/usr/include/paraview/vtkParametricSuperToroid.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkParametricSuperToroid.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkParametricSuperToroid - Generate a supertoroid.
// .SECTION Description
// vtkParametricSuperToroid generates a supertoroid. Essentially a
// supertoroid is a torus with the sine and cosine terms raised to a power.
// A supertoroid is a versatile primitive that is controlled by four
// parameters r0, r1, n1 and n2. r0, r1 determine the type of torus whilst
// the value of n1 determines the shape of the torus ring and n2 determines
// the shape of the cross section of the ring. It is the different values of
// these powers which give rise to a family of 3D shapes that are all
// basically toroidal in shape.
//
// For further information about this surface, please consult the
// technical description "Parametric surfaces" in http://www.vtk.org/documents.php
// in the "VTK Technical Documents" section in the VTk.org web pages.
//
// Also see: http://astronomy.swin.edu.au/~pbourke/surfaces/.
//
// .SECTION Caveats
// Care needs to be taken specifying the bounds correctly. You may need to
// carefully adjust MinimumU, MinimumV, MaximumU, MaximumV.
//
// .SECTION Thanks
// Andrew Maclean a.maclean@cas.edu.au for creating and contributing the
// class.
//
#ifndef __vtkParametricSuperToroid_h
#define __vtkParametricSuperToroid_h
#include "vtkCommonComputationalGeometryModule.h" // For export macro
#include "vtkParametricFunction.h"
class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricSuperToroid : public vtkParametricFunction
{
public:
vtkTypeMacro(vtkParametricSuperToroid,vtkParametricFunction);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct a supertoroid with the following parameters:
// MinimumU = 0, MaximumU = 2*Pi,
// MinimumV = 0, MaximumV = 2*Pi,
// JoinU = 1, JoinV = 1,
// TwistU = 0, TwistV = 0,
// ClockwiseOrdering = 1,
// DerivativesAvailable = 0,
// RingRadius = 1, CrossSectionRadius = 0.5,
// N1 = 1, N2 = 1, XRadius = 1,
// YRadius = 1, ZRadius = 1, a torus in this case.
static vtkParametricSuperToroid *New();
// Description
// Return the parametric dimension of the class.
virtual int GetDimension() {return 2;}
// Description:
// Set/Get the radius from the center to the middle of the ring of the
// supertoroid. Default = 1.
vtkSetMacro(RingRadius,double);
vtkGetMacro(RingRadius,double);
// Description:
// Set/Get the radius of the cross section of ring of the supertoroid.
// Default = 0.5.
vtkSetMacro(CrossSectionRadius,double);
vtkGetMacro(CrossSectionRadius,double);
// Description:
// Set/Get the scaling factor for the x-axis. Default = 1.
vtkSetMacro(XRadius,double);
vtkGetMacro(XRadius,double);
// Description:
// Set/Get the scaling factor for the y-axis. Default = 1.
vtkSetMacro(YRadius,double);
vtkGetMacro(YRadius,double);
// Description:
// Set/Get the scaling factor for the z-axis. Default = 1.
vtkSetMacro(ZRadius,double);
vtkGetMacro(ZRadius,double);
// Description:
// Set/Get the shape of the torus ring. Default = 1.
vtkSetMacro(N1,double);
vtkGetMacro(N1,double);
// Description:
// Set/Get the shape of the cross section of the ring. Default = 1.
vtkSetMacro(N2,double);
vtkGetMacro(N2,double);
// Description:
// A supertoroid.
//
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
//
// uvw are the parameters with Pt being the the cartesian point,
// Duvw are the derivatives of this point with respect to u, v and w.
// Pt, Duvw are obtained from Evaluate().
//
// This function is only called if the ScalarMode has the value
// vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
//
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricSuperToroid();
~vtkParametricSuperToroid();
// Variables
double RingRadius;
double CrossSectionRadius;
double XRadius;
double YRadius;
double ZRadius;
double N1;
double N2;
private:
vtkParametricSuperToroid(const vtkParametricSuperToroid&); // Not implemented.
void operator=(const vtkParametricSuperToroid&); // Not implemented.
// Description:
// Calculate sign(x)*(abs(x)^n).
double Power ( double x, double n );
};
#endif
|