/usr/include/paraview/vtkMath.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkMath.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================
Copyright 2011 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
license for use of this work by or on behalf of the
U.S. Government. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that this Notice and any
statement of authorship are reproduced on all copies.
Contact: pppebay@sandia.gov,dcthomp@sandia.gov
=========================================================================*/
// .NAME vtkMath - performs common math operations
// .SECTION Description
// vtkMath provides methods to perform common math operations. These
// include providing constants such as Pi; conversion from degrees to
// radians; vector operations such as dot and cross products and vector
// norm; matrix determinant for 2x2 and 3x3 matrices; univariate polynomial
// solvers; and for random number generation (for backward compatibility only).
// .SECTION See Also
// vtkMinimalStandardRandomSequence, vtkBoxMuellerRandomSequence,
// vtkQuaternion
#ifndef __vtkMath_h
#define __vtkMath_h
#include "vtkCommonCoreModule.h" // For export macro
#include "vtkObject.h"
#include "vtkMathConfigure.h" // For <cmath> and VTK_HAS_ISNAN etc.
#include <assert.h> // assert() in inline implementations.
#ifndef DBL_MIN
# define VTK_DBL_MIN 2.2250738585072014e-308
#else // DBL_MIN
# define VTK_DBL_MIN DBL_MIN
#endif // DBL_MIN
#ifndef DBL_EPSILON
# define VTK_DBL_EPSILON 2.2204460492503131e-16
#else // DBL_EPSILON
# define VTK_DBL_EPSILON DBL_EPSILON
#endif // DBL_EPSILON
#ifndef VTK_DBL_EPSILON
# ifndef DBL_EPSILON
# define VTK_DBL_EPSILON 2.2204460492503131e-16
# else // DBL_EPSILON
# define VTK_DBL_EPSILON DBL_EPSILON
# endif // DBL_EPSILON
#endif // VTK_DBL_EPSILON
class vtkDataArray;
class vtkPoints;
class vtkMathInternal;
class vtkMinimalStandardRandomSequence;
class vtkBoxMuellerRandomSequence;
class VTKCOMMONCORE_EXPORT vtkMath : public vtkObject
{
public:
static vtkMath *New();
vtkTypeMacro(vtkMath,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// A mathematical constant. This version is atan(1.0) * 4.0
static double Pi() { return 3.141592653589793; };
// Description:
// Deprecated. Use vtkMath::Pi() instead.
VTK_LEGACY(static double DoublePi());
// Description:
// Deprecated. Use 2.0 * vtkMath::Pi() instead.
VTK_LEGACY(static double DoubleTwoPi());
// Description:
// Convert degrees into radians
static float RadiansFromDegrees( float degrees);
static double RadiansFromDegrees( double degrees);
// Description:
// Convert radians into degrees
static float DegreesFromRadians( float radians);
static double DegreesFromRadians( double radians);
// Description:
// Rounds a float to the nearest integer.
static int Round(float f) {
return static_cast<int>( f + ( f >= 0 ? 0.5 : -0.5 ) ); }
static int Round(double f) {
return static_cast<int>( f + ( f >= 0 ? 0.5 : -0.5 ) ); }
// Description:
// Rounds a double to the nearest integer not greater than itself.
// This is faster than floor() but provides undefined output on
// overflow.
static int Floor(double x);
// Description:
// Rounds a double to the nearest integer not less than itself.
// This is faster than ceil() but provides undefined output on
// overflow.
static int Ceil(double x);
// Description:
// Gives the exponent of the lowest power of two not less than x.
// Or in mathspeak, return the smallest "i" for which 2^i >= x.
// If x is zero, then the return value will be zero.
static int CeilLog2(vtkTypeUInt64 x);
// Description:
// Returns true if integer is a power of two.
static bool IsPowerOfTwo(vtkTypeUInt64 x);
// Description:
// Compute the nearest power of two that is not less than x.
// The return value is 1 if x is less than or equal to zero,
// and is VTK_INT_MIN if result is too large to fit in an int.
static int NearestPowerOfTwo(int x);
// Description:
// Compute N factorial, N! = N*(N-1) * (N-2)...*3*2*1.
// 0! is taken to be 1.
static vtkTypeInt64 Factorial( int N );
// Description:
// The number of combinations of n objects from a pool of m objects (m>n).
// This is commonly known as "m choose n" and sometimes denoted \f$_mC_n\f$
// or \f$\left(\begin{array}{c}m \\ n\end{array}\right)\f$.
static vtkTypeInt64 Binomial( int m, int n );
// Description:
// Start iterating over "m choose n" objects.
// This function returns an array of n integers, each from 0 to m-1.
// These integers represent the n items chosen from the set [0,m[.
//
// You are responsible for calling vtkMath::FreeCombination() once the iterator is no longer needed.
//
// Warning: this gets large very quickly, especially when n nears m/2!
// (Hint: think of Pascal's triangle.)
static int* BeginCombination( int m, int n );
// Description:
// Given \a m, \a n, and a valid \a combination of \a n integers in
// the range [0,m[, this function alters the integers into the next
// combination in a sequence of all combinations of \a n items from
// a pool of \a m.
//
// If the \a combination is the last item in the sequence on input,
// then \a combination is unaltered and 0 is returned.
