This file is indexed.

/usr/include/paraview/vtkGeometricErrorMetric.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkGeometricErrorMetric.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkGeometricErrorMetric - Objects that compute
// geometry-based error during cell tessellation.
//
// .SECTION Description
// It is a concrete error metric, based on a geometric criterium:
// the variation of the edge from a straight line.
//
// .SECTION See Also
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric

#ifndef __vtkGeometricErrorMetric_h
#define __vtkGeometricErrorMetric_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkGenericSubdivisionErrorMetric.h"

class vtkGenericDataSet;

class VTKCOMMONDATAMODEL_EXPORT vtkGeometricErrorMetric : public vtkGenericSubdivisionErrorMetric
{
public:
  // Description:
  // Construct the error metric with a default squared absolute geometric
  // accuracy equal to 1.
  static vtkGeometricErrorMetric *New();

  // Description:
  // Standard VTK type and error macros.
  vtkTypeMacro(vtkGeometricErrorMetric,vtkGenericSubdivisionErrorMetric);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Return the squared absolute geometric accuracy. See
  // SetAbsoluteGeometricTolerance() for details.
  // \post positive_result: result>0
  vtkGetMacro(AbsoluteGeometricTolerance, double);

  // Description:
  // Set the geometric accuracy with a squared absolute value.
  // This is the geometric object-based accuracy.
  // Subdivision will be required if the square distance between the real
  // point and the straight line passing through the vertices of the edge is
  // greater than `value'. For instance 0.01 will give better result than 0.1.
  // \pre positive_value: value>0
  void SetAbsoluteGeometricTolerance(double value);

  // Description:
  // Set the geometric accuracy with a value relative to the length of the
  // bounding box of the dataset. Internally compute the absolute tolerance.
  // For instance 0.01 will give better result than 0.1.
  // \pre valid_range_value: value>0 && value<1
  // \pre ds_exists: ds!=0
  void SetRelativeGeometricTolerance(double value,
                                     vtkGenericDataSet *ds);

  // Description:
  // Does the edge need to be subdivided according to the distance between
  // the line passing through its endpoints and the mid point?
  // The edge is defined by its `leftPoint' and its `rightPoint'.
  // `leftPoint', `midPoint' and `rightPoint' have to be initialized before
  // calling RequiresEdgeSubdivision().
  // Their format is global coordinates, parametric coordinates and
  // point centered attributes: xyx rst abc de...
  // `alpha' is the normalized abscissa of the midpoint along the edge.
  // (close to 0 means close to the left point, close to 1 means close to the
  // right point)
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint,
                              double alpha);

  // Description:
  // Return the error at the mid-point. It will return an error relative to
  // the bounding box size if GetRelative() is true, a square absolute error
  // otherwise.
  // See RequiresEdgeSubdivision() for a description of the arguments.
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  // \post positive_result: result>=0
  double GetError(double *leftPoint, double *midPoint,
                  double *rightPoint, double alpha);

  // Description:
  // Return the type of output of GetError()
  int GetRelative();

protected:
  vtkGeometricErrorMetric();
  virtual ~vtkGeometricErrorMetric();

  // Description:
  // Square distance between a straight line (defined by points x and y)
  // and a point z. Property: if x and y are equal, the line is a point and
  // the result is the square distance between points x and z.
  double Distance2LinePoint(double x[3],
                            double y[3],
                            double z[3]);

  double AbsoluteGeometricTolerance;
  double SmallestSize;
  int Relative; // Control the type of output of GetError()

private:
  vtkGeometricErrorMetric(const vtkGeometricErrorMetric&);  // Not implemented.
  void operator=(const vtkGeometricErrorMetric&);  // Not implemented.
};

#endif