This file is indexed.

/usr/include/paraview/vtkPolyData.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkPolyData.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkPolyData - concrete dataset represents vertices, lines, polygons, and triangle strips
// .SECTION Description
// vtkPolyData is a data object that is a concrete implementation of
// vtkDataSet. vtkPolyData represents a geometric structure consisting of
// vertices, lines, polygons, and/or triangle strips. Point and cell
// attribute values (e.g., scalars, vectors, etc.) also are represented.
//
// The actual cell types (vtkCellType.h) supported by vtkPolyData are:
// vtkVertex, vtkPolyVertex, vtkLine, vtkPolyLine, vtkTriangle, vtkQuad,
// vtkPolygon, and vtkTriangleStrip.
//
// One important feature of vtkPolyData objects is that special traversal and
// data manipulation methods are available to process data. These methods are
// generally more efficient than vtkDataSet methods and should be used
// whenever possible. For example, traversing the cells in a dataset we would
// use GetCell(). To traverse cells with vtkPolyData we would retrieve the
// cell array object representing polygons (for example using GetPolys()) and
// then use vtkCellArray's InitTraversal() and GetNextCell() methods.
//
// .SECTION Caveats
// Because vtkPolyData is implemented with four separate instances of
// vtkCellArray to represent 0D vertices, 1D lines, 2D polygons, and 2D
// triangle strips, it is possible to create vtkPolyData instances that
// consist of a mixture of cell types. Because of the design of the class,
// there are certain limitations on how mixed cell types are inserted into
// the vtkPolyData, and in turn the order in which they are processed and
// rendered. To preserve the consistency of cell ids, and to insure that
// cells with cell data are rendered properly, users must insert mixed cells
// in the order of vertices (vtkVertex and vtkPolyVertex), lines (vtkLine and
// vtkPolyLine), polygons (vtkTriangle, vtkQuad, vtkPolygon), and triangle
// strips (vtkTriangleStrip).
//
// Some filters when processing vtkPolyData with mixed cell types may process
// the cells in differing ways. Some will convert one type into another
// (e.g., vtkTriangleStrip into vtkTriangles) or expect a certain type
// (vtkDecimatePro expects triangles or triangle strips; vtkTubeFilter
// expects lines). Read the documentation for each filter carefully to
// understand how each part of vtkPolyData is processed.

#ifndef __vtkPolyData_h
#define __vtkPolyData_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkPointSet.h"

#include "vtkCellTypes.h" // Needed for inline methods
#include "vtkCellLinks.h" // Needed for inline methods

class vtkVertex;
class vtkPolyVertex;
class vtkLine;
class vtkPolyLine;
class vtkTriangle;
class vtkQuad;
class vtkPolygon;
class vtkTriangleStrip;
class vtkEmptyCell;

class VTKCOMMONDATAMODEL_EXPORT vtkPolyData : public vtkPointSet
{
public:
  static vtkPolyData *New();

  vtkTypeMacro(vtkPolyData,vtkPointSet);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Return what type of dataset this is.
  int GetDataObjectType() {return VTK_POLY_DATA;}

  // Description:
  // Copy the geometric and topological structure of an input poly data object.
  void CopyStructure(vtkDataSet *ds);

  // Description:
  // Standard vtkDataSet interface.
  vtkIdType GetNumberOfCells();
  vtkCell *GetCell(vtkIdType cellId);
  void GetCell(vtkIdType cellId, vtkGenericCell *cell);
  int GetCellType(vtkIdType cellId);
  void GetCellBounds(vtkIdType cellId, double bounds[6]);
  void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds,
                        vtkIdList *cellIds);

  // Description:
  // Copy cells listed in idList from pd, including points, point data,
  // and cell data.  This method assumes that point and cell data have
  // been allocated.  If you pass in a point locator, then the points
  // won't be duplicated in the output.
  void CopyCells(vtkPolyData *pd, vtkIdList *idList,
                 vtkPointLocator *locator = NULL);

  // Description:
  // Copy a cells point ids into list provided. (Less efficient.)
  void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds);

