This file is indexed.

/usr/include/paraview/vtkGenericAdaptorCell.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkGenericAdaptorCell.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkGenericAdaptorCell - defines cell interface
// .SECTION Description
// In VTK, spatial-temporal data is defined in terms of a dataset which is
// composed of cells. The cells are topological entities over which an
// interpolation field is applied. Cells are defined in terms of a topology
// (e.g., vertices, lines, triangles, polygons, tetrahedra, etc.), points
// that instantiate the geometry of the cells, and interpolation fields
// (in the general case one interpolation field is for geometry, the other
// is for attribute data associated with the cell).
//
// Currently most algorithms in VTK use vtkCell and vtkDataSet, which make
// assumptions about the nature of datasets, cells, and attributes. In
// particular, this abstraction assumes that cell interpolation functions
// are linear, or products of linear functions. Further, VTK implements
// most of the interpolation functions. This implementation starts breaking
// down as the complexity of the interpolation (or basis) functions
// increases.
//
// vtkGenericAdaptorCell addresses these issues by providing more general
// abstraction for cells. It also adopts modern C++ practices including using
// iterators. The vtkGenericAdaptorCell is designed to fit within the adaptor
// framework; meaning that it is meant to adapt VTK to external simulation
// systems (see the GenericFiltering/README.html).
//
// Please note that most cells are defined in terms of other cells (the
// boundary cells). They are also defined in terms of points, which are
// not the same as vertices (vertices are a 0-D cell; points represent a
// position in space).
//
// Another important concept is the notion of DOFNodes. These concept
// supports cell types with complex interpolation functions. For example,
// higher-order p-method finite elements may have different functions on each
// of their topological features (edges, faces, region). The coefficients of
// these polynomial functions are associated with DOFNodes. (There is a
// single DOFNode for each topological feature.) Note that from this
// perspective, points are used to establish the topological form of the
// cell; mid-side nodes and such are considered DOFNodes.

// .SECTION See Also
// vtkGenericDataSet

#ifndef __vtkGenericAdaptorCell_h
#define __vtkGenericAdaptorCell_h


#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"

class vtkLine;
class vtkTetra;
class vtkPoints;
class vtkVertex;
class vtkTriangle;
class vtkCellData;
class vtkPointData;
class vtkCellArray;
class vtkDoubleArray;
class vtkGenericCellIterator;
class vtkIncrementalPointLocator;
class vtkContourValues;
class vtkImplicitFunction;
class vtkGenericCellTessellator;
class vtkGenericAttributeCollection;
class vtkGenericAttribute;
class vtkGenericPointIterator;
class vtkIdList;
class vtkOrderedTriangulator;
class vtkPolygon;
class vtkUnsignedCharArray;
class vtkQuad;
class vtkHexahedron;
class vtkWedge;
class vtkPyramid;

class VTKCOMMONDATAMODEL_EXPORT vtkGenericAdaptorCell : public vtkObject
{
public:
  vtkTypeMacro(vtkGenericAdaptorCell,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Unique identification number of the cell over the whole
  // data set. This unique key may not be contiguous.
  virtual vtkIdType GetId() = 0;

  // Description:
  // Does `this' a cell of a dataset? (otherwise, it is a boundary cell)
  virtual int IsInDataSet()=0;

  // Description:
  // Return the type of the current cell.
  // \post (result==VTK_HIGHER_ORDER_EDGE)||
  //       (result==VTK_HIGHER_ORDER_TRIANGLE)||
  //       (result==VTK_HIGHER_ORDER_TETRAHEDRON)
  virtual int GetType()=0;

  // Description:
  // Return the topological dimension of the current cell.
  // \post valid_result: result>=0 && result<=3
  virtual int GetDimension() = 0;

  // Description:
  // Return the interpolation order of the geometry.
  // \post positive_result: result>=0
  virtual int GetGeometryOrder()=0;

  // Description:
  // Does the cell have a non-linear interpolation for the geometry?
  // \post definition: result==(GetGeometryOrder()==1)
  int IsGeometryLinear();

