: HasBoundary(boundary)
// \post positive_result: result>=0
virtual int CountNeighbors(vtkGenericAdaptorCell *boundary)=0;
virtual void CountEdgeNeighbors( int* sharing ) = 0;
// Description:
// Put into `neighbors' the cells (dimension>boundary->GetDimension())
// of the dataset that share the boundary `boundary' with this cell.
// `this' IS NOT INCLUDED.
// \pre boundary_exists: boundary!=0
// \pre real_boundary: !boundary->IsInDataSet()
// \pre cell_of_the_dataset: IsInDataSet()
// \pre boundary: HasBoundary(boundary)
// \pre neighbors_exist: neighbors!=0
virtual void GetNeighbors(vtkGenericAdaptorCell *boundary,
vtkGenericCellIterator *neighbors)=0;
// Description:
// Compute the closest boundary of the current sub-cell `subId' for point
// `pcoord' (in parametric coordinates) in `boundary', and return whether
// the point is inside the cell or not. `boundary' is of dimension
// GetDimension()-1.
// \pre positive_subId: subId>=0
virtual int FindClosestBoundary(int subId,
double pcoords[3],
vtkGenericCellIterator* &boundary)=0;
// Description:
// Is `x' inside the current cell? It also evaluates parametric coordinates
// `pcoords', sub-cell id `subId' (0 means primary cell), distance squared
// to the sub-cell in `dist2' and closest corner point `closestPoint'.
// `dist2' and `closestPoint' are not evaluated if `closestPoint'==0.
// If a numerical error occurred, -1 is returned and all other results
// should be ignored.
// \post valid_result: result==-1 || result==0 || result==1
// \post positive_distance: result!=-1 implies (closestPoint!=0 implies
// dist2>=0)
virtual int EvaluatePosition(double x[3],
double *closestPoint,
int &subId,
double pcoords[3],
double &dist2)=0;
// Description:
// Determine the global coordinates `x' from sub-cell `subId' and parametric
// coordinates `pcoords' in the cell.
// \pre positive_subId: subId>=0
// \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
// &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1)
virtual void EvaluateLocation(int subId,
double pcoords[3],
double x[3])=0;
// Description:
// Interpolate the attribute `a' at local position `pcoords' of the cell into
// `val'.
// \pre a_exists: a!=0
// \pre a_is_point_centered: a->GetCentering()==vtkPointCentered
// \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
// pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
// \pre val_exists: val!=0
// \pre valid_size: sizeof(val)==a->GetNumberOfComponents()
virtual void InterpolateTuple(vtkGenericAttribute *a, double pcoords[3],
double *val) = 0;
// Description:
// Interpolate the whole collection of attributes `c' at local position
// `pcoords' of the cell into `val'. Only point centered attributes are
// taken into account.
// \pre c_exists: c!=0
// \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
// pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
// \pre val_exists: val!=0
// \pre valid_size: sizeof(val)==c->GetNumberOfPointCenteredComponents()
virtual void InterpolateTuple(vtkGenericAttributeCollection *c,
double pcoords[3],
double *val) = 0;
// Description:
// Generate a contour (contouring primitives) for each `values' or with
// respect to an implicit function `f'. Contouring is performed on the
// scalar attribute (`attributes->GetActiveAttribute()'
// `attributes->GetActiveComponent()'). Contouring interpolates the
// `attributes->GetNumberOfattributesToInterpolate()' attributes
// `attributes->GetAttributesToInterpolate()'. The `locator', `verts',
// `lines', `polys', `outPd' and `outCd' are cumulative data arrays over
// cell iterations: they store the result of each call to Contour():
// - `locator' is a points list that merges points as they are inserted
// (i.e., prevents duplicates).
// - `verts' is an array of generated vertices
// - `lines' is an array of generated lines
// - `polys' is an array of generated polygons
// - `outPd' is an array of interpolated point data along the edge (if
// not-NULL)
// - `outCd' is an array of copied cell data of the current cell (if
// not-NULL)
// `internalPd', `secondaryPd' and `secondaryCd' are initialized by the
// filter that call it from `attributes'.
// - `internalPd' stores the result of the tessellation pass: the
// higher-order cell is tessellated into linear sub-cells.
// - `secondaryPd' and `secondaryCd' are used internally as inputs to the
// Contour() method on linear sub-cells.
// Note: the CopyAllocate() method must be invoked on both `outPd' and
// `outCd', from `secondaryPd' and `secondaryCd'.
//
// NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
// `vtkInformation'.
//
// \pre values_exist: (values!=0 && f==0) || (values==0 && f!=0)
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre locator_exists: locator!=0
// \pre verts_exist: verts!=0
// \pre lines_exist: lines!=0
// \pre polys_exist: polys!=0
// \pre internalPd_exists: internalPd!=0
// \pre secondaryPd_exists: secondaryPd!=0
// \pre secondaryCd_exists: secondaryCd!=0
virtual void Contour(vtkContourValues *values,
vtkImplicitFunction *f,
vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
vtkIncrementalPointLocator *locator,
vtkCellArray *verts,
vtkCellArray *lines,
vtkCellArray *polys,
vtkPointData *outPd,
vtkCellData *outCd,
vtkPointData *internalPd,
vtkPointData *secondaryPd,
vtkCellData *secondaryCd);
// Description:
// Cut (or clip) the current cell with respect to the contour defined by
// the `value' or the implicit function `f' of the scalar attribute
// (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()').
