/usr/include/paraview/vtkImageBSplineCoefficients.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkImageBSplineCoefficients.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkImageBSplineCoefficients - convert image to b-spline knots
// .SECTION Description
// vtkImageBSplineCoefficients prepares an image for b-spline
// interpolation by converting the image values into b-spline
// knot coefficients. It is a necessary pre-filtering step
// before applying b-spline interpolation with vtkImageReslice.
//
// This class is based on code provided by Philippe Thevenaz of
// EPFL, Lausanne, Switzerland. Please acknowledge his contribution
// by citing the following paper:
// [1] P. Thevenaz, T. Blu, M. Unser, "Interpolation Revisited,"
// IEEE Transactions on Medical Imaging 19(7):739-758, 2000.
//
// The clamped boundary condition (which is the default) is taken
// from code presented in the following paper:
// [2] D. Ruijters, P. Thevenaz,
// "GPU Prefilter for Accurate Cubic B-spline Interpolation,"
// The Computer Journal, doi: 10.1093/comjnl/bxq086, 2010.
//
// .SECTION Thanks
// This class was written by David Gobbi at the Seaman Family MR Research
// Centre, Foothills Medical Centre, Calgary, Alberta.
// DG Gobbi and YP Starreveld,
// "Uniform B-Splines for the VTK Imaging Pipeline,"
// VTK Journal, 2011,
// http://hdl.handle.net/10380/3252
#ifndef __vtkImageBSplineCoefficients_h
#define __vtkImageBSplineCoefficients_h
#include "vtkImagingCoreModule.h" // For export macro
#include "vtkThreadedImageAlgorithm.h"
#include "vtkImageBSplineInterpolator.h" // for constants
class VTKIMAGINGCORE_EXPORT vtkImageBSplineCoefficients :
public vtkThreadedImageAlgorithm
{
public:
static vtkImageBSplineCoefficients *New();
vtkTypeMacro(vtkImageBSplineCoefficients,vtkThreadedImageAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Set the degree of the spline polynomial. The default value is 3,
// and the maximum is 9.
vtkSetClampMacro(SplineDegree, int, 0, VTK_IMAGE_BSPLINE_DEGREE_MAX);
vtkGetMacro(SplineDegree, int);
// Description:
// Set the border mode. The filter that is used to create the
// coefficients must repeat the image somehow to make a theoritically
// infinite input. The default is to clamp values that are off the
// edge of the image, to the value at the closest point on the edge.
// The other ways of virtually extending the image are to produce
// mirrored copies, which results in optimal smoothness at the boundary,
// or to repeat the image, which results in a cyclic or periodic spline.
vtkSetClampMacro(BorderMode, int,
VTK_IMAGE_BORDER_CLAMP, VTK_IMAGE_BORDER_MIRROR);
void SetBorderModeToClamp() {
this->SetBorderMode(VTK_IMAGE_BORDER_CLAMP); }
void SetBorderModeToRepeat() {
this->SetBorderMode(VTK_IMAGE_BORDER_REPEAT); }
void SetBorderModeToMirror() {
this->SetBorderMode(VTK_IMAGE_BORDER_MIRROR); }
vtkGetMacro(BorderMode, int);
const char *GetBorderModeAsString();
// Description:
// Set the scalar type of the output. Default is float.
// Floating-point output is used to avoid overflow, since the
// range of the output values is larger than the input values.
vtkSetClampMacro(OutputScalarType, int, VTK_FLOAT, VTK_DOUBLE);
vtkGetMacro(OutputScalarType, int);
void SetOutputScalarTypeToFloat() {
this->SetOutputScalarType(VTK_FLOAT); }
void SetOutputScalarTypeToDouble() {
this->SetOutputScalarType(VTK_DOUBLE); }
const char *GetOutputScalarTypeAsString();
// Description:
// Bypass the filter, do not do any processing. If this is on,
// then the output data will reference the input data directly,
// and the output type will be the same as the input type. This
// is useful a downstream filter sometimes uses b-spline interpolation
// and sometimes uses other forms of interpolation.
vtkSetMacro(Bypass, int);
vtkBooleanMacro(Bypass, int);
vtkGetMacro(Bypass, int);
// Description:
// Check a point against the image bounds. Return 0 if out of bounds,
// and 1 if inside bounds. Calling Evaluate on a point outside the
// bounds will not generate an error, but the value returned will
// depend on the BorderMode.
int CheckBounds(const double point[3]);
// Description:
// Interpolate a value from the image. You must call Update() before
// calling this method for the first time. The first signature can
// return multiple components, while the second signature is for use
// on single-component images.
void Evaluate(const double point[3], double *value);
double Evaluate(double x, double y, double z);
double Evaluate(const double point[3]) {
return this->Evaluate(point[0], point[1], point[2]); }
// Description:
// Internal method. Override SplitExtent so that the full extent is
// available in the direction currently being processed.
int SplitExtent(int splitExt[6], int startExt[6], int num, int total);
protected:
vtkImageBSplineCoefficients();
~vtkImageBSplineCoefficients();
virtual void AllocateOutputData(
vtkImageData *out, vtkInformation *outInfo, int *uExtent);
virtual vtkImageData *AllocateOutputData(
vtkDataObject *out, vtkInformation* outInfo);
virtual int RequestData(
vtkInformation*, vtkInformationVector**, vtkInformationVector*);
virtual int RequestInformation(
vtkInformation*, vtkInformationVector**, vtkInformationVector*);
virtual int RequestUpdateExtent(
vtkInformation*, vtkInformationVector**, vtkInformationVector*);
virtual void ThreadedExecute(vtkImageData *inData, vtkImageData *outData,
int outExt[6], int threadId);
int SplineDegree;
int BorderMode;
int OutputScalarType;
int Bypass;
int DataWasPassed;
int Iteration;
private:
vtkImageBSplineCoefficients(const vtkImageBSplineCoefficients&); // Not implemented.
void operator=(const vtkImageBSplineCoefficients&); // Not implemented.
};
#endif
|