  // Description:
  // Return the interpolation order of attribute `a' on the cell
  // (may differ by cell).
  // \pre a_exists: a!=0
  // \post positive_result: result>=0
  virtual int GetAttributeOrder(vtkGenericAttribute *a)=0;

  // Description:
  // Return the index of the first point centered attribute with the highest
  // order in `ac'.
  // \pre ac_exists: ac!=0
  // \post valid_result: result>=-1 && result<ac->GetNumberOfAttributes()
  virtual int GetHighestOrderAttribute(vtkGenericAttributeCollection *ac);

  // Description:
  // Does the attribute `a' have a non-linear interpolation?
  // \pre a_exists: a!=0
  // \post definition: result==(GetAttributeOrder()==1)
  int IsAttributeLinear(vtkGenericAttribute *a);

  // Description:
  // Is the cell primary (i.e. not composite) ?
  virtual int IsPrimary()=0;

  // Description:
  // Return the number of corner points that compose the cell.
  // \post positive_result: result>=0
  virtual int GetNumberOfPoints()=0;

  // Description:
  // Return the number of boundaries of dimension `dim' (or all dimensions
  // greater than 0 and less than GetDimension() if -1) of the cell.
  // When \a dim is -1, the number of vertices is not included in the
  // count because vertices are a special case: a vertex will have
  // at most a single field value associated with it; DOF nodes may have
  // an arbitrary number of field values associated with them.
  // \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
  // \post positive_result: result>=0
  virtual int GetNumberOfBoundaries(int dim=-1)=0;

  // Description:
  // Accumulated number of DOF nodes of the current cell. A DOF node is
  // a component of cell with a given topological dimension. e.g.: a triangle
  // has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF:
  // 1 region, 6 faces, and 12 edges.
  //
  // The number of vertices is not included in the
  // count because vertices are a special case: a vertex will have
  // at most a single field value associated with it; DOF nodes may have
  // an arbitrary number of field values associated with them.
  // \post valid_result: result==GetNumberOfBoundaries(-1)+1
  virtual int GetNumberOfDOFNodes()=0;

  // Description:
  // Return the points of cell into `it'.
  // \pre it_exists: it!=0
  virtual void GetPointIterator(vtkGenericPointIterator *it)=0;

  // Description:
  // Create an empty cell iterator. The user is responsible for deleting it.
  // \post result_exists: result!=0
  virtual vtkGenericCellIterator *NewCellIterator()=0;

  // Description:
  // Return the `boundaries' cells of dimension `dim' (or all dimensions
  // less than GetDimension() if -1) that are part of the boundary of the cell.
  // \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
  // \pre boundaries_exist: boundaries!=0
  virtual void GetBoundaryIterator(vtkGenericCellIterator *boundaries,
                                   int dim=-1)=0;

  // Description:
  // Number of cells (dimension>boundary->GetDimension()) of the dataset
  // that share the boundary `boundary' of `this'.
  // `this' IS NOT INCLUDED.
  // \pre boundary_exists: boundary!=0
  // \pre real_boundary: !boundary->IsInDataSet()
  // \pre cell_of_the_dataset: IsInDataSet()
  // \pre boundary: HasBoundary(boundary)
  // \post positive_result: result>=0
  virtual int CountNeighbors(vtkGenericAdaptorCell *boundary)=0;
  virtual void CountEdgeNeighbors( int* sharing ) = 0;

  // Description:
  // Put into `neighbors' the cells (dimension>boundary->GetDimension())
  // of the dataset that share the boundary `boundary' with this cell.
  // `this' IS NOT INCLUDED.
  // \pre boundary_exists: boundary!=0
  // \pre real_boundary: !boundary->IsInDataSet()
  // \pre cell_of_the_dataset: IsInDataSet()
  // \pre boundary: HasBoundary(boundary)
  // \pre neighbors_exist: neighbors!=0
  virtual void GetNeighbors(vtkGenericAdaptorCell *boundary,
                            vtkGenericCellIterator *neighbors)=0;