// If `f' exists, `value' is not used. The output is the part of the
// current cell which is inside the contour. The output is a set of zero,
// one or more cells of the same topological dimension as the current
// cell. Normally, cell points whose scalar value is greater than "value"
// are considered inside. If `insideOut' is on, this is reversed. Clipping
// interpolates the `attributes->GetNumberOfattributesToInterpolate()'
// attributes `attributes->GetAttributesToInterpolate()'. `locator',
// `connectivity', `outPd' and `outCd' are cumulative data arrays over cell
// iterations: they store the result of each call to Clip():
// - `locator' is a points list that merges points as they are inserted
// (i.e., prevents duplicates).
// - `connectivity' is an array of generated cells
// - `outPd' is an array of interpolated point data along the edge (if
// not-NULL)
// - `outCd' is an array of copied cell data of the current cell (if
// not-NULL)
// `internalPd', `secondaryPd' and `secondaryCd' are initialized by the
// filter that call it from `attributes'.
// - `internalPd' stores the result of the tessellation pass: the
// higher-order cell is tessellated into linear sub-cells.
// - `secondaryPd' and `secondaryCd' are used internally as inputs to the
// Clip() method on linear sub-cells.
// Note: the CopyAllocate() method must be invoked on both `outPd' and
// `outCd', from `secondaryPd' and `secondaryCd'.
//
// NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
// `vtkInformation'.
//
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre locator_exists: locator!=0
// \pre connectivity_exists: connectivity!=0
// \pre internalPd_exists: internalPd!=0
// \pre secondaryPd_exists: secondaryPd!=0
// \pre secondaryCd_exists: secondaryCd!=0
virtual void Clip(double value,
vtkImplicitFunction *f,
vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
int insideOut,
vtkIncrementalPointLocator *locator,
vtkCellArray *connectivity,
vtkPointData *outPd,
vtkCellData *outCd,
vtkPointData *internalPd,
vtkPointData *secondaryPd,
vtkCellData *secondaryCd);
// Description:
// Is there an intersection between the current cell and the ray (`p1',`p2')
// according to a tolerance `tol'? If true, `x' is the global intersection,
// `t' is the parametric coordinate for the line, `pcoords' are the
// parametric coordinates for cell. `subId' is the sub-cell where
// the intersection occurs.
// \pre positive_tolerance: tol>0
virtual int IntersectWithLine(double p1[3],
double p2[3],
double tol,
double &t,
double x[3],
double pcoords[3],
int &subId)=0;
// Description:
// Compute derivatives `derivs' of the attribute `attribute' (from its
// values at the corner points of the cell) given sub-cell `subId' (0 means
// primary cell) and parametric coordinates `pcoords'.
// Derivatives are in the x-y-z coordinate directions for each data value.
// \pre positive_subId: subId>=0
// \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
// &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1)
// \pre attribute_exists: attribute!=0
// \pre derivs_exists: derivs!=0
// \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3
virtual void Derivatives(int subId,
double pcoords[3],
vtkGenericAttribute *attribute,
double *derivs)=0;
// Description:
// Compute the bounding box of the current cell in `bounds' in global
// coordinates.
// THREAD SAFE
virtual void GetBounds(double bounds[6])=0;
// Description:
// Return the bounding box of the current cell in global coordinates.
// NOT THREAD SAFE
// \post result_exists: result!=0
// \post valid_size: sizeof(result)>=6
virtual double *GetBounds();
// Description:
// Return the bounding box diagonal squared of the current cell.
// \post positive_result: result>=0
virtual double GetLength2();
// Description:
// Get the center of the current cell (in parametric coordinates) and place
// it in `pcoords'. If the current cell is a composite, the return value
// is the sub-cell id that the center is in. \post valid_result:
// (result>=0) && (IsPrimary() implies result==0)
virtual int GetParametricCenter(double pcoords[3])=0;
// Description:
// Return the distance of the parametric coordinate `pcoords' to the
// current cell. If inside the cell, a distance of zero is returned. This
// is used during picking to get the correct cell picked. (The tolerance
// will occasionally allow cells to be picked who are not really
// intersected "inside" the cell.) \post positive_result: result>=0
virtual double GetParametricDistance(double pcoords[3])=0;
// Description:
// Return a contiguous array of parametric coordinates of the corrner points
// defining the current cell. In other words, (px,py,pz, px,py,pz, etc..) The
// coordinates are ordered consistent with the definition of the point
// ordering for the cell. Note that 3D parametric coordinates are returned
// no matter what the topological dimension of the cell.