  // Description:
  // Efficient method to obtain cells using a particular point. Make sure that
  // routine BuildLinks() has been called.
  void GetPointCells(vtkIdType ptId, vtkIdList *cellIds);

  // Description:
  // Compute the (X, Y, Z)  bounds of the data.
  void ComputeBounds();

  // Description:
  // Recover extra allocated memory when creating data whose initial size
  // is unknown. Examples include using the InsertNextCell() method, or
  // when using the CellArray::EstimateSize() method to create vertices,
  // lines, polygons, or triangle strips.
  void Squeeze();

  // Description:
  // Return the maximum cell size in this poly data.
  int GetMaxCellSize();

  // Description:
  // Set the cell array defining vertices.
  void SetVerts (vtkCellArray* v);

  // Description:
  // Get the cell array defining vertices. If there are no vertices, an
  // empty array will be returned (convenience to simplify traversal).
  vtkCellArray *GetVerts();

  // Description:
  // Set the cell array defining lines.
  void SetLines (vtkCellArray* l);

  // Description:
  // Get the cell array defining lines. If there are no lines, an
  // empty array will be returned (convenience to simplify traversal).
  vtkCellArray *GetLines();

  // Description:
  // Set the cell array defining polygons.
  void SetPolys (vtkCellArray* p);

  // Description:
  // Get the cell array defining polygons. If there are no polygons, an
  // empty array will be returned (convenience to simplify traversal).
  vtkCellArray *GetPolys();

  // Description:
  // Set the cell array defining triangle strips.
  void SetStrips (vtkCellArray* s);

  // Description:
  // Get the cell array defining triangle strips. If there are no
  // triangle strips, an empty array will be returned (convenience to
  // simplify traversal).
  vtkCellArray *GetStrips();

  // Description:
  // Return the number of primitives of a particular type held..
  vtkIdType GetNumberOfVerts();
  vtkIdType GetNumberOfLines();
  vtkIdType GetNumberOfPolys();
  vtkIdType GetNumberOfStrips();

  // Description:
  // Method allocates initial storage for vertex, line, polygon, and
  // triangle strip arrays. Use this method before the method
  // PolyData::InsertNextCell(). (Or, provide vertex, line, polygon, and
  // triangle strip cell arrays.) The array capacity is doubled when the
  // inserting a cell exceeds the current capacity. extSize is no longer used.
  void Allocate(vtkIdType numCells=1000, int extSize=1000);

  // Description:
  // Similar to the method above, this method allocates initial storage for
  // vertex, line, polygon, and triangle strip arrays. It does this more
  // intelligently, examining the supplied inPolyData to determine whether to
  // allocate the verts, lines, polys, and strips arrays.  (These arrays are
  // allocated only if there is data in the corresponding arrays in the
  // inPolyData.)  Caution: if the inPolyData has no verts, and after
  // allocating with this method an PolyData::InsertNextCell() is invoked
  // where a vertex is inserted, bad things will happen.
  void Allocate(vtkPolyData *inPolyData, vtkIdType numCells=1000,
                int extSize=1000);

  // Description:
  // Insert a cell of type VTK_VERTEX, VTK_POLY_VERTEX, VTK_LINE, VTK_POLY_LINE,
  // VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON, or VTK_TRIANGLE_STRIP.  Make sure that
  // the PolyData::Allocate() function has been called first or that vertex,
  // line, polygon, and triangle strip arrays have been supplied.
  // Note: will also insert VTK_PIXEL, but converts it to VTK_QUAD.
  int InsertNextCell(int type, int npts, vtkIdType *pts);

  // Description:
  // Insert a cell of type VTK_VERTEX, VTK_POLY_VERTEX, VTK_LINE, VTK_POLY_LINE,
  // VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON, or VTK_TRIANGLE_STRIP.  Make sure that
  // the PolyData::Allocate() function has been called first or that vertex,
  // line, polygon, and triangle strip arrays have been supplied.
  // Note: will also insert VTK_PIXEL, but converts it to VTK_QUAD.
  int InsertNextCell(int type, vtkIdList *pts);