// Otherwise, 1 is returned and \a combination is updated.
static int NextCombination( int m, int n, int* combination );
// Description:
// Free the "iterator" array created by vtkMath::BeginCombination.
static void FreeCombination( int* combination);
// Description:
// Initialize seed value. NOTE: Random() has the bad property that
// the first random number returned after RandomSeed() is called
// is proportional to the seed value! To help solve this, call
// RandomSeed() a few times inside seed. This doesn't ruin the
// repeatability of Random().
//
// DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
// THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
// THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
// Instead, for a sequence of random numbers with a uniform distribution
// create a vtkMinimalStandardRandomSequence object.
// For a sequence of random numbers with a gaussian/normal distribution
// create a vtkBoxMuellerRandomSequence object.
static void RandomSeed(int s);
// Description:
// Return the current seed used by the random number generator.
//
// DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
// THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
// THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
// Instead, for a sequence of random numbers with a uniform distribution
// create a vtkMinimalStandardRandomSequence object.
// For a sequence of random numbers with a gaussian/normal distribution
// create a vtkBoxMuellerRandomSequence object.
static int GetSeed();
// Description:
// Generate pseudo-random numbers distributed according to the uniform
// distribution between 0.0 and 1.0.
// This is used to provide portability across different systems.
//
// DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
// THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
// THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
// Instead, for a sequence of random numbers with a uniform distribution
// create a vtkMinimalStandardRandomSequence object.
// For a sequence of random numbers with a gaussian/normal distribution
// create a vtkBoxMuellerRandomSequence object.
static double Random();
// Description:
// Generate pseudo-random numbers distributed according to the uniform
// distribution between \a min and \a max.
//
// DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
// THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
// THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
// Instead, for a sequence of random numbers with a uniform distribution
// create a vtkMinimalStandardRandomSequence object.
// For a sequence of random numbers with a gaussian/normal distribution
// create a vtkBoxMuellerRandomSequence object.
static double Random( double min, double max );
// Description:
// Generate pseudo-random numbers distributed according to the standard
// normal distribution.
//
// DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
// THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
// THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
// Instead, for a sequence of random numbers with a uniform distribution
// create a vtkMinimalStandardRandomSequence object.
// For a sequence of random numbers with a gaussian/normal distribution
// create a vtkBoxMuellerRandomSequence object.
static double Gaussian();
// Description:
// Generate pseudo-random numbers distributed according to the Gaussian
// distribution with mean \a mean and standard deviation \a std.
//
// DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
// THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
// THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
// Instead, for a sequence of random numbers with a uniform distribution
// create a vtkMinimalStandardRandomSequence object.
// For a sequence of random numbers with a gaussian/normal distribution
// create a vtkBoxMuellerRandomSequence object.
static double Gaussian( double mean, double std );
// Description:
// Addition of two 3-vectors (float version). Result is stored in c.
static void Add(const float a[3], const float b[3], float c[3]) {
for (int i = 0; i < 3; ++i)
c[i] = a[i] + b[i];
}
// Description:
// Addition of two 3-vectors (double version). Result is stored in c.
static void Add(const double a[3], const double b[3], double c[3]) {
for (int i = 0; i < 3; ++i)
c[i] = a[i] + b[i];
}
// Description:
// Subtraction of two 3-vectors (float version). Result is stored in c according to c = a - b.
static void Subtract(const float a[3], const float b[3], float c[3]) {
for (int i = 0; i < 3; ++i)
c[i] = a[i] - b[i];
}
// Description:
// Subtraction of two 3-vectors (double version). Result is stored in c according to c = a - b.
static void Subtract(const double a[3], const double b[3], double c[3]) {
for (int i = 0; i < 3; ++i)
c[i] = a[i] - b[i];
}
// Description:
// Multiplies a 3-vector by a scalar (float version).
// This modifies the input 3-vector.
static void MultiplyScalar(float a[3], float s) {
for (int i = 0; i < 3; ++i)
a[i] *= s;
}
// Description:
// Multiplies a 2-vector by a scalar (float version).
// This modifies the input 2-vector.
static void MultiplyScalar2D(float a[2], float s) {
for (int i = 0; i < 2; ++i)
a[i] *= s;
}
// Description:
// Multiplies a 3-vector by a scalar (double version).
// This modifies the input 3-vector.
static void MultiplyScalar(double a[3], double s) {
for (int i = 0; i < 3; ++i)
a[i] *= s;
}
// Description:
// Multiplies a 2-vector by a scalar (double version).
// This modifies the input 2-vector.
static void MultiplyScalar2D(double a[2], double s) {
for (int i = 0; i < 2; ++i)
a[i] *= s;
}
// Description:
// Dot product of two 3-vectors (float version).
static float Dot(const float x[3], const float y[3]) {
return ( x[0] * y[0] + x[1] * y[1] + x[2] * y[2] );};
// Description:
// Dot product of two 3-vectors (double-precision version).
static double Dot(const double x[3], const double y[3]) {
return ( x[0] * y[0] + x[1] * y[1] + x[2] * y[2] );};
// Description:
// Outer product of two 3-vectors (float version).
static void Outer(const float x[3], const float y[3], float A[3][3]) {
for (int i=0; i < 3; i++)
for (int j=0; j < 3; j++)
A[i][j] = x[i] * y[j];
}
// Description:
// Outer product of two 3-vectors (double-precision version).
