/usr/include/paraview/vtkMatrix3x3.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkMatrix3x3.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkMatrix3x3 - represent and manipulate 3x3 transformation matrices
// .SECTION Description
// vtkMatrix3x3 is a class to represent and manipulate 3x3 matrices.
// Specifically, it is designed to work on 3x3 transformation matrices
// found in 2D rendering using homogeneous coordinates [x y w].
// .SECTION See Also
// vtkTransform2D
#ifndef __vtkMatrix3x3_h
#define __vtkMatrix3x3_h
#include "vtkCommonMathModule.h" // For export macro
#include "vtkObject.h"
class VTKCOMMONMATH_EXPORT vtkMatrix3x3 : public vtkObject
{
// Some of the methods in here have a corresponding static (class)
// method taking a pointer to 9 doubles that constitutes a user
// supplied matrix. This allows C++ clients to allocate double arrays
// on the stack and manipulate them using vtkMatrix3x3 methods.
// This is an alternative to allowing vtkMatrix3x3 instances to be
// created on the stack (which is frowned upon) or doing lots of
// temporary heap allocation within vtkTransform2D methods,
// which is inefficient.
public:
// Description:
// Construct a 3x3 identity matrix.
static vtkMatrix3x3 *New();
vtkTypeMacro(vtkMatrix3x3,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Set the elements of the matrix to the same values as the elements
// of the source Matrix.
void DeepCopy(vtkMatrix3x3 *source)
{vtkMatrix3x3::DeepCopy(*this->Element,source); this->Modified(); }
//BTX
static void DeepCopy(double Elements[9], vtkMatrix3x3 *source)
{vtkMatrix3x3::DeepCopy(Elements,*source->Element); }
static void DeepCopy(double Elements[9], const double newElements[9]);
//ETX
// Description:
// Non-static member function. Assigns *from* elements array
void DeepCopy(const double Elements[9])
{ this->DeepCopy(*this->Element,Elements); this->Modified(); }
// Description:
// Set all of the elements to zero.
void Zero()
{ vtkMatrix3x3::Zero(*this->Element); this->Modified(); }
//BTX
static void Zero(double Elements[9]);
//ETX
// Description:
// Set equal to Identity matrix
void Identity()
{ vtkMatrix3x3::Identity(*this->Element); this->Modified();}
//BTX
static void Identity(double Elements[9]);
//ETX
// Description:
// Matrix Inversion (adapted from Richard Carling in "Graphics Gems,"
// Academic Press, 1990).
static void Invert(vtkMatrix3x3 *in, vtkMatrix3x3 *out)
{vtkMatrix3x3::Invert(*in->Element,*out->Element); out->Modified(); }
void Invert()
{ vtkMatrix3x3::Invert(this,this); }
//BTX
static void Invert(const double inElements[9], double outElements[9]);
//ETX
// Description:
// Transpose the matrix and put it into out.
static void Transpose(vtkMatrix3x3 *in, vtkMatrix3x3 *out)
{vtkMatrix3x3::Transpose(*in->Element,*out->Element); out->Modified(); }
void Transpose()
{ vtkMatrix3x3::Transpose(this,this); }
//BTX
static void Transpose(const double inElements[9], double outElements[9]);
//ETX
// Description:
// Multiply a homogeneous coordinate by this matrix, i.e. out = A*in.
// The in[3] and out[3] can be the same array.
void MultiplyPoint(const float in[3], float out[3])
{vtkMatrix3x3::MultiplyPoint(*this->Element,in,out); }
void MultiplyPoint(const double in[3], double out[3])
{vtkMatrix3x3::MultiplyPoint(*this->Element,in,out); }
//BTX
static void MultiplyPoint(const double Elements[9],
const float in[3], float out[3]);
static void MultiplyPoint(const double Elements[9],
const double in[3], double out[3]);
//ETX
// Description:
// Multiplies matrices a and b and stores the result in c (c=a*b).
static void Multiply3x3(vtkMatrix3x3 *a, vtkMatrix3x3 *b, vtkMatrix3x3 *c) {
vtkMatrix3x3::Multiply3x3(*a->Element,*b->Element,*c->Element); }
//BTX
static void Multiply3x3(const double a[9], const double b[9],
double c[9]);
//ETX
// Description:
// Compute adjoint of the matrix and put it into out.
void Adjoint(vtkMatrix3x3 *in, vtkMatrix3x3 *out)
{vtkMatrix3x3::Adjoint(*in->Element,*out->Element);}
//BTX
static void Adjoint(const double inElements[9], double outElements[9]);
//ETX
// Description:
// Compute the determinant of the matrix and return it.
double Determinant() {return vtkMatrix3x3::Determinant(*this->Element);}
//BTX
static double Determinant(const double Elements[9]);
//ETX
// Description:
// Sets the element i,j in the matrix.
void SetElement(int i, int j, double value);
// Description:
// Returns the element i,j from the matrix.
double GetElement(int i, int j) const
{return this->Element[i][j];}
//BTX
double *operator[](const unsigned int i)
{return &(this->Element[i][0]);}
const double *operator[](unsigned int i) const
{ return &(this->Element[i][0]); }
bool operator==(const vtkMatrix3x3&);
bool operator!=(const vtkMatrix3x3&);
void Adjoint(vtkMatrix3x3 &in,vtkMatrix3x3 &out)
{this->Adjoint(&in,&out);}
double Determinant(vtkMatrix3x3 &in)
{return this->Determinant(&in);}
double Determinant(vtkMatrix3x3 *in)
{return vtkMatrix3x3::Determinant(*in->Element);}
void Invert(vtkMatrix3x3 &in,vtkMatrix3x3 &out)
{this->Invert(&in,&out);}
void Transpose(vtkMatrix3x3 &in,vtkMatrix3x3 &out)
{this->Transpose(&in,&out);}
static void PointMultiply(const double Elements[9],
const float in[3], float out[3]);
static void PointMultiply(const double Elements[9],
const double in[3], double out[3]);
//ETX
// Descption:
// Returns true if this matrix is equal to the identity matrix.
bool IsIdentity();
// Description:
// Return a pointer to the first element of the matrix (double[9]).
double * GetData() { return *this->Element; }
//BTX
protected:
vtkMatrix3x3();
~vtkMatrix3x3();
double Element[3][3]; // The elements of the 3x3 matrix
private:
vtkMatrix3x3(const vtkMatrix3x3&); // Not implemented
void operator=(const vtkMatrix3x3&); // Not implemented
//ETX
};
inline void vtkMatrix3x3::SetElement(int i, int j, double value)
{
if (this->Element[i][j] != value)
{
this->Element[i][j] = value;
this->Modified();
}
}
inline bool vtkMatrix3x3::IsIdentity()
{
double *M = *this->Element;
if (M[0] == 1.0 && M[4] == 1.0 && M[8] == 1.0 &&
M[1] == 0.0 && M[2] == 0.0 && M[3] == 0.0 && M[5] == 0.0 &&
M[6] == 0.0 && M[7] == 0.0)
{
return true;
}
else
{
return false;
}
}
inline bool vtkMatrix3x3::operator==(const vtkMatrix3x3 &other)
{
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
if (Element[i][j] != other.Element[i][j])
{
return false;
}
}
}
return true;
}
inline bool vtkMatrix3x3::operator!=(const vtkMatrix3x3 &other)
{
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
if (Element[i][j] != other.Element[i][j])
{
return true;
}
}
}
return false;
}
#endif
|