This file is indexed.

/usr/include/paraview/vtkModifiedBSPTree.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkModifiedBSPTree.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

/*=========================================================================
  This code is derived from an earlier work and is distributed
  with permission from, and thanks to

  ------------------------------------------
  Copyright (C) 1997-2000 John Biddiscombe
  Rutherford Appleton Laboratory,
  Chilton, Oxon, England
  ------------------------------------------
  Copyright (C) 2000-2004 John Biddiscombe
  Skipping Mouse Software Ltd,
  Blewbury, England
  ------------------------------------------
  Copyright (C) 2004-2009 John Biddiscombe
  CSCS - Swiss National Supercomputing Centre
  Galleria 2 - Via Cantonale
  CH-6928 Manno, Switzerland
  ------------------------------------
=========================================================================*/
// .NAME vtkModifiedBSPTree - Generate axis aligned BBox tree for raycasting and other Locator based searches
//
// .SECTION Description
// vtkModifiedBSPTree creates an evenly balanced BSP tree using a top down
// implementation. Axis aligned split planes are found which evenly divide
// cells into two buckets. Generally a split plane will intersect some cells
// and these are usually stored in both child nodes of the current parent.
// (Or split into separate cells which we cannot consider in this case).
// Storing cells in multiple buckets creates problems associated with multiple
// tests against rays and increases the required storage as complex meshes
// will have many cells straddling a split plane (and further splits may
// cause multiple copies of these).
//
// During a discussion with Arno Formella in 1998 he suggested using
// a third child node to store objects which straddle split planes. I've not
// seen this published (Yes! - see below), but thought it worth trying. This
// implementation of the BSP tree creates a third child node for storing cells
// laying across split planes, the third cell may overlap the other two, but the
// two 'proper' nodes otherwise conform to usual BSP rules.
//
// The advantage of this implementation is cells only ever lie in one node
// and mailbox testing is avoided. All BBoxes are axis aligned and a ray cast
// uses an efficient search strategy based on near/far nodes and rejects
// all BBoxes using simple tests.
//
// For fast raytracing, 6 copies of cell lists are stored in each leaf node
// each list is in axis sorted order +/- x,y,z and cells are always tested
// in the direction of the ray dominant axis. Once an intersection is found
// any cell or BBox with a closest point further than the I-point can be
// instantly rejected and raytracing stops as soon as no nodes can be closer
// than the current best intersection point.
//
// The addition of the 'middle' node upsets the optimal balance of the tree,
// but is a minor overhead during the raytrace. Each child node is contracted
// such that it tightly fits all cells inside it, enabling further ray/box
// rejections.
//
// This class is intended for persons requiring many ray tests and is optimized
// for this purpose. As no cell ever lies in more than one leaf node, and parent
// nodes do not maintain cell lists, the memory overhead of the sorted cell
// lists is 6*num_cells*4 for 6 lists of ints, each num_cells in length.
// The memory requirement of the nodes themselves is usually of minor
// significance.
//
// Subdividision is controlled by MaxCellsPerNode - any node with more than
// this number will be subdivided providing a good split plane can be found and
// the max depth is not exceeded.
//
// The average cells per leaf will usually be around half the MaxCellsPerNode,
// though the middle node is usually sparsely populated and lowers the average
// slightly. The middle node will not be created when not needed.
// Subdividing down to very small cells per node is not generally suggested
// as then the 6 stored cell lists are effectively redundant.
//
// Values of MaxcellsPerNode of around 16->128 depending on dataset size will
// usually give good results.
//
// Cells are only sorted into 6 lists once - before tree creation, each node
// segments the lists and passes them down to the new child nodes whilst
// maintaining sorted order. This makes for an efficient subdivision strategy.
//
// NB. The following reference has been sent to me
//   @Article{formella-1995-ray,
//     author =     "Arno Formella and Christian Gill",
//     title =      "{Ray Tracing: A Quantitative Analysis and a New
//                   Practical Algorithm}",
//     journal =    "{The Visual Computer}",
//     year =       "{1995}",
//     month =       dec,
//     pages =      "{465--476}",
//     volume =     "{11}",
//     number =     "{9}",
//     publisher =  "{Springer}",
//     keywords =   "{ray tracing, space subdivision, plane traversal,
//                    octree, clustering, benchmark scenes}",
//     annote =     "{We present a new method to accelerate the process of
//                    finding nearest ray--object intersections in ray
//                    tracing. The algorithm consumes an amount of memory
//                    more or less linear in the number of objects. The basic
//                    ideas can be characterized with a modified BSP--tree
//                    and plane traversal. Plane traversal is a fast linear
//                    time algorithm to find the closest intersection point
//                    in a list of bounding volumes hit by a ray. We use
//                    plane traversal at every node of the high outdegree
//                    BSP--tree. Our implementation is competitive to fast
//                    ray tracing programs. We present a benchmark suite
//                    which allows for an extensive comparison of ray tracing
//                    algorithms.}",
//   }
//
// .SECTION Thanks
//  John Biddiscombe for developing and contributing this class
//
// .SECTION ToDo
// -------------
// Implement intersection heap for testing rays against transparent objects
//
// .SECTION Style
// --------------
// This class is currently maintained by J. Biddiscombe who has specially
// requested that the code style not be modified to the kitware standard.
// Please respect the contribution of this class by keeping the style
// as close as possible to the author's original.
//