static void Outer(const double x[3], const double y[3], double A[3][3]) {
for (int i=0; i < 3; i++)
for (int j=0; j < 3; j++)
A[i][j] = x[i] * y[j];
}
// Description:
// Cross product of two 3-vectors. Result (a x b) is stored in z.
static void Cross(const float x[3], const float y[3], float z[3]);
// Description:
// Cross product of two 3-vectors. Result (a x b) is stored in z. (double-precision
// version)
static void Cross(const double x[3], const double y[3], double z[3]);
// Description:
// Compute the norm of n-vector. x is the vector, n is its length.
static float Norm(const float* x, int n);
static double Norm(const double* x, int n);
// Description:
// Compute the norm of 3-vector.
static float Norm(const float x[3]) {
return static_cast<float> (sqrt( x[0] * x[0] + x[1] * x[1] + x[2] * x[2] ) );};
// Description:
// Compute the norm of 3-vector (double-precision version).
static double Norm(const double x[3]) {
return sqrt( x[0] * x[0] + x[1] * x[1] + x[2] * x[2] );};
// Description:
// Normalize (in place) a 3-vector. Returns norm of vector.
static float Normalize(float x[3]);
// Description:
// Normalize (in place) a 3-vector. Returns norm of vector
// (double-precision version).
static double Normalize(double x[3]);
// Description:
// Given a unit vector x, find two unit vectors y and z such that
// x cross y = z (i.e. the vectors are perpendicular to each other).
// There is an infinite number of such vectors, specify an angle theta
// to choose one set. If you want only one perpendicular vector,
// specify NULL for z.
static void Perpendiculars(const double x[3], double y[3], double z[3],
double theta);
static void Perpendiculars(const float x[3], float y[3], float z[3],
double theta);
// Description:
// Compute the projection of vector a on vector b and return it in projection[3].
// If b is a zero vector, the function returns false and 'projection' is invalid.
// Otherwise, it returns true.
static bool ProjectVector(const float a[3], const float b[3], float projection[3]);
static bool ProjectVector(const double a[3], const double b[3], double projection[3]);
// Description:
// Compute the projection of 2D vector 'a' on 2D vector 'b' and returns the result
// in projection[2].
// If b is a zero vector, the function returns false and 'projection' is invalid.
// Otherwise, it returns true.
static bool ProjectVector2D(const float a[2], const float b[2], float projection[2]);
static bool ProjectVector2D(const double a[2], const double b[2], double projection[2]);
// Description:
// Compute distance squared between two points x and y.
static float Distance2BetweenPoints(const float x[3], const float y[3]);
// Description:
// Compute distance squared between two points x and y(double precision version).
static double Distance2BetweenPoints(const double x[3], const double y[3]);
// Description:
// Compute the amplitude of a Gaussian function with mean=0 and specified variance.
// That is, 1./(sqrt(2 Pi * variance)) * exp(-distanceFromMean^2/(2.*variance)).
static double GaussianAmplitude(const double variance, const double distanceFromMean);
// Description:
// Compute the amplitude of a Gaussian function with specified mean and variance.
// That is, 1./(sqrt(2 Pi * variance)) * exp(-(position - mean)^2/(2.*variance)).
static double GaussianAmplitude(const double mean, const double variance, const double position);
// Description:
// Compute the amplitude of an unnormalized Gaussian function with mean=0 and specified variance.
// That is, exp(-distanceFromMean^2/(2.*variance)). When distanceFromMean = 0, this function
// returns 1.
static double GaussianWeight(const double variance, const double distanceFromMean);
// Description:
// Compute the amplitude of an unnormalized Gaussian function with specified mean and variance.
// That is, exp(-(position - mean)^2/(2.*variance)). When the distance from 'position' to 'mean'
// is 0, this function returns 1.
static double GaussianWeight(const double mean, const double variance, const double position);
// Description:
// Dot product of two 2-vectors.
static float Dot2D(const float x[2], const float y[2]) {
return ( x[0] * y[0] + x[1] * y[1] );};
// Description:
// Dot product of two 2-vectors. (double-precision version).
static double Dot2D(const double x[2], const double y[2]) {
return ( x[0] * y[0] + x[1] * y[1] );};
// Description:
// Outer product of two 2-vectors (float version).
static void Outer2D(const float x[2], const float y[2], float A[2][2])
{
for (int i=0; i < 2; i++)
{
for (int j=0; j < 2; j++)
{
A[i][j] = x[i] * y[j];
}
}
}
// Description:
// Outer product of two 2-vectors (float version).
static void Outer2D(const double x[2], const double y[2], double A[2][2])
{
for (int i=0; i < 2; i++)
{
for (int j=0; j < 2; j++)
{
A[i][j] = x[i] * y[j];
}
}
}
// Description:
// Compute the norm of a 2-vector.
static float Norm2D(const float x[2]) {
return static_cast<float> (sqrt( x[0] * x[0] + x[1] * x[1] ) );};
// Description:
// Compute the norm of a 2-vector.
// (double-precision version).
static double Norm2D(const double x[2]) {
return sqrt( x[0] * x[0] + x[1] * x[1] );};
// Description:
// Normalize (in place) a 2-vector. Returns norm of vector.
static float Normalize2D(float x[2]);
// Description:
// Normalize (in place) a 2-vector. Returns norm of vector.
