/usr/include/paraview/vtkLineIntegralConvolution2D.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkLineIntegralConvolution2D.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkLineIntegralConvolution2D - GPU-based implementation of Line
// Integral Convolution (LIC)
//
// .SECTION Description
// This class resorts to GLSL to implement GPU-based Line Integral Convolution
// (LIC) for visualizing a 2D vector field that may be obtained by projecting
// an original 3D vector field onto a surface (such that the resulting 2D
// vector at each grid point on the surface is tangential to the local normal,
// as done in vtkSurfaceLICPainter).
//
// As an image-based technique, 2D LIC works by (1) integrating a bidirectional
// streamline from the center of each pixel (of the LIC output image), (2)
// locating the pixels along / hit by this streamline as the correlated pixels
// of the starting pixel (seed point / pixel), (3) indexing a (usually white)
// noise texture (another input to LIC, in addition to the 2D vector field,
// usually with the same size as that of the 2D vetor field) to determine the
// values (colors) of these pixels (the starting and the correlated pixels),
// typically through bi-linear interpolation, and (4) performing convolution
// (weighted averaging) on these values, by adopting a low-pass filter (such
// as box, ramp, and Hanning kernels), to obtain the result value (color) that
// is then assigned to the seed pixel.
//
// The GLSL-based GPU implementation herein maps the aforementioned pipeline to
// fragment shaders and a box kernel is employed. Both the white noise and the
// vector field are provided to the GPU as texture objects (supported by the
// multi-texturing capability). In addition, there are four texture objects
// (color buffers) allocated to constitute two pairs that work in a ping-pong
// fashion, with one as the read buffers and the other as the write / render
// targets. Maintained by a frame buffer object (GL_EXT_framebuffer_object),
// each pair employs one buffer to store the current (dynamically updated)
// position (by means of the texture coordinate that keeps being warped by the
// underlying vector) of the (virtual) particle initially released from each
// fragment while using the bother buffer to store the current (dynamically
// updated too) accumulated texture value that each seed fragment (before the
// 'mesh' is warped) collects. Given NumberOfSteps integration steps in each
// direction, there are a total of (2 * NumberOfSteps + 1) fragments (including
// the seed fragment) are convolved and each contributes 1 / (2 * NumberOfSteps
// + 1) of the associated texture value to fulfill the box filter.
//
// One pass of LIC (basic LIC) tends to produce low-contrast / blurred images and
// vtkLineIntegralConvolution2D provides an option for creating enhanced LIC
// images. Enhanced LIC improves image quality by increasing inter-streamline
// contrast while suppressing artifacts. It performs two passes of LIC, with a
// 3x3 Laplacian high-pass filter in between that processes the output of pass
// #1 LIC and forwards the result as the input 'noise' to pass #2 LIC. Enhanced
// LIC automatically degenerates to basic LIC during user interaction.
//
// vtkLineIntegralConvolution2D applies masking to zero-vector fragments so
// that un-filtered white noise areas are made totally transparent by class
// vtkSurfaceLICPainter to show the underlying geometry surface.
//
// .SECTION Required OpenGL Extensins
// GL_ARB_texture_non_power_of_two
// GL_VERSION_2_0
// GL_ARB_texture_float
// GL_ARB_draw_buffers
// GL_EXT_framebuffer_object
//
// .SECTION See Also
// vtkSurfaceLICPainter vtkImageDataLIC2D vtkStructuredGridLIC2D
#ifndef __vtkLineIntegralConvolution2D_h
#define __vtkLineIntegralConvolution2D_h
#include "vtkRenderingOpenGLModule.h" // For export macro
#include "vtkObject.h"
class vtkRenderWindow;
class vtkTextureObject;
class VTKRENDERINGOPENGL_EXPORT vtkLineIntegralConvolution2D : public vtkObject
{
public:
static vtkLineIntegralConvolution2D * New();
vtkTypeMacro( vtkLineIntegralConvolution2D, vtkObject );
void PrintSelf( ostream & os, vtkIndent indent );
// Description:
// Enable/Disable enhanced LIC that improves image quality by increasing
// inter-streamline contrast while suppressing artifacts. Enhanced LIC
// performs two passes of LIC, with a 3x3 Laplacian high-pass filter in
// between that processes the output of pass #1 LIC and forwards the result
// as the input 'noise' to pass #2 LIC. This flag is automatically turned
// off during user interaction.
vtkSetMacro( EnhancedLIC, int );
vtkGetMacro( EnhancedLIC, int );
vtkBooleanMacro( EnhancedLIC, int );
//Description:
// Enable/Disable LICForSurface, for which the LIC texture is composited
// with the underlying geometry.
vtkSetMacro( LICForSurface, int );
vtkGetMacro( LICForSurface, int );
vtkBooleanMacro( LICForSurface, int );
// Description:
// Number of streamline integration steps (initial value is 1).