  // Description:
  // Compute the closest boundary of the current sub-cell `subId' for point
  // `pcoord' (in parametric coordinates) in `boundary', and return whether
  // the point is inside the cell or not. `boundary' is of dimension
  // GetDimension()-1.
  // \pre positive_subId: subId>=0
  virtual int FindClosestBoundary(int subId,
                                  double pcoords[3],
                                  vtkGenericCellIterator* &boundary)=0;

  // Description:
  // Is `x' inside the current cell? It also evaluates parametric coordinates
  // `pcoords', sub-cell id `subId' (0 means primary cell), distance squared
  // to the sub-cell in `dist2' and closest corner point `closestPoint'.
  // `dist2' and `closestPoint' are not evaluated if `closestPoint'==0.
  // If a numerical error occurred, -1 is returned and all other results
  // should be ignored.
  // \post valid_result: result==-1 || result==0 || result==1
  // \post positive_distance: result!=-1 implies (closestPoint!=0 implies
  //                                               dist2>=0)
  virtual int EvaluatePosition(double x[3],
                               double *closestPoint,
                               int &subId,
                               double pcoords[3],
                               double &dist2)=0;

  // Description:
  // Determine the global coordinates `x' from sub-cell `subId' and parametric
  // coordinates `pcoords' in the cell.
  // \pre positive_subId: subId>=0
  // \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
  // &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1)
  virtual void EvaluateLocation(int subId,
                                double pcoords[3],
                                double x[3])=0;

  // Description:
  // Interpolate the attribute `a' at local position `pcoords' of the cell into
  // `val'.
  // \pre a_exists: a!=0
  // \pre a_is_point_centered: a->GetCentering()==vtkPointCentered
  // \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
  //                     pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
  // \pre val_exists: val!=0
  // \pre valid_size: sizeof(val)==a->GetNumberOfComponents()
  virtual void InterpolateTuple(vtkGenericAttribute *a, double pcoords[3],
                                double *val) = 0;

  // Description:
  // Interpolate the whole collection of attributes `c' at local position
  // `pcoords' of the cell into `val'. Only point centered attributes are
  // taken into account.
  // \pre c_exists: c!=0
  // \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
  //                     pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
  // \pre val_exists: val!=0
  // \pre valid_size: sizeof(val)==c->GetNumberOfPointCenteredComponents()
  virtual void InterpolateTuple(vtkGenericAttributeCollection *c,
                                double pcoords[3],
                                double *val) = 0;

  // Description:
  // Generate a contour (contouring primitives) for each `values' or with
  // respect to an implicit function `f'. Contouring is performed on the
  // scalar attribute (`attributes->GetActiveAttribute()'
  // `attributes->GetActiveComponent()').  Contouring interpolates the
  // `attributes->GetNumberOfattributesToInterpolate()' attributes
  // `attributes->GetAttributesToInterpolate()'.  The `locator', `verts',
  // `lines', `polys', `outPd' and `outCd' are cumulative data arrays over
  // cell iterations: they store the result of each call to Contour():
  // - `locator' is a points list that merges points as they are inserted
  //  (i.e., prevents duplicates).
  // - `verts' is an array of generated vertices
  // - `lines' is an array of generated lines
  // - `polys' is an array of generated polygons
  // - `outPd' is an array of interpolated point data along the edge (if
  // not-NULL)
  // - `outCd' is an array of copied cell data of the current cell (if
  // not-NULL)
  // `internalPd', `secondaryPd' and `secondaryCd' are initialized by the
  // filter that call it from `attributes'.
  // - `internalPd' stores the result of the tessellation pass: the
  // higher-order cell is tessellated into linear sub-cells.
  // - `secondaryPd' and `secondaryCd' are used internally as inputs to the
  // Contour() method on linear sub-cells.
  // Note: the CopyAllocate() method must be invoked on both `outPd' and
  // `outCd', from `secondaryPd' and `secondaryCd'.
  //
  // NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
  //       `vtkInformation'.
  //
  // \pre values_exist: (values!=0 && f==0) || (values==0 && f!=0)
  // \pre attributes_exist: attributes!=0
  // \pre tessellator_exists: tess!=0
  // \pre locator_exists: locator!=0
  // \pre verts_exist: verts!=0
  // \pre lines_exist: lines!=0
  // \pre polys_exist: polys!=0
  // \pre internalPd_exists: internalPd!=0
  // \pre secondaryPd_exists: secondaryPd!=0
  // \pre secondaryCd_exists: secondaryCd!=0
  virtual void Contour(vtkContourValues *values,
                       vtkImplicitFunction *f,
                       vtkGenericAttributeCollection *attributes,
                       vtkGenericCellTessellator *tess,
                       vtkIncrementalPointLocator *locator,
                       vtkCellArray *verts,
                       vtkCellArray *lines,
                       vtkCellArray *polys,
                       vtkPointData *outPd,
                       vtkCellData *outCd,
                       vtkPointData *internalPd,
                       vtkPointData *secondaryPd,
                       vtkCellData *secondaryCd);