// (double-precision version).
static double Normalize2D(double x[2]);
// Description:
// Compute determinant of 2x2 matrix. Two columns of matrix are input.
static float Determinant2x2(const float c1[2], const float c2[2]) {
return (c1[0] * c2[1] - c2[0] * c1[1] );};
// Description:
// Calculate the determinant of a 2x2 matrix: | a b | | c d |
static double Determinant2x2(double a, double b, double c, double d) {
return (a * d - b * c);};
static double Determinant2x2(const double c1[2], const double c2[2]) {
return (c1[0] * c2[1] - c2[0] * c1[1] );};
// Description:
// LU Factorization of a 3x3 matrix.
static void LUFactor3x3(float A[3][3], int index[3]);
static void LUFactor3x3(double A[3][3], int index[3]);
// Description:
// LU back substitution for a 3x3 matrix.
static void LUSolve3x3(const float A[3][3], const int index[3],
float x[3]);
static void LUSolve3x3(const double A[3][3], const int index[3],
double x[3]);
// Description:
// Solve Ay = x for y and place the result in y. The matrix A is
// destroyed in the process.
static void LinearSolve3x3(const float A[3][3], const float x[3],
float y[3]);
static void LinearSolve3x3(const double A[3][3], const double x[3],
double y[3]);
// Description:
// Multiply a vector by a 3x3 matrix. The result is placed in out.
static void Multiply3x3(const float A[3][3], const float in[3],
float out[3]);
static void Multiply3x3(const double A[3][3], const double in[3],
double out[3]);
// Description:
// Multiply one 3x3 matrix by another according to C = AB.
static void Multiply3x3(const float A[3][3], const float B[3][3],
float C[3][3]);
static void Multiply3x3(const double A[3][3], const double B[3][3],
double C[3][3]);
// Description:
// General matrix multiplication. You must allocate output storage.
// colA == rowB
// and matrix C is rowA x colB
static void MultiplyMatrix(const double **A, const double **B,
unsigned int rowA, unsigned int colA,
unsigned int rowB, unsigned int colB,
double **C);
// Description:
// Transpose a 3x3 matrix. The input matrix is A. The output
// is stored in AT.
static void Transpose3x3(const float A[3][3], float AT[3][3]);
static void Transpose3x3(const double A[3][3], double AT[3][3]);
// Description:
// Invert a 3x3 matrix. The input matrix is A. The output is
// stored in AI.
static void Invert3x3(const float A[3][3], float AI[3][3]);
static void Invert3x3(const double A[3][3], double AI[3][3]);
// Description:
// Set A to the identity matrix.
static void Identity3x3(float A[3][3]);
static void Identity3x3(double A[3][3]);
// Description:
// Return the determinant of a 3x3 matrix.
static double Determinant3x3(float A[3][3]);
static double Determinant3x3(double A[3][3]);
// Description:
// Compute determinant of 3x3 matrix. Three columns of matrix are input.
static float Determinant3x3(const float c1[3],
const float c2[3],
const float c3[3]);
// Description:
// Compute determinant of 3x3 matrix. Three columns of matrix are input.
static double Determinant3x3(const double c1[3],
const double c2[3],
const double c3[3]);
// Description:
// Calculate the determinant of a 3x3 matrix in the form:
// | a1, b1, c1 |
// | a2, b2, c2 |
// | a3, b3, c3 |
static double Determinant3x3(double a1, double a2, double a3,
double b1, double b2, double b3,
double c1, double c2, double c3);
// Description:
// Convert a quaternion to a 3x3 rotation matrix. The quaternion
// does not have to be normalized beforehand.
// The quaternion must be in the form [w, x, y, z].
// @sa Matrix3x3ToQuaternion() MultiplyQuaternion()
// @sa vtkQuaternion
static void QuaternionToMatrix3x3(const float quat[4], float A[3][3]);
static void QuaternionToMatrix3x3(const double quat[4], double A[3][3]);
// Description:
// Convert a 3x3 matrix into a quaternion. This will provide the
// best possible answer even if the matrix is not a pure rotation matrix.
// The quaternion is in the form [w, x, y, z].
// The method used is that of B.K.P. Horn.
// @sa QuaternionToMatrix3x3() MultiplyQuaternion()
// @sa vtkQuaternion
static void Matrix3x3ToQuaternion(const float A[3][3], float quat[4]);
static void Matrix3x3ToQuaternion(const double A[3][3], double quat[4]);
// Description:
// Multiply two quaternions. This is used to concatenate rotations.
// Quaternions are in the form [w, x, y, z].
// @sa Matrix3x3ToQuaternion() QuaternionToMatrix3x3()
// @sa vtkQuaternion
static void MultiplyQuaternion( const float q1[4], const float q2[4], float q[4] );
static void MultiplyQuaternion( const double q1[4], const double q2[4], double q[4] );
// Description:
// Orthogonalize a 3x3 matrix and put the result in B. If matrix A
// has a negative determinant, then B will be a rotation plus a flip
// i.e. it will have a determinant of -1.
static void Orthogonalize3x3(const float A[3][3], float B[3][3]);
static void Orthogonalize3x3(const double A[3][3], double B[3][3]);
// Description:
// Diagonalize a symmetric 3x3 matrix and return the eigenvalues in
// w and the eigenvectors in the columns of V. The matrix V will
// have a positive determinant, and the three eigenvectors will be
// aligned as closely as possible with the x, y, and z axes.