  // Description:
  // Begin inserting data all over again. Memory is not freed but otherwise
  // objects are returned to their initial state.
  void Reset();

  // Description:
  // Create data structure that allows random access of cells.
  void BuildCells();

  // Description:
  // Create upward links from points to cells that use each point. Enables
  // topologically complex queries. Normally the links array is allocated
  // based on the number of points in the vtkPolyData. The optional
  // initialSize parameter can be used to allocate a larger size initially.
  void BuildLinks(int initialSize=0);

  // Description:
  // Release data structure that allows random access of the cells. This must
  // be done before a 2nd call to BuildLinks(). DeleteCells implicitly deletes
  // the links as well since they are no longer valid.
  void DeleteCells();

  // Description:
  // Release the upward links from point to cells that use each point.
  void DeleteLinks();

  // Description:
  // Special (efficient) operations on poly data. Use carefully.
  void GetPointCells(vtkIdType ptId, unsigned short& ncells,
                     vtkIdType* &cells);

  // Description:
  // Get the neighbors at an edge. More efficient than the general
  // GetCellNeighbors(). Assumes links have been built (with BuildLinks()),
  // and looks specifically for edge neighbors.
  void GetCellEdgeNeighbors(vtkIdType cellId, vtkIdType p1, vtkIdType p2,
                            vtkIdList *cellIds);

  // Description:
  // Return a pointer to a list of point ids defining cell. (More efficient.)
  // Assumes that cells have been built (with BuildCells()).
  void GetCellPoints(vtkIdType cellId, vtkIdType& npts, vtkIdType* &pts);

  // Description:
  // Given three vertices, determine whether it's a triangle. Make sure
  // BuildLinks() has been called first.
  int IsTriangle(int v1, int v2, int v3);

  // Description:
  // Determine whether two points form an edge. If they do, return non-zero.
  // By definition PolyVertex and PolyLine have no edges since 1-dimensional
  // edges are only found on cells 2D and higher.
  // Edges are defined as 1-D boundary entities to cells.
  // Make sure BuildLinks() has been called first.
  int IsEdge(vtkIdType p1, vtkIdType p2);

  // Description:
  // Determine whether a point is used by a particular cell. If it is, return
  // non-zero. Make sure BuildCells() has been called first.
  int IsPointUsedByCell(vtkIdType ptId, vtkIdType cellId);

  // Description:
  // Replace the points defining cell "cellId" with a new set of points. This
  // operator is (typically) used when links from points to cells have not been
  // built (i.e., BuildLinks() has not been executed). Use the operator
  // ReplaceLinkedCell() to replace a cell when cell structure has been built.
  void ReplaceCell(vtkIdType cellId, int npts, vtkIdType *pts);

  // Description:
  // Replace a point in the cell connectivity list with a different point.
  void ReplaceCellPoint(vtkIdType cellId, vtkIdType oldPtId,
                        vtkIdType newPtId);

  // Description:
  // Reverse the order of point ids defining the cell.
  void ReverseCell(vtkIdType cellId);

  // Description:
  // Mark a point/cell as deleted from this vtkPolyData.
  void DeletePoint(vtkIdType ptId);
  void DeleteCell(vtkIdType cellId);

  // Description:
  // The cells marked by calls to DeleteCell are stored in the Cell Array
  // VTK_EMPTY_CELL, but they still exist in the cell arrays.
  // Calling RemoveDeletedCells will traverse the cell arrays and remove/compact
  // the cell arrays as well as any cell data thus truly removing the cells
  // from the polydata object.
  void RemoveDeletedCells();

  // Description:
  // Add a point to the cell data structure (after cell pointers have been
  // built). This method adds the point and then allocates memory for the
  // links to the cells.  (To use this method, make sure points are available
  // and BuildLinks() has been invoked.) Of the two methods below, one inserts
  // a point coordinate and the other just makes room for cell links.
  int InsertNextLinkedPoint(int numLinks);
  int InsertNextLinkedPoint(double x[3], int numLinks);