  // Description:
  // Cut (or clip) the current cell with respect to the contour defined by
  // the `value' or the implicit function `f' of the scalar attribute
  // (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()').
  // If `f' exists, `value' is not used. The output is the part of the
  // current cell which is inside the contour.  The output is a set of zero,
  // one or more cells of the same topological dimension as the current
  // cell. Normally, cell points whose scalar value is greater than "value"
  // are considered inside. If `insideOut' is on, this is reversed.  Clipping
  // interpolates the `attributes->GetNumberOfattributesToInterpolate()'
  // attributes `attributes->GetAttributesToInterpolate()'.  `locator',
  // `connectivity', `outPd' and `outCd' are cumulative data arrays over cell
  // iterations: they store the result of each call to Clip():
  // - `locator' is a points list that merges points as they are inserted
  // (i.e., prevents duplicates).
  // - `connectivity' is an array of generated cells
  // - `outPd' is an array of interpolated point data along the edge (if
  // not-NULL)
  // - `outCd' is an array of copied cell data of the current cell (if
  // not-NULL)
  // `internalPd', `secondaryPd' and `secondaryCd' are initialized by the
  // filter that call it from `attributes'.
  // - `internalPd' stores the result of the tessellation pass: the
  // higher-order cell is tessellated into linear sub-cells.
  // - `secondaryPd' and `secondaryCd' are used internally as inputs to the
  // Clip() method on linear sub-cells.
  // Note: the CopyAllocate() method must be invoked on both `outPd' and
  // `outCd', from `secondaryPd' and `secondaryCd'.
  //
  // NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
  //       `vtkInformation'.
  //
  // \pre attributes_exist: attributes!=0
  // \pre tessellator_exists: tess!=0
  // \pre locator_exists: locator!=0
  // \pre connectivity_exists: connectivity!=0
  // \pre internalPd_exists: internalPd!=0
  // \pre secondaryPd_exists: secondaryPd!=0
  // \pre secondaryCd_exists: secondaryCd!=0
  virtual void Clip(double value,
                    vtkImplicitFunction *f,
                    vtkGenericAttributeCollection *attributes,
                    vtkGenericCellTessellator *tess,
                    int insideOut,
                    vtkIncrementalPointLocator *locator,
                    vtkCellArray *connectivity,
                    vtkPointData *outPd,
                    vtkCellData *outCd,
                    vtkPointData *internalPd,
                    vtkPointData *secondaryPd,
                    vtkCellData *secondaryCd);

  // Description:
  // Is there an intersection between the current cell and the ray (`p1',`p2')
  // according to a tolerance `tol'? If true, `x' is the global intersection,
  // `t' is the parametric coordinate for the line, `pcoords' are the
  // parametric coordinates for cell. `subId' is the sub-cell where
  // the intersection occurs.
  // \pre positive_tolerance: tol>0
  virtual int IntersectWithLine(double p1[3],
                                double p2[3],
                                double tol,
                                double &t,
                                double x[3],
                                double pcoords[3],
                                int &subId)=0;

