/usr/include/paraview/vtkPlane.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkPlane.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkPlane - perform various plane computations
// .SECTION Description
// vtkPlane provides methods for various plane computations. These include
// projecting points onto a plane, evaluating the plane equation, and
// returning plane normal. vtkPlane is a concrete implementation of the
// abstract class vtkImplicitFunction.
#ifndef __vtkPlane_h
#define __vtkPlane_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkImplicitFunction.h"
class VTKCOMMONDATAMODEL_EXPORT vtkPlane : public vtkImplicitFunction
{
public:
// Description
// Construct plane passing through origin and normal to z-axis.
static vtkPlane *New();
vtkTypeMacro(vtkPlane,vtkImplicitFunction);
void PrintSelf(ostream& os, vtkIndent indent);
// Description
// Evaluate plane equation for point x[3].
double EvaluateFunction(double x[3]);
double EvaluateFunction(double x, double y, double z)
{return this->vtkImplicitFunction::EvaluateFunction(x, y, z); } ;
// Description
// Evaluate function gradient at point x[3].
void EvaluateGradient(double x[3], double g[3]);
// Description:
// Set/get plane normal. Plane is defined by point and normal.
vtkSetVector3Macro(Normal,double);
vtkGetVectorMacro(Normal,double,3);
// Description:
// Set/get point through which plane passes. Plane is defined by point
// and normal.
vtkSetVector3Macro(Origin,double);
vtkGetVectorMacro(Origin,double,3);
// Description:
// Translate the plane in the direction of the normal by the
// distance specified. Negative values move the plane in the
// opposite direction.
void Push(double distance);
// Description
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal assumed to
// have magnitude 1.
static void ProjectPoint(double x[3], double origin[3], double normal[3],
double xproj[3]);
void ProjectPoint(double x[3], double xproj[3]);
// Description
// Project a vector v onto plane defined by origin and normal. The
// projected vector is returned in vproj.
static void ProjectVector(double v[3], double origin[3], double normal[3],
double vproj[3]);
void ProjectVector(double v[3], double vproj[3]);
// Description
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal does NOT have to
// have magnitude 1.
static void GeneralizedProjectPoint(double x[3], double origin[3],
double normal[3], double xproj[3]);
void GeneralizedProjectPoint(double x[3], double xproj[3]);
// Description:
// Quick evaluation of plane equation n(x-origin)=0.
static double Evaluate(double normal[3], double origin[3], double x[3]);
// Description:
// Return the distance of a point x to a plane defined by n(x-p0) = 0. The
// normal n[3] must be magnitude=1.
static double DistanceToPlane(double x[3], double n[3], double p0[3]);
double DistanceToPlane(double x[3]);
// Description:
// Given a line defined by the two points p1,p2; and a plane defined by the
// normal n and point p0, compute an intersection. The parametric
// coordinate along the line is returned in t, and the coordinates of
// intersection are returned in x. A zero is returned if the plane and line
// do not intersect between (0<=t<=1). If the plane and line are parallel,
// zero is returned and t is set to VTK_LARGE_DOUBLE.
static int IntersectWithLine(double p1[3], double p2[3], double n[3],
double p0[3], double& t, double x[3]);
int IntersectWithLine(double p1[3], double p2[3], double& t, double x[3]);
protected:
vtkPlane();
~vtkPlane() {};
double Normal[3];
double Origin[3];
private:
vtkPlane(const vtkPlane&); // Not implemented.
void operator=(const vtkPlane&); // Not implemented.
};
inline double vtkPlane::Evaluate(double normal[3],
double origin[3], double x[3])
{
return normal[0]*(x[0]-origin[0]) + normal[1]*(x[1]-origin[1]) +
normal[2]*(x[2]-origin[2]);
}
inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3])
{
#define vtkPlaneAbs(x) ((x)<0?-(x):(x))
return (vtkPlaneAbs(n[0]*(x[0]-p0[0]) + n[1]*(x[1]-p0[1]) +
n[2]*(x[2]-p0[2])));
}
#endif
|