  // Description:
  // Add a new cell to the cell data structure (after cell pointers have been
  // built). This method adds the cell and then updates the links from the
  // points to the cells. (Memory is allocated as necessary.)
  int InsertNextLinkedCell(int type, int npts, vtkIdType *pts);

  // Description:
  // Replace one cell with another in cell structure. This operator updates the
  // connectivity list and the point's link list. It does not delete references
  // to the old cell in the point's link list. Use the operator
  // RemoveCellReference() to delete all references from points to (old) cell.
  // You may also want to consider using the operator ResizeCellList() if the
  // link list is changing size.
  void ReplaceLinkedCell(vtkIdType cellId, int npts, vtkIdType *pts);

  // Description:
  // Remove all references to cell in cell structure. This means the links from
  // the cell's points to the cell are deleted. Memory is not reclaimed. Use the
  // method ResizeCellList() to resize the link list from a point to its using
  // cells. (This operator assumes BuildLinks() has been called.)
  void RemoveCellReference(vtkIdType cellId);

  // Description:
  // Add references to cell in cell structure. This means the links from
  // the cell's points to the cell are modified. Memory is not extended. Use the
  // method ResizeCellList() to resize the link list from a point to its using
  // cells. (This operator assumes BuildLinks() has been called.)
  void AddCellReference(vtkIdType cellId);

  // Description:
  // Remove a reference to a cell in a particular point's link list. You may
  // also consider using RemoveCellReference() to remove the references from
  // all the cell's points to the cell. This operator does not reallocate
  // memory; use the operator ResizeCellList() to do this if necessary.
  void RemoveReferenceToCell(vtkIdType ptId, vtkIdType cellId);

  // Description:
  // Add a reference to a cell in a particular point's link list. (You may also
  // consider using AddCellReference() to add the references from all the
  // cell's points to the cell.) This operator does not realloc memory; use the
  // operator ResizeCellList() to do this if necessary.
  void AddReferenceToCell(vtkIdType ptId, vtkIdType cellId);

  // Description:
  // Resize the list of cells using a particular point. (This operator assumes
  // that BuildLinks() has been called.)
  void ResizeCellList(vtkIdType ptId, int size);

  // Description:
  // Restore object to initial state. Release memory back to system.
  virtual void Initialize();

  // Description:
  // Get the piece and the number of pieces. Similar to extent in 3D.
  virtual int GetPiece();
  virtual int GetNumberOfPieces();

  // Description:
  // Get the ghost level.
  virtual int GetGhostLevel();

  // Description:
  // Return the actual size of the data in kilobytes. This number
  // is valid only after the pipeline has updated. The memory size
  // returned is guaranteed to be greater than or equal to the
  // memory required to represent the data (e.g., extra space in
  // arrays, etc. are not included in the return value). THIS METHOD
  // IS THREAD SAFE.
  unsigned long GetActualMemorySize();

  // Description:
  // Shallow and Deep copy.
  void ShallowCopy(vtkDataObject *src);
  void DeepCopy(vtkDataObject *src);

  // Description:
  // This method will remove any cell that has a ghost level array value
  // greater or equal to level.  It does not remove unused points (yet).
  void RemoveGhostCells(int level);

  //BTX
  // Description:
  // Retrieve an instance of this class from an information object.
  static vtkPolyData* GetData(vtkInformation* info);
  static vtkPolyData* GetData(vtkInformationVector* v, int i=0);
  //ETX

//BTX
  // Description:
  // Scalar field critical point classification (for manifold 2D meshes).
  // Reference: J. Milnor "Morse Theory", Princeton University Press, 1963.
  //
  // Given a pointId and an attribute representing a scalar field, this member
  // returns the index of the critical point:
  // vtkPolyData::MINIMUM (index 0): local minimum;
  // vtkPolyData::SADDLE  (index 1): local saddle;
  // vtkPolyData::MAXIMUM (index 2): local maximum.
  //
  // Other returned values are:
  // vtkPolyData::REGULAR_POINT: regular point (the gradient does not vanish);
  // vtkPolyData::ERR_NON_MANIFOLD_STAR: the star of the considered vertex is
  // not manifold (could not evaluