This file is indexed.

/usr/include/paraview/vtkKMeansStatistics.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkKMeansStatistics.h

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*-------------------------------------------------------------------------
  Copyright 2010 Sandia Corporation.
  Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
  the U.S. Government retains certain rights in this software.
  -------------------------------------------------------------------------*/
// .NAME vtkKMeansStatistics - A class for KMeans clustering
//
// .SECTION Description
// This class takes as input an optional vtkTable on port LEARN_PARAMETERS
// specifying initial  set(s) of cluster values of the following form:
// <pre>
//           K     | Col1            |  ...    | ColN
//      -----------+-----------------+---------+---------------
//           M     |clustCoord(1, 1) |  ...    | clustCoord(1, N)
//           M     |clustCoord(2, 1) |  ...    | clustCoord(2, N)
//           .     |       .         |   .     |        .
//           .     |       .         |   .     |        .
//           .     |       .         |   .     |        .
//           M     |clustCoord(M, 1) |  ...    | clustCoord(M, N)
//           L     |clustCoord(1, 1) |  ...    | clustCoord(1, N)
//           L     |clustCoord(2, 1) |  ...    | clustCoord(2, N)
//           .     |       .         |   .     |        .
//           .     |       .         |   .     |        .
//           .     |       .         |   .     |        .
//           L     |clustCoord(L, 1) |  ...    | clustCoord(L, N)
// </pre>
//
// Because the desired value of K is often not known in advance and the
// results of the algorithm are dependent on the initial cluster centers,
// we provide a mechanism for the user to test multiple runs or sets of cluster centers
// within a single call to the Learn phase.  The first column of the table identifies
// the number of clusters K in the particular run (the entries in this column should be
// of type vtkIdType), while the remaining columns are a
// subset of the columns contained in the table on port INPUT_DATA.  We require that
// all user specified clusters be of the same dimension N and consequently, that the
// LEARN_PARAMETERS table have N+1 columns. Due to this restriction, only one request
// can be processed for each call to the Learn phase and subsequent requests are
// silently ignored. Note that, if the first column of the LEARN_PARAMETERS table is not
// of type vtkIdType, then the table will be ignored and a single run will be performed using
// the first DefaultNumberOfClusters input data observations as initial cluster centers.
//
// When the user does not supply an initial set of clusters, then the first
// DefaultNumberOfClusters input data observations are used as initial cluster
// centers and a single run is performed.
//
//
// This class provides the following functionalities, depending on the operation
// in which it is executed:
// * Learn: calculates new cluster centers for each run.  The output metadata on
//   port OUTPUT_MODEL is a multiblock dataset containing at a minimum
//   one vtkTable with columns specifying the following for each run:
//   the run ID, number of clusters, number of iterations required for convergence,
//   total error associated with the cluster (sum of squared Euclidean distance from each observation
//   to its nearest cluster center), the cardinality of the cluster, and the new
//   cluster coordinates.
//
// * Derive:  An additional vtkTable is stored in the multiblock dataset output on port OUTPUT_MODEL.
//   This table contains columns that store for each run: the runID, number of clusters,
//   total error for all clusters in the run, local rank, and global rank.
//   The local rank is computed by comparing squared Euclidean errors of all runs with
//   the same number of clusters.  The global rank is computed analagously across all runs.
//
// * Assess: This requires a multiblock dataset (as computed from Learn and Derive) on input port INPUT_MODEL
//   and tabular data on input port INPUT_DATA that contains column names matching those
//   of the tables on input port INPUT_MODEL. The assess mode reports the closest cluster center
//   and associated squared Euclidean distance of each observation in port INPUT_DATA's table to the cluster centers for
//   each run in the multiblock dataset provided on port INPUT_MODEL.
//
// The code can handle a wide variety of data types as it operates on vtkAbstractArrays
// and is not limited to vtkDataArrays.  A default distance functor that
// computes the sum of the squares of the Euclidean distance between two objects is provided
// (vtkKMeansDistanceFunctor). The default distance functor can be overridden to use alternative distance metrics.
//
// .SECTION Thanks
// Thanks to Janine Bennett, David Thompson, and Philippe Pebay of
// Sandia National Laboratories for implementing this class.
// Updated by Philippe Pebay, Kitware SAS 2012

#ifndef __vtkKMeansStatistics_h
#define __vtkKMeansStatistics_h

#include "vtkFiltersStatisticsModule.h" // For export macro
#include "vtkStatisticsAlgorithm.h"

class vtkIdTypeArray;
class vtkIntArray;
class vtkDoubleArray;
class vtkKMeansDistanceFunctor;
class vtkMultiBlockDataSet;

class VTKFILTERSSTATISTICS_EXPORT vtkKMeansStatistics : public vtkStatisticsAlgorithm
{
public:
  vtkTypeMacro(vtkKMeansStatistics, vtkStatisticsAlgorithm);
  virtual void PrintSelf( ostream& os, vtkIndent indent );
  static vtkKMeansStatistics* New();

  // Description:
  // Set the DistanceFunctor.
  virtual void SetDistanceFunctor( vtkKMeansDistanceFunctor* );
  vtkGetObjectMacro(DistanceFunctor,vtkKMeansDistanceFunctor);

