This file is indexed.

/usr/include/paraview/vtkParametricSuperEllipsoid.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkParametricSuperEllipsoid.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkParametricSuperEllipsoid - Generate a superellipsoid.
// .SECTION Description
// vtkParametricSuperEllipsoid generates a superellipsoid.  A superellipsoid
// is a versatile primitive that is controlled by two parameters n1 and
// n2. As special cases it can represent a sphere, square box, and closed
// cylindrical can.
//
// For further information about this surface, please consult the
// technical description "Parametric surfaces" in http://www.vtk.org/documents.php
// in the "VTK Technical Documents" section in the VTk.org web pages.
//
// Also see: http://astronomy.swin.edu.au/~pbourke/surfaces/
//
// .SECTION Caveats
// Care needs to be taken specifying the bounds correctly. You may need to
// carefully adjust MinimumU, MinimumV, MaximumU, MaximumV.
//
// .SECTION Thanks
// Andrew Maclean a.maclean@cas.edu.au for creating and contributing the
// class.
//
#ifndef __vtkParametricSuperEllipsoid_h
#define __vtkParametricSuperEllipsoid_h

#include "vtkCommonComputationalGeometryModule.h" // For export macro
#include "vtkParametricFunction.h"

class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricSuperEllipsoid : public vtkParametricFunction
{
public:
  vtkTypeMacro(vtkParametricSuperEllipsoid,vtkParametricFunction);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct a superellipsoid with the following parameters:
  // MinimumU = 0, MaximumU = 2*Pi,
  // MinimumV = 0, MaximumV = Pi,
  // JoinU = 1, JoinV = 0,
  // TwistU = 0, TwistV = 0,
  // ClockwiseOrdering = 1,
  // DerivativesAvailable = 0,
  // N1 = 1, N2 = 1, XRadius = 1, YRadius = 1,
  // ZRadius = 1, a sphere in this case.
  static vtkParametricSuperEllipsoid *New();

  // Description
  // Return the parametric dimension of the class.
  virtual int GetDimension() {return 2;}

  // Description:
  // Set/Get the scaling factor for the x-axis. Default = 1.
  vtkSetMacro(XRadius,double);
  vtkGetMacro(XRadius,double);

  // Description:
  // Set/Get the scaling factor for the y-axis. Default = 1.
  vtkSetMacro(YRadius,double);
  vtkGetMacro(YRadius,double);

  // Description:
  // Set/Get the scaling factor for the z-axis. Default = 1.
  vtkSetMacro(ZRadius,double);
  vtkGetMacro(ZRadius,double);

  // Description:
  // Set/Get the "squareness" parameter in the z axis.  Default = 1.
  vtkSetMacro(N1,double);
  vtkGetMacro(N1,double);

  // Description:
  //  Set/Get the "squareness" parameter in the x-y plane. Default = 1.
  vtkSetMacro(N2,double);
  vtkGetMacro(N2,double);

  // Description:
  // A superellipsoid.
  //
  // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
  // as Pt. It also returns the partial derivatives Du and Dv.
  // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
  // Then the normal is \f$N = Du X Dv\f$ .
  virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);

  // Description:
  // Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
  //
  // uvw are the parameters with Pt being the the cartesian point,
  // Duvw are the derivatives of this point with respect to u, v and w.
  // Pt, Duvw are obtained from Evaluate().
  //
  // This function is only called if the ScalarMode has the value
  // vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
  //
  // If the user does not need to calculate a scalar, then the
  // instantiated function should return zero.
  //
  virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);

protected:
  vtkParametricSuperEllipsoid();
  ~vtkParametricSuperEllipsoid();

  // Variables
  double XRadius;
  double YRadius;
  double ZRadius;
  double N1;
  double N2;

private:
  vtkParametricSuperEllipsoid(const vtkParametricSuperEllipsoid&);  // Not implemented.
  void operator=(const vtkParametricSuperEllipsoid&);  // Not implemented.

  // Description:
  // Calculate sign(x)*(abs(x)^n).
  double Power ( double x, double n );

};

#endif