#ifndef _vtkModifiedBSPTree_h
#define _vtkModifiedBSPTree_h

#include "vtkFiltersFlowPathsModule.h" // For export macro
#include "vtkAbstractCellLocator.h"
#include "vtkSmartPointer.h"     // required because it is nice

//BTX
class Sorted_cell_extents_Lists;
class BSPNode;
class vtkGenericCell;
class vtkIdList;
class vtkIdListCollection;
//ETX

class VTKFILTERSFLOWPATHS_EXPORT vtkModifiedBSPTree : public vtkAbstractCellLocator {
  public:
  // Description:
  // Standard Type-Macro
  vtkTypeMacro(vtkModifiedBSPTree,vtkAbstractCellLocator);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct with maximum 32 cells per node. (average 16->31)
  static vtkModifiedBSPTree *New();

//BTX
  using vtkAbstractCellLocator::IntersectWithLine;
  using vtkAbstractCellLocator::FindClosestPoint;
  using vtkAbstractCellLocator::FindClosestPointWithinRadius;
//ETX

  // Description:
  // Free tree memory
  void FreeSearchStructure();

  // Description:
  // Build Tree
  void BuildLocator();

//BTX
  // Description:
  // Generate BBox representation of Nth level
  virtual void GenerateRepresentation(int level, vtkPolyData *pd);

  // Description:
  // Generate BBox representation of all leaf nodes
  virtual void GenerateRepresentationLeafs(vtkPolyData *pd);

  // Description:
  // Return intersection point (if any) of finite line with cells contained
  // in cell locator.
  virtual int IntersectWithLine(
    double p1[3], double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int &subId)
    { return this->Superclass::IntersectWithLine(p1, p2, tol, t, x, pcoords, subId); }

  // Description:
  // Return intersection point (if any) AND the cell which was intersected by
  // the finite line. Uses fast tree-search BBox rejection tests.
  virtual int IntersectWithLine(
    double p1[3], double p2[3], double tol, double &t, double x[3],
    double pcoords[3], int &subId, vtkIdType &cellId);

  // Description:
  // Return intersection point (if any) AND the cell which was intersected by
  // the finite line. The cell is returned as a cell id and as a generic cell.
  virtual int IntersectWithLine(
    double p1[3], double p2[3], double tol, double &t, double x[3],
    double pcoords[3], int &subId, vtkIdType &cellId, vtkGenericCell *cell);

  // Description:
  // Take the passed line segment and intersect it with the data set.
  // This method assumes that the data set is a vtkPolyData that describes
  // a closed surface, and the intersection points that are returned in
  // 'points' alternate between entrance points and exit points.
  // The return value of the function is 0 if no intersections were found,
  // -1 if point 'a0' lies inside the closed surface, or +1 if point 'a0'
  // lies outside the closed surface.
  // Either 'points' or 'cellIds' can be set to NULL if you don't want
  // to receive that information. This method is currently only implemented
  // in vtkOBBTree
  virtual int IntersectWithLine(
    const double p1[3], const double p2[3],
    vtkPoints *points, vtkIdList *cellIds)
    { return this->Superclass::IntersectWithLine(p1, p2, points, cellIds); }

  // Description:
  // Take the passed line segment and intersect it with the data set.
  // The return value of the function is 0 if no intersections were found.
  // For each intersection found, the vtkPoints and CellIds objects
  // have the relevant information added in order of intersection increasing
  // from ray start to end. If either vtkPoints or CellIds are NULL
  // pointers, then no information is generated for that list.
  virtual int IntersectWithLine(
    const double p1[3], const double p2[3], const double tol,
    vtkPoints *points, vtkIdList *cellIds);