static void Diagonalize3x3(const float A[3][3], float w[3], float V[3][3]);
static void Diagonalize3x3(const double A[3][3],double w[3],double V[3][3]);
// Description:
// Perform singular value decomposition on a 3x3 matrix. This is not
// done using a conventional SVD algorithm, instead it is done using
// Orthogonalize3x3 and Diagonalize3x3. Both output matrices U and VT
// will have positive determinants, and the w values will be arranged
// such that the three rows of VT are aligned as closely as possible
// with the x, y, and z axes respectively. If the determinant of A is
// negative, then the three w values will be negative.
static void SingularValueDecomposition3x3(const float A[3][3],
float U[3][3], float w[3],
float VT[3][3]);
static void SingularValueDecomposition3x3(const double A[3][3],
double U[3][3], double w[3],
double VT[3][3]);
// Description:
// Solve linear equations Ax = b using Crout's method. Input is square
// matrix A and load vector x. Solution x is written over load vector. The
// dimension of the matrix is specified in size. If error is found, method
// returns a 0.
static int SolveLinearSystem(double **A, double *x, int size);
// Description:
// Invert input square matrix A into matrix AI.
// Note that A is modified during
// the inversion. The size variable is the dimension of the matrix. Returns 0
// if inverse not computed.
static int InvertMatrix(double **A, double **AI, int size);
// Description:
// Thread safe version of InvertMatrix method.
// Working memory arrays tmp1SIze and tmp2Size
// of length size must be passed in.
static int InvertMatrix(double **A, double **AI, int size,
int *tmp1Size, double *tmp2Size);
// Description:
// Factor linear equations Ax = b using LU decomposition A = LU where L is
// lower triangular matrix and U is upper triangular matrix. Input is
// square matrix A, integer array of pivot indices index[0->n-1], and size
// of square matrix n. Output factorization LU is in matrix A. If error is
// found, method returns 0.
static int LUFactorLinearSystem(double **A, int *index, int size);
// Description:
// Thread safe version of LUFactorLinearSystem method.
// Working memory array tmpSize of length size
// must be passed in.
static int LUFactorLinearSystem(double **A, int *index, int size,
double *tmpSize);
// Description:
// Solve linear equations Ax = b using LU decomposition A = LU where L is
// lower triangular matrix and U is upper triangular matrix. Input is
// factored matrix A=LU, integer array of pivot indices index[0->n-1],
// load vector x[0->n-1], and size of square matrix n. Note that A=LU and
// index[] are generated from method LUFactorLinearSystem). Also, solution
// vector is written directly over input load vector.
static void LUSolveLinearSystem(double **A, int *index,
double *x, int size);
// Description:
// Estimate the condition number of a LU factored matrix. Used to judge the
// accuracy of the solution. The matrix A must have been previously factored
// using the method LUFactorLinearSystem. The condition number is the ratio
// of the infinity matrix norm (i.e., maximum value of matrix component)
// divided by the minimum diagonal value. (This works for triangular matrices
// only: see Conte and de Boor, Elementary Numerical Analysis.)
static double EstimateMatrixCondition(double **A, int size);
// Description:
// Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3
// real symmetric matrix. Square 3x3 matrix a; output eigenvalues in w;
// and output eigenvectors in v. Resulting eigenvalues/vectors are sorted
// in decreasing order; eigenvectors are normalized.
static int Jacobi(float **a, float *w, float **v);
static int Jacobi(double **a, double *w, double **v);
// Description:
// JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn
// real symmetric matrix. Square nxn matrix a; size of matrix in n; output
// eigenvalues in w; and output eigenvectors in v. Resulting
// eigenvalues/vectors are sorted in decreasing order; eigenvectors are
// normalized. w and v need to be allocated previously
static int JacobiN(float **a, int n, float *w, float **v);
static int JacobiN(double **a, int n, double *w, double **v);
// Description:
// Solves for the least squares best fit matrix for the homogeneous equation X'M' = 0'.
// Uses the method described on pages 40-41 of Computer Vision by
// Forsyth and Ponce, which is that the solution is the eigenvector
// associated with the minimum eigenvalue of T(X)X, where T(X) is the
// transpose of X.
// The inputs and output are transposed matrices.
// Dimensions: X' is numberOfSamples by xOrder,
// M' dimension is xOrder by yOrder.
// M' should be pre-allocated. All matrices are row major. The resultant
// matrix M' should be pre-multiplied to X' to get 0', or transposed and
// then post multiplied to X to get 0
static int SolveHomogeneousLeastSquares(int numberOfSamples, double **xt, int xOrder,
double **mt);
// Description:
// Solves for the least squares best fit matrix for the equation X'M' = Y'.
// Uses pseudoinverse to get the ordinary least squares.
// The inputs and output are transposed matrices.
// Dimensions: X' is numberOfSamples by xOrder,
// Y' is numberOfSamples by yOrder,
// M' dimension is xOrder by yOrder.
// M' should be pre-allocated. All matrices are row major. The resultant
// matrix M' should be pre-multiplied to X' to get Y', or transposed and
// then post multiplied to X to get Y
// By default, this method checks for the homogeneous condition where Y==0, and
// if so, invokes SolveHomogeneousLeastSquares. For better performance when
// the system is known not to be homogeneous, invoke with checkHomogeneous=0.
static int SolveLeastSquares(int numberOfSamples, double **xt, int xOrder,
double **yt, int yOrder, double **mt, int checkHomogeneous=1);
// Description:
// Convert color in RGB format (Red, Green, Blue) to HSV format
// (Hue, Saturation, Value). The input color is not modified.
// The input RGB must be float values in the range [0,1].
// The output ranges are hue [0, 1], saturation [0, 1], and
// value [0, 1].
static void RGBToHSV(const float rgb[3], float hsv[3])
{ RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
static void RGBToHSV(float r, float g, float b, float *h, float *s, float *v);
static double* RGBToHSV(const double rgb[3]);
static double* RGBToHSV(double r, double g, double b);
static void RGBToHSV(const double rgb[3], double hsv[3])
{ RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
static void RGBToHSV(double r, double g, double b, double *h, double *s, double *v);
// Description:
// Convert color in HSV format (Hue, Saturation, Value) to RGB
// format (Red, Green, Blue). The input color is not modified.
// The input 'hsv' must be float values in the range [0,1].
// The elements of each component of the output 'rgb' are in
// the range [0, 1].
static void HSVToRGB(const float hsv[3], float rgb[3])
{ HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
static void HSVToRGB(float h, float s, float v, float *r, float *g, float *b);
static double* HSVToRGB(const double hsv[3]);
static double* HSVToRGB(double h, double s, double v);
static void HSVToRGB(const double hsv[3], double rgb[3])
{ HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
static void HSVToRGB(double h, double s, double v, double *r, double *g, double *b);
// Description:
// Convert color from the CIE-L*ab system to CIE XYZ.
static void LabToXYZ(const double lab[3], double xyz[3]) {
LabToXYZ(lab[0], lab[1], lab[2], xyz+0, xyz+1, xyz+2);
}
static void LabToXYZ(double L, double a, double b,
double *x, double *y, double *z);
static double *LabToXYZ(const double lab[3]);
// Description:
// Convert Color from the CIE XYZ system to CIE-L*ab.
static void XYZToLab(const double xyz[3], double lab[3]) {
XYZToLab(xyz[0], xyz[1], xyz[2], lab+0, lab+1, lab+2);
}
static void XYZToLab(double x, double y, double z,
double *L, double *a, double *b);
static double *XYZToLab(const double xyz[3]);
// Description:
// Convert color from the CIE XYZ system to RGB.
static void XYZToRGB(const double xyz[3], double rgb[3]) {
XYZToRGB(xyz[0], xyz[1], xyz[2], rgb+0, rgb+1, rgb+2);
}
static void XYZToRGB(double x, double y, double z,
double *r, double *g, double *b);
static double *XYZToRGB(const double xyz[3]);
// Description:
// Convert color from the RGB system to CIE XYZ.
static void RGBToXYZ(const double rgb[3], double xyz[3]) {
RGBToXYZ(rgb[0], rgb[1], rgb[2], xyz+0, xyz+1, xyz+2);
}
static void RGBToXYZ(double r, double g, double b,
double *x, double *y, double *z);
static double *RGBToXYZ(const double rgb[3]);
// Description:
// Convert color from the RGB system to CIE-L*ab.
// The input RGB must be values in the range [0,1].
// The output ranges of 'L' is [0, 100]. The output
// range of 'a' and 'b' are approximately [-110, 110].
static void RGBToLab(const double rgb[3], double lab[3]) {
RGBToLab(rgb[0], rgb[1], rgb[2], lab+0, lab+1, lab+2);
}
static void RGBToLab(double red, double green, double blue,
double *L, double *a, double *b);
static double *RGBToLab(const double rgb[3]);
// Description:
// Convert color from the CIE-L*ab system to RGB.
static void LabToRGB(const double lab[3], double rgb[3]) {
LabToRGB(lab[0], lab[1], lab[2], rgb+0, rgb+1, rgb+2);
}
static void LabToRGB(double L, double a, double b,
double *red, double *green, double *blue);
static double *LabToRGB(const double lab[3]);
// Description:
// Set the bounds to an uninitialized state
static void UninitializeBounds(double bounds[6]){
bounds[0] = 1.0;
bounds[1] = -1.0;
bounds[2] = 1.0;
bounds[3] = -1.0;
bounds[4] = 1.0;
bounds[5] = -1.0;
}
// Description:
// Are the bounds initialized?
static int AreBoundsInitialized(double bounds[6]){
if ( bounds[1]-bounds[0]<0.0 )
{
return 0;
}
return 1;
}
// Description:
// Clamp some values against a range
// The method without 'clamped_values' will perform in-place clamping.
static void ClampValue(double *value, const double range[2]);
static void ClampValue(double value, const double range[2], double *clamped_value);
static void ClampValues(
double *values, int nb_values, const double range[2]);
static void ClampValues(
const double *values, int nb_values, const double range[2], double *clamped_values);
// Description:
// Clamp a value against a range and then normalized it between 0 and 1.
// If range[0]==range[1], the result is 0.
// \pre valid_range: range[0]<=range[1]
// \post valid_result: result>=0.0 && result<=1.0
static double ClampAndNormalizeValue(double value,
const double range[2]);
// Description:
// Return the scalar type that is most likely to have enough precision
// to store a given range of data once it has been scaled and shifted
// (i.e. [range_min * scale + shift, range_max * scale + shift].
