/usr/include/paraview/vtkGeometricErrorMetric.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkGeometricErrorMetric.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGeometricErrorMetric - Objects that compute
// geometry-based error during cell tessellation.
//
// .SECTION Description
// It is a concrete error metric, based on a geometric criterium:
// the variation of the edge from a straight line.
//
// .SECTION See Also
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric
#ifndef __vtkGeometricErrorMetric_h
#define __vtkGeometricErrorMetric_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkGenericSubdivisionErrorMetric.h"
class vtkGenericDataSet;
class VTKCOMMONDATAMODEL_EXPORT vtkGeometricErrorMetric : public vtkGenericSubdivisionErrorMetric
{
public:
// Description:
// Construct the error metric with a default squared absolute geometric
// accuracy equal to 1.
static vtkGeometricErrorMetric *New();
// Description:
// Standard VTK type and error macros.
vtkTypeMacro(vtkGeometricErrorMetric,vtkGenericSubdivisionErrorMetric);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Return the squared absolute geometric accuracy. See
// SetAbsoluteGeometricTolerance() for details.
// \post positive_result: result>0
vtkGetMacro(AbsoluteGeometricTolerance, double);
// Description:
// Set the geometric accuracy with a squared absolute value.
// This is the geometric object-based accuracy.
// Subdivision will be required if the square distance between the real
// point and the straight line passing through the vertices of the edge is
// greater than `value'. For instance 0.01 will give better result than 0.1.
// \pre positive_value: value>0
void SetAbsoluteGeometricTolerance(double value);
// Description:
// Set the geometric accuracy with a value relative to the length of the
// bounding box of the dataset. Internally compute the absolute tolerance.
// For instance 0.01 will give better result than 0.1.
// \pre valid_range_value: value>0 && value<1
// \pre ds_exists: ds!=0
void SetRelativeGeometricTolerance(double value,
vtkGenericDataSet *ds);
// Description:
// Does the edge need to be subdivided according to the distance between
// the line passing through its endpoints and the mid point?
// The edge is defined by its `leftPoint' and its `rightPoint'.
// `leftPoint', `midPoint' and `rightPoint' have to be initialized before
// calling RequiresEdgeSubdivision().
// Their format is global coordinates, parametric coordinates and
// point centered attributes: xyx rst abc de...
// `alpha' is the normalized abscissa of the midpoint along the edge.
// (close to 0 means close to the left point, close to 1 means close to the
// right point)
// \pre leftPoint_exists: leftPoint!=0
// \pre midPoint_exists: midPoint!=0
// \pre rightPoint_exists: rightPoint!=0
// \pre clamped_alpha: alpha>0 && alpha<1
// \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
// =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint,
double alpha);
// Description:
// Return the error at the mid-point. It will return an error relative to
// the bounding box size if GetRelative() is true, a square absolute error
// otherwise.
// See RequiresEdgeSubdivision() for a description of the arguments.
// \pre leftPoint_exists: leftPoint!=0
// \pre midPoint_exists: midPoint!=0
// \pre rightPoint_exists: rightPoint!=0
// \pre clamped_alpha: alpha>0 && alpha<1
// \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
// =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
// \post positive_result: result>=0
double GetError(double *leftPoint, double *midPoint,
double *rightPoint, double alpha);
// Description:
// Return the type of output of GetError()
int GetRelative();
protected:
vtkGeometricErrorMetric();
virtual ~vtkGeometricErrorMetric();
// Description:
// Square distance between a straight line (defined by points x and y)
// and a point z. Property: if x and y are equal, the line is a point and
// the result is the square distance between points x and z.
double Distance2LinePoint(double x[3],
double y[3],
double z[3]);
double AbsoluteGeometricTolerance;
double SmallestSize;
int Relative; // Control the type of output of GetError()
private:
vtkGeometricErrorMetric(const vtkGeometricErrorMetric&); // Not implemented.
void operator=(const vtkGeometricErrorMetric&); // Not implemented.
};
#endif
|