  // Description:
  // Compute derivatives `derivs' of the attribute `attribute' (from its
  // values at the corner points of the cell) given sub-cell `subId' (0 means
  // primary cell) and parametric coordinates `pcoords'.
  // Derivatives are in the x-y-z coordinate directions for each data value.
  // \pre positive_subId: subId>=0
  // \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
  // &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1)
  // \pre attribute_exists: attribute!=0
  // \pre derivs_exists: derivs!=0
  // \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3
  virtual void Derivatives(int subId,
                           double pcoords[3],
                           vtkGenericAttribute *attribute,
                           double *derivs)=0;

  // Description:
  // Compute the bounding box of the current cell in `bounds' in global
  // coordinates.
  // THREAD SAFE
  virtual void GetBounds(double bounds[6])=0;

  // Description:
  // Return the bounding box of the current cell in global coordinates.
  // NOT THREAD SAFE
  // \post result_exists: result!=0
  // \post valid_size: sizeof(result)>=6
  virtual double *GetBounds();

  // Description:
  // Return the bounding box diagonal squared of the current cell.
  // \post positive_result: result>=0
  virtual double GetLength2();

  // Description:
  // Get the center of the current cell (in parametric coordinates) and place
  // it in `pcoords'.  If the current cell is a composite, the return value
  // is the sub-cell id that the center is in.  \post valid_result:
  // (result>=0) && (IsPrimary() implies result==0)
  virtual int GetParametricCenter(double pcoords[3])=0;

  // Description:
  // Return the distance of the parametric coordinate `pcoords' to the
  // current cell.  If inside the cell, a distance of zero is returned. This
  // is used during picking to get the correct cell picked. (The tolerance
  // will occasionally allow cells to be picked who are not really
  // intersected "inside" the cell.)  \post positive_result: result>=0
  virtual double GetParametricDistance(double pcoords[3])=0;

  // Description:
  // Return a contiguous array of parametric coordinates of the corrner points
  // defining the current cell. In other words, (px,py,pz, px,py,pz, etc..) The
  // coordinates are ordered consistent with the definition of the point
  // ordering for the cell. Note that 3D parametric coordinates are returned
  // no matter what the topological dimension of the cell.
  // \post valid_result_exists: ((IsPrimary()) && (result!=0)) ||
  //                             ((!IsPrimary()) && (result==0))
  //                     result!=0 implies sizeof(result)==GetNumberOfPoints()
  virtual double *GetParametricCoords()=0;

  // Description:
  // Tessellate the cell if it is not linear or if at least one attribute of
  // `attributes' is not linear. The output are linear cells of the same
  // dimension than the cell. If the cell is linear and all attributes are
  // linear, the output is just a copy of the current cell.
  // `points', `cellArray', `pd' and `cd' are cumulative output data arrays
  // over cell iterations: they store the result of each call to Tessellate().
  // `internalPd' is initialized by the calling filter and stores the
  // result of the tessellation.
  // If it is not null, `types' is filled with the types of the linear cells.
  // `types' is null when it is called from vtkGenericGeometryFilter and not
  // null when it is called from vtkGenericDatasetTessellator.
  // \pre attributes_exist: attributes!=0
  // \pre tessellator_exists: tess!=0
  // \pre points_exist: points!=0
  // \pre cellArray_exists: cellArray!=0
  // \pre internalPd_exists: internalPd!=0
  // \pre pd_exist: pd!=0
  // \pre cd_exists: cd!=0
  virtual void Tessellate(vtkGenericAttributeCollection *attributes,
                          vtkGenericCellTessellator *tess,
                          vtkPoints *points,
                          vtkIncrementalPointLocator *locator,
                          vtkCellArray* cellArray,
                          vtkPointData *internalPd,
                          vtkPointData *pd, vtkCellData* cd,
                          vtkUnsignedCharArray *types);

  // The following methods are for the internals of the tesselation algorithm
  // (the hash table in particular)

  // Description:
  // Is the face `faceId' of the current cell on the exterior boundary of the
  // dataset?
  // \pre 3d: GetDimension()==3
  virtual int IsFaceOnBoundary(vtkIdType faceId) = 0;