// If any one of the parameters is not an integer number (decimal part != 0),
// the search will default to float types only (float or double)
// Return -1 on error or no scalar type found.
static int GetScalarTypeFittingRange(
double range_min, double range_max,
double scale = 1.0, double shift = 0.0);
// Description:
// Get a vtkDataArray's scalar range for a given component.
// If the vtkDataArray's data type is unsigned char (VTK_UNSIGNED_CHAR)
// the range is adjusted to the whole data type range [0, 255.0].
// Same goes for unsigned short (VTK_UNSIGNED_SHORT) but the upper bound
// is also adjusted down to 4095.0 if was between ]255, 4095.0].
// Return 1 on success, 0 otherwise.
static int GetAdjustedScalarRange(
vtkDataArray *array, int comp, double range[2]);
// Description:
// Return true if first 3D extent is within second 3D extent
// Extent is x-min, x-max, y-min, y-max, z-min, z-max
static int ExtentIsWithinOtherExtent(int extent1[6], int extent2[6]);
// Description:
// Return true if first 3D bounds is within the second 3D bounds
// Bounds is x-min, x-max, y-min, y-max, z-min, z-max
// Delta is the error margin along each axis (usually a small number)
static int BoundsIsWithinOtherBounds(double bounds1[6], double bounds2[6], double delta[3]);
// Description:
// Return true if point is within the given 3D bounds
// Bounds is x-min, x-max, y-min, y-max, z-min, z-max
// Delta is the error margin along each axis (usually a small number)
static int PointIsWithinBounds(double point[3], double bounds[6], double delta[3]);
// Description:
// In Euclidean space, there is a unique circle passing through any given
// three non-collinear points P1, P2, and P3. Using Cartesian coordinates
// to represent these points as spatial vectors, it is possible to use the
// dot product and cross product to calculate the radius and center of the
// circle. See: http://en.wikipedia.org/wiki/Circumcircle and more
// specifically the section Barycentric coordinates from cross- and
// dot-products
static double Solve3PointCircle(const double p1[3], const double p2[3], const double p3[3], double center[3]);
// Description:
// Special IEEE-754 number used to represent positive infinity.
static double Inf();
// Description:
// Special IEEE-754 number used to represent negative infinity.
static double NegInf();
// Description:
// Special IEEE-754 number used to represent Not-A-Number (Nan).
static double Nan();
// Description:
// Test if a number is equal to the special floating point value infinity.
static int IsInf(double x);
// Description:
// Test if a number is equal to the special floating point value Not-A-Number (Nan).
static int IsNan(double x);
// Description:
// Test if a number has finite value i.e. it is normal, subnormal or zero, but not infinite or Nan.
static bool IsFinite(double x);
protected:
vtkMath() {};
~vtkMath() {};
static vtkMathInternal Internal;
private:
vtkMath(const vtkMath&); // Not implemented.
void operator=(const vtkMath&); // Not implemented.
};
//----------------------------------------------------------------------------
inline float vtkMath::RadiansFromDegrees( float x )
{
return x * 0.017453292f;
}
//----------------------------------------------------------------------------
inline double vtkMath::RadiansFromDegrees( double x )
{
return x * 0.017453292519943295;
}
//----------------------------------------------------------------------------
inline float vtkMath::DegreesFromRadians( float x )
{
return x * 57.2957795131f;
}
//----------------------------------------------------------------------------
inline double vtkMath::DegreesFromRadians( double x )
{
return x * 57.29577951308232;
}
//----------------------------------------------------------------------------
inline vtkTypeInt64 vtkMath::Factorial( int N )
{
vtkTypeInt64 r = 1;
while ( N > 1 )
{
r *= N--;
}
return r;
}
//----------------------------------------------------------------------------
inline bool vtkMath::IsPowerOfTwo(vtkTypeUInt64 x)
{
return ((x != 0) & ((x & (x - 1)) == 0));
}
//----------------------------------------------------------------------------
// Credit goes to Peter Hart and William Lewis on comp.lang.python 1997
inline int vtkMath::NearestPowerOfTwo(int x)
{
unsigned int z = ((x > 0) ? x - 1 : 0);
z |= z >> 1;
z |= z >> 2;
z |= z >> 4;
z |= z >> 8;
z |= z >> 16;
return static_cast<int>(z + 1);
}
//----------------------------------------------------------------------------
// Modify the trunc() operation provided by static_cast<int>() to get floor(),
// Note that in C++ conditions evaluate to values of 1 or 0 (true or false).
inline int vtkMath::Floor(double x)
{
int i = static_cast<int>(x);
return i - ( i > x );
}
//----------------------------------------------------------------------------
// Modify the trunc() operation provided by static_cast<int>() to get ceil(),
// Note that in C++ conditions evaluate to values of 1 or 0 (true or false).