// In term of visual quality, the greater (within some range) the better.
vtkSetMacro( NumberOfSteps, int );
vtkGetMacro( NumberOfSteps, int );
// Description:
// Get/Set the streamline integration step size (0.01 by default). This is
// the length of each step in normalized image space i.e. in range [0, 1].
// In term of visual quality, the smaller the better. The type for the
// interface is double as VTK interface is, but GPU only supports float.
// Thus it will be converted to float in the execution of the algorithm.
vtkSetClampMacro( LICStepSize, double, 0.0, 1.0 );
vtkGetMacro( LICStepSize, double );
// Description:
// Set/Get the input white noise texture (initial value is NULL).
void SetNoise( vtkTextureObject * noise );
vtkGetObjectMacro( Noise, vtkTextureObject );
// Description:
// Set/Get the vector field (initial value is NULL).
void SetVectorField( vtkTextureObject * vectorField );
vtkGetObjectMacro( VectorField, vtkTextureObject );
// Description:
// If VectorField has >= 3 components, we must choose which 2 components
// form the (X, Y) components for the vector field. Must be in the range
// [0, 3].
vtkSetVector2Macro( ComponentIds, int );
vtkGetVector2Macro( ComponentIds, int );
// Description:
// Set/Get the spacing in each dimension of the plane on which the vector
// field is defined. This class performs LIC in the normalized image space
// and hence generally it needs to transform the input vector field (given
// in physical space) to the normalized image space. The Spacing is needed
// to determine the transform. Default is (1.0, 1.0). It is possible to
// disable vector transformation by setting TransformVectors to 0.
vtkSetVector2Macro( GridSpacings, double );
vtkGetVector2Macro( GridSpacings, double );
// Description:
// This class performs LIC in the normalized image space. Hence, by default
// it transforms the input vectors to the normalized image space (using the
// GridSpacings and input vector field dimensions). Set this to 0 to disable
// tranformation if the vectors are already transformed.
vtkSetClampMacro( TransformVectors, int, 0, 1 );
vtkBooleanMacro( TransformVectors, int );
vtkGetMacro( TransformVectors, int );
// Description:
// The the magnification factor (default is 1.0).
vtkSetClampMacro( Magnification, int, 1, VTK_INT_MAX );
vtkGetMacro( Magnification, int );
// Description:
// On machines where the vector field texture is clamped between [0,1], one
// can specify the shift/scale factor used to convert the original vector
// field to lie in the clamped range. Default is (0.0, 1.0);
void SetVectorShiftScale( double shift, double scale )
{
this->VectorShift = shift;
this->VectorScale = scale;
this->Modified();
}
// Description:
// Returns if the context supports the required extensions.
static bool IsSupported( vtkRenderWindow * renWin );
// Description:
// Perform the LIC and obtain the LIC texture. Return 1 if no error.
int Execute();
// Description:
// Same as Execute() except that the LIC operation is performed only on a
// window (given by the \c extent) in the input VectorField. The \c extent
// is relative to the input VectorField. The output LIC image will be of
// the size specified by extent.
int Execute( unsigned int extent[4] );
int Execute( int extent[4] );
// Description:
// LIC texture (initial value is NULL) set by Execute().
void SetLIC( vtkTextureObject * lic );
vtkGetObjectMacro( LIC, vtkTextureObject );
protected:
vtkLineIntegralConvolution2D();
~vtkLineIntegralConvolution2D();
int Magnification;
int NumberOfSteps;
int LICForSurface;
int EnhancedLIC;
double LICStepSize;
double VectorShift;
double VectorScale;
int TransformVectors;
int ComponentIds[2];
double GridSpacings[2];
vtkTextureObject * VectorField;
vtkTextureObject * Noise;
vtkTextureObject * LIC;
private:
vtkLineIntegralConvolution2D( const vtkLineIntegralConvolution2D & ); // Not implemented.
void operator = ( const vtkLineIntegralConvolution2D & ); // Not implemented.
//ETX
};
#endif
|