  // Description:
  // Set/get the \a DefaultNumberOfClusters, used when no initial cluster coordinates are specified.
  vtkSetMacro(DefaultNumberOfClusters, int);
  vtkGetMacro(DefaultNumberOfClusters, int);

  // Description:
  // Set/get the KValuesArrayName.
  vtkSetStringMacro(KValuesArrayName);
  vtkGetStringMacro(KValuesArrayName);

  // Description:
  // Set/get the MaxNumIterations used to terminate iterations on
  // cluster center coordinates when the relative tolerance can not be met.
  vtkSetMacro( MaxNumIterations, int );
  vtkGetMacro( MaxNumIterations, int );

  // Description:
  // Set/get the relative \a Tolerance used to terminate iterations on
  // cluster center coordinates.
  vtkSetMacro( Tolerance, double );
  vtkGetMacro( Tolerance, double );

  // Description:
  // Given a collection of models, calculate aggregate model
  // NB: not implemented
  virtual void Aggregate( vtkDataObjectCollection*,
                          vtkMultiBlockDataSet* ) { return; };

  //BTX
  // Description:
  // A convenience method for setting properties by name.
  virtual bool SetParameter(
    const char* parameter, int index, vtkVariant value );
  //ETX

protected:
  vtkKMeansStatistics();
  ~vtkKMeansStatistics();

  // Description:
  // Execute the calculations required by the Learn option.
  virtual void Learn( vtkTable*,
                      vtkTable*,
                      vtkMultiBlockDataSet* );

  // Description:
  // Execute the calculations required by the Derive option.
  virtual void Derive( vtkMultiBlockDataSet* );

  // Description:
  // Execute the calculations required by the Assess option.
  virtual void Assess( vtkTable*,
                       vtkMultiBlockDataSet*,
                       vtkTable* );

  // Description:
  // Execute the calculations required by the Test option.
  virtual void Test( vtkTable*,
                     vtkMultiBlockDataSet*,
                     vtkTable* ) { return; };

  //BTX
  // Description:
  // Provide the appropriate assessment functor.
  virtual void SelectAssessFunctor( vtkTable* inData,
                                    vtkDataObject* inMeta,
                                    vtkStringArray* rowNames,
                                    AssessFunctor*& dfunc );
  //ETX
  // Description:
  // Subroutine to update new cluster centers from the old centers.
  // Called from within Learn (and will be overridden by vtkPKMeansStatistics
  // to handle distributed datasets).
  virtual void UpdateClusterCenters( vtkTable* newClusterElements,
                                     vtkTable* curClusterElements,
                                     vtkIdTypeArray* numMembershipChanges,
                                     vtkIdTypeArray* numElementsInCluster,
                                     vtkDoubleArray* error,
                                     vtkIdTypeArray* startRunID,
                                     vtkIdTypeArray* endRunID,
                                     vtkIntArray *computeRun );

  // Description:
  // Subroutine to get the total number of observations.
  // Called from within Learn (and will be overridden by vtkPKMeansStatistics
  // to handle distributed datasets).
  virtual vtkIdType GetTotalNumberOfObservations( vtkIdType numObservations );

  // Description:
  // Subroutine to initalize the cluster centers using those provided by the user
  // in input port LEARN_PARAMETERS.  If no cluster centers are provided, the subroutine uses the
  // first DefaultNumberOfClusters input data points as initial cluster centers.
  // Called from within Learn.
  int InitializeDataAndClusterCenters(vtkTable* inParameters,
                                      vtkTable* inData,
                                      vtkTable*  dataElements,
                                      vtkIdTypeArray*  numberOfClusters,
                                      vtkTable*  curClusterElements,
                                      vtkTable*  newClusterElements,
                                      vtkIdTypeArray*  startRunID,
                                      vtkIdTypeArray*  endRunID);

  // Description:
  // Subroutine to initialize cluster centerss if not provided by the user.
  // Called from within Learn (and will be overridden by vtkPKMeansStatistics
  // to handle distributed datasets).
  virtual void CreateInitialClusterCenters(vtkIdType numToAllocate,
                                           vtkIdTypeArray* numberOfClusters,
                                           vtkTable* inData,
                                           vtkTable* curClusterElements,
                                           vtkTable* newClusterElements);


  // Description:
  // This is the default number of clusters used when the user does not provide initial cluster centers.
  int DefaultNumberOfClusters;
  // Description:
  // This is the name of the column that specifies the number of clusters in each run.
  // This is only used if the user has not specified initial clusters.
  char* KValuesArrayName;
  // Description:
  // This is the maximum number of iterations allowed if the new cluster centers have not yet converged.
  int MaxNumIterations;
  // Description:
  // This is the percentage of data elements that swap cluster IDs
  double Tolerance;
  // Description:
  // This is the Distance functor.  The default is Euclidean distance, however this can be overridden.
  vtkKMeansDistanceFunctor* DistanceFunctor;

private:
  vtkKMeansStatistics( const vtkKMeansStatistics& ); // Not implemented
  void operator=( const vtkKMeansStatistics& );  // Not implemented
};

#endif