inline int vtkMath::Ceil(double x)
{
int i = static_cast<int>(x);
return i + ( i < x );
}
//----------------------------------------------------------------------------
inline float vtkMath::Normalize(float x[3])
{
float den;
if ( ( den = vtkMath::Norm( x ) ) != 0.0 )
{
for (int i=0; i < 3; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline double vtkMath::Normalize(double x[3])
{
double den;
if ( ( den = vtkMath::Norm( x ) ) != 0.0 )
{
for (int i=0; i < 3; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline float vtkMath::Normalize2D(float x[3])
{
float den;
if ( ( den = vtkMath::Norm2D( x ) ) != 0.0 )
{
for (int i=0; i < 2; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline double vtkMath::Normalize2D(double x[3])
{
double den;
if ( ( den = vtkMath::Norm2D( x ) ) != 0.0 )
{
for (int i=0; i < 2; i++)
{
x[i] /= den;
}
}
return den;
}
//----------------------------------------------------------------------------
inline float vtkMath::Determinant3x3(const float c1[3],
const float c2[3],
const float c3[3])
{
return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
}
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(const double c1[3],
const double c2[3],
const double c3[3])
{
return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
}
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double a1, double a2, double a3,
double b1, double b2, double b3,
double c1, double c2, double c3)
{
return ( a1 * vtkMath::Determinant2x2( b2, b3, c2, c3 )
- b1 * vtkMath::Determinant2x2( a2, a3, c2, c3 )
+ c1 * vtkMath::Determinant2x2( a2, a3, b2, b3 ) );
}
//----------------------------------------------------------------------------
inline float vtkMath::Distance2BetweenPoints(const float x[3],
const float y[3])
{
return ( ( x[0] - y[0] ) * ( x[0] - y[0] )
+ ( x[1] - y[1] ) * ( x[1] - y[1] )
+ ( x[2] - y[2] ) * ( x[2] - y[2] ) );
}
//----------------------------------------------------------------------------
inline double vtkMath::Distance2BetweenPoints(const double x[3],
const double y[3])
{
return ( ( x[0] - y[0] ) * ( x[0] - y[0] )
+ ( x[1] - y[1] ) * ( x[1] - y[1] )
+ ( x[2] - y[2] ) * ( x[2] - y[2] ) );
}
//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result (a x b) is stored in z[3].
inline void vtkMath::Cross(const float x[3], const float y[3], float z[3])
{
float Zx = x[1] * y[2] - x[2] * y[1];
float Zy = x[2] * y[0] - x[0] * y[2];
float Zz = x[0] * y[1] - x[1] * y[0];
z[0] = Zx; z[1] = Zy; z[2] = Zz;
}
//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result (a x b) is stored in z[3].
inline void vtkMath::Cross(const double x[3], const double y[3], double z[3])
{
double Zx = x[1] * y[2] - x[2] * y[1];
double Zy = x[2] * y[0] - x[0] * y[2];
double Zz = x[0] * y[1] - x[1] * y[0];
z[0] = Zx; z[1] = Zy; z[2] = Zz;
}
//BTX
//----------------------------------------------------------------------------
template<class T>
inline double vtkDeterminant3x3(T A[3][3])
{
return A[0][0] * A[1][1] * A[2][2] + A[1][0] * A[2][1] * A[0][2] +
A[2][0] * A[0][1] * A[1][2] - A[0][0] * A[2][1] * A[1][2] -
A[1][0] * A[0][1] * A[2][2] - A[2][0] * A[1][1] * A[0][2];
}
//ETX
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(float A[3][3])
{
return vtkDeterminant3x3( A );
}
//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double A[3][3])
{
return vtkDeterminant3x3( A );
}
//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(double *value, const double range[2])
{
if (value && range)
{
if (*value < range[0])
{
*value = range[0];
}
else if (*value > range[1])
{
*value = range[1];
}
}
}
//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(
double value, const double range[2], double *clamped_value)
{
if (range && clamped_value)
{
if (value < range[0])
{
*clamped_value = range[0];
}
else if (value > range[1])
{
*clamped_value = range[1];
}
else
{
*clamped_value = value;
}
}
}
// ---------------------------------------------------------------------------
inline double vtkMath::ClampAndNormalizeValue(double value,
const double range[2])
{
assert("pre: valid_range" && range[0]<=range[1]);
double result;
if(range[0]==range[1])
{
result=0.0;
}
else
{
// clamp
if(value<range[0])
{
result=range[0];
}
else
{
if(value>range[1])
{
result=range[1];
}
else
{
result=value;
}
}
// normalize
result=( result - range[0] ) / ( range[1] - range[0] );
}
assert("post: valid_result" && result>=0.0 && result<=1.0);
return result;
}
//-----------------------------------------------------------------------------
#if defined(VTK_HAS_ISINF) || defined(VTK_HAS_STD_ISINF)
#define VTK_MATH_ISINF_IS_INLINE
inline int vtkMath::IsInf(double x)
{
using namespace std; // Could be isinf() or std::isinf()
return (isinf(x) != 0); // Force conversion to bool
}
#endif
//-----------------------------------------------------------------------------
#if defined(VTK_HAS_ISNAN) || defined(VTK_HAS_STD_ISNAN)
#define VTK_MATH_ISNAN_IS_INLINE
inline int vtkMath::IsNan(double x)
{
using namespace std; // Could be isnan() or std::isnan()
return (isnan(x) != 0); // Force conversion to bool
}
#endif
//-----------------------------------------------------------------------------
#if defined(VTK_HAS_ISFINITE) || defined(VTK_HAS_STD_ISFINITE) || defined(VTK_HAS_FINITE)
#define VTK_MATH_ISFINITE_IS_INLINE
inline bool vtkMath::IsFinite(double x)
{
#if defined(VTK_HAS_ISFINITE) || defined(VTK_HAS_STD_ISFINITE)
using namespace std; // Could be isfinite() or std::isfinite()
return (isfinite(x) != 0); // Force conversion to bool
#else
return (finite(x) != 0); // Force conversion to bool
#endif
}
#endif
#endif
|