// \post valid_result_exists: ((IsPrimary()) && (result!=0)) ||
// ((!IsPrimary()) && (result==0))
// result!=0 implies sizeof(result)==GetNumberOfPoints()
virtual double *GetParametricCoords()=0;
// Description:
// Tessellate the cell if it is not linear or if at least one attribute of
// `attributes' is not linear. The output are linear cells of the same
// dimension than the cell. If the cell is linear and all attributes are
// linear, the output is just a copy of the current cell.
// `points', `cellArray', `pd' and `cd' are cumulative output data arrays
// over cell iterations: they store the result of each call to Tessellate().
// `internalPd' is initialized by the calling filter and stores the
// result of the tessellation.
// If it is not null, `types' is filled with the types of the linear cells.
// `types' is null when it is called from vtkGenericGeometryFilter and not
// null when it is called from vtkGenericDatasetTessellator.
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre points_exist: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
// \pre pd_exist: pd!=0
// \pre cd_exists: cd!=0
virtual void Tessellate(vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
vtkPoints *points,
vtkIncrementalPointLocator *locator,
vtkCellArray* cellArray,
vtkPointData *internalPd,
vtkPointData *pd, vtkCellData* cd,
vtkUnsignedCharArray *types);
// The following methods are for the internals of the tesselation algorithm
// (the hash table in particular)
// Description:
// Is the face `faceId' of the current cell on the exterior boundary of the
// dataset?
// \pre 3d: GetDimension()==3
virtual int IsFaceOnBoundary(vtkIdType faceId) = 0;
// Description:
// Is the cell on the exterior boundary of the dataset?
// \pre 2d: GetDimension()==2
virtual int IsOnBoundary() = 0;
// Description:
// Put into `id' the list of the dataset points that define the corner points
// of the cell.
// \pre id_exists: id!=0
// \pre valid_size: sizeof(id)==GetNumberOfPoints();
virtual void GetPointIds(vtkIdType *id) = 0;
// Description:
// Tessellate face `index' of the cell. See Tessellate() for further
// explanations.
// \pre cell_is_3d: GetDimension()==3
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre valid_face: index>=0
// \pre points_exist: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
// \pre pd_exist: pd!=0
// \pre cd_exists: cd!=0
virtual void TriangulateFace(vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess, int index,
vtkPoints *points,
vtkIncrementalPointLocator *locator,
vtkCellArray *cellArray,
vtkPointData *internalPd,
vtkPointData *pd, vtkCellData *cd );
// Description:
// Return the ids of the vertices defining face `faceId'.
// Ids are related to the cell, not to the dataset.
// \pre is_3d: this->GetDimension()==3
// \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
// \post result_exists: result!=0
// \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId)
virtual int *GetFaceArray(int faceId)=0;
// Description:
// Return the number of vertices defining face `faceId'.
// \pre is_3d: this->GetDimension()==3
// \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
// \post positive_result: && result>0
virtual int GetNumberOfVerticesOnFace(int faceId)=0;
// Description:
// Return the ids of the vertices defining edge `edgeId'.
// Ids are related to the cell, not to the dataset.
// \pre valid_dimension: this->GetDimension()>=2
// \pre valid_edgeId_range: edgeId>=0 && edgeId<this->GetNumberOfBoundaries(1)
// \post result_exists: result!=0
// \post valid_size: sizeof(result)==2
virtual int *GetEdgeArray(int edgeId)=0;
protected:
vtkGenericAdaptorCell();
virtual ~vtkGenericAdaptorCell();
// Description:
// Reset internal structures.
void Reset();
// Description:
// Allocate some memory if Tuples does not exist or is smaller than size.
// \pre positive_size: size>0
void AllocateTuples(int size);
//Internal tetra used for the contouring/clipping algorithm
vtkTetra *Tetra;
vtkTriangle *Triangle;
vtkLine *Line;
vtkVertex *Vertex; //is it used ?
vtkQuad *Quad;
vtkHexahedron *Hexa;
vtkWedge *Wedge;
vtkPyramid *Pyramid;
// Internal locator when tessellating on a cell basis, this is different
// from the main locator used in contour/clip filter, this locator is used for
// points for
// Be careful the use of a vtkLocator in conjunction with the table fast
// tessellator is very sensitive, we need to keep all the points we used
vtkDoubleArray *InternalPoints;
vtkCellArray *InternalCellArray;
vtkDoubleArray *InternalScalars;
vtkDoubleArray *PointDataScalars;
vtkIdList *InternalIds; // used by Tessellate() and TriangulateFace()
//Attributes to mimic the vtk cell look and feel, internal use only
vtkDoubleArray *Scalars;
vtkPointData *PointData;
vtkCellData *CellData;
// Scalar buffer to store the attributes values at some location
// There are variable members to reduce memory allocations.
double *Tuples;
int TuplesCapacity;
// Cached Bounds.
double Bounds[6];
private:
vtkGenericAdaptorCell(const vtkGenericAdaptorCell&); // Not implemented.
void operator=(const vtkGenericAdaptorCell&); // Not implemented.
};
#endif
|