  // Description:
  // Is the cell on the exterior boundary of the dataset?
  // \pre 2d: GetDimension()==2
  virtual int IsOnBoundary() = 0;

  // Description:
  // Put into `id' the list of the dataset points that define the corner points
  // of the cell.
  // \pre id_exists: id!=0
  // \pre valid_size: sizeof(id)==GetNumberOfPoints();
  virtual void GetPointIds(vtkIdType *id) = 0;

  // Description:
  // Tessellate face `index' of the cell. See Tessellate() for further
  // explanations.
  // \pre cell_is_3d: GetDimension()==3
  // \pre attributes_exist: attributes!=0
  // \pre tessellator_exists: tess!=0
  // \pre valid_face: index>=0
  // \pre points_exist: points!=0
  // \pre cellArray_exists: cellArray!=0
  // \pre internalPd_exists: internalPd!=0
  // \pre pd_exist: pd!=0
  // \pre cd_exists: cd!=0
  virtual void TriangulateFace(vtkGenericAttributeCollection *attributes,
                               vtkGenericCellTessellator *tess, int index,
                               vtkPoints *points,
                               vtkIncrementalPointLocator *locator,
                               vtkCellArray *cellArray,
                               vtkPointData *internalPd,
                               vtkPointData *pd, vtkCellData *cd );

  // Description:
  // Return the ids of the vertices defining face `faceId'.
  // Ids are related to the cell, not to the dataset.
  // \pre is_3d: this->GetDimension()==3
  // \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
  // \post result_exists: result!=0
  // \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId)
  virtual int *GetFaceArray(int faceId)=0;

  // Description:
  // Return the number of vertices defining face `faceId'.
  // \pre is_3d: this->GetDimension()==3
  // \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
  // \post positive_result: && result>0
  virtual int GetNumberOfVerticesOnFace(int faceId)=0;

  // Description:
  // Return the ids of the vertices defining edge `edgeId'.
  // Ids are related to the cell, not to the dataset.
  // \pre valid_dimension: this->GetDimension()>=2
  // \pre valid_edgeId_range: edgeId>=0 && edgeId<this->GetNumberOfBoundaries(1)
  // \post result_exists: result!=0
  // \post valid_size: sizeof(result)==2
  virtual int *GetEdgeArray(int edgeId)=0;

protected:
  vtkGenericAdaptorCell();
  virtual ~vtkGenericAdaptorCell();

  // Description:
  // Reset internal structures.
  void Reset();

  // Description:
  // Allocate some memory if Tuples does not exist or is smaller than size.
  // \pre positive_size: size>0
  void AllocateTuples(int size);

  //Internal tetra used for the contouring/clipping algorithm
  vtkTetra       *Tetra;
  vtkTriangle    *Triangle;
  vtkLine        *Line;
  vtkVertex      *Vertex; //is it used ?
  vtkQuad *Quad;
  vtkHexahedron *Hexa;
  vtkWedge *Wedge;
  vtkPyramid *Pyramid;

  // Internal locator when tessellating on a cell basis, this is different
  // from the main locator used in contour/clip filter, this locator is used for
  // points for
  // Be careful the use of a vtkLocator in conjunction with the table fast
  // tessellator is very sensitive, we need to keep all the points we used
  vtkDoubleArray  *InternalPoints;
  vtkCellArray    *InternalCellArray;
  vtkDoubleArray  *InternalScalars;
  vtkDoubleArray  *PointDataScalars;

  vtkIdList        *InternalIds; // used by Tessellate() and TriangulateFace()

  //Attributes to mimic the vtk cell look and feel, internal use only
  vtkDoubleArray  *Scalars;
  vtkPointData    *PointData;
  vtkCellData     *CellData;

  // Scalar buffer to store the attributes values at some location
  // There are variable members to reduce memory allocations.
  double *Tuples;
  int TuplesCapacity;

  // Cached Bounds.
  double Bounds[6];

private:
  vtkGenericAdaptorCell(const vtkGenericAdaptorCell&);  // Not implemented.
  void operator=(const vtkGenericAdaptorCell&);  // Not implemented.
};

#endif