  // Description:
  // Returns the Id of the cell containing the point,
  // returns -1 if no cell found. This interface uses a tolerance of zero
  virtual vtkIdType FindCell(double x[3])
    { return this->Superclass::FindCell(x); }

  // Description:
  // Test a point to find if it is inside a cell. Returns the cellId if inside
  // or -1 if not.
  virtual vtkIdType FindCell(double x[3], double tol2, vtkGenericCell *GenCell,
    double pcoords[3], double *weights);

  bool InsideCellBounds(double x[3], vtkIdType cell_ID);

  // Description:
  // After subdivision has completed, one may wish to query the tree to find
  // which cells are in which leaf nodes. This function returns a list
  // which holds a cell Id list for each leaf node.
  vtkIdListCollection *GetLeafNodeCellInformation();

//ETX
  protected:
   vtkModifiedBSPTree();
  ~vtkModifiedBSPTree();
  //
  BSPNode  *mRoot;               // bounding box root node
  int       npn;
  int       nln;
  int       tot_depth;
//BTX
  //
  // The main subdivision routine
  void Subdivide(BSPNode *node, Sorted_cell_extents_Lists *lists, vtkDataSet *dataSet,
    vtkIdType nCells, int depth, int maxlevel, vtkIdType maxCells, int &MaxDepth);

  // We provide a function which does the cell/ray test so that
  // it can be overriden by subclasses to perform special treatment
  // (Example : Particles stored in tree, have no dimension, so we must
  // override the cell test to return a value based on some particle size
  virtual int IntersectCellInternal(vtkIdType cell_ID, const double p1[3], const double p2[3],
    const double tol, double &t, double ipt[3], double pcoords[3], int &subId);

//ETX
  void BuildLocatorIfNeeded();
  void ForceBuildLocator();
  void BuildLocatorInternal();
private:
  vtkModifiedBSPTree(const vtkModifiedBSPTree&);  // Not implemented.
  void operator=(const vtkModifiedBSPTree&);      // Not implemented.
};

//BTX

///////////////////////////////////////////////////////////////////////////////
// BSP Node
// A BSP Node is a BBox - axis aligned etc etc
///////////////////////////////////////////////////////////////////////////////
#ifndef DOXYGEN_SHOULD_SKIP_THIS

class BSPNode {
  public:
    // Constructor
    BSPNode(void) {
      mChild[0] = mChild[1] = mChild[2] = NULL;
      for (int i=0; i<6; i++) sorted_cell_lists[i] = NULL;
      for (int i=0; i<3; i++) { bounds[i*2] = VTK_FLOAT_MAX; bounds[i*2+1] = -VTK_FLOAT_MAX; }
    }
    // Destructor
    ~BSPNode(void) {
      for (int i=0; i<3; i++) if (mChild[i]) delete mChild[i];
      for (int i=0; i<6; i++) if (sorted_cell_lists[i]) delete []sorted_cell_lists[i];
    }
    // Set min box limits
    void setMin(double minx, double miny, double minz) {
      bounds[0] = minx; bounds[2] = miny; bounds[4] = minz;
    }
    // Set max box limits
    void setMax(double maxx, double maxy, double maxz) {
      bounds[1] = maxx; bounds[3] = maxy; bounds[5] = maxz;
    }
    //
    bool Inside(double point[3]) const;
    // BBox
    double       bounds[6];
  protected:
    // The child nodes of this one (if present - NULL otherwise)
    BSPNode   *mChild[3];
    // The axis we subdivide this voxel along
    int        mAxis;
    // Just for reference
    int        depth;
    // the number of cells in this node
    int        num_cells;
    // 6 lists, sorted after the 6 dominant axes
    vtkIdType *sorted_cell_lists[6];
    // Order nodes as near/mid far relative to ray
    void Classify(const double origin[3], const double dir[3],
      double &rDist, BSPNode *&Near, BSPNode *&Mid, BSPNode *&Far) const;
    // Test ray against node BBox : clip t values to extremes
    bool RayMinMaxT(const double origin[3], const double dir[3],
      double &rTmin, double &rTmax) const;
    //
    friend class vtkModifiedBSPTree;
    friend class vtkParticleBoxTree;
  public:
  static bool VTKFILTERSFLOWPATHS_EXPORT RayMinMaxT(
    const double bounds[6], const double origin[3], const double dir[3], double &rTmin, double &rTmax);
  static int  VTKFILTERSFLOWPATHS_EXPORT getDominantAxis(const double dir[3]);
};

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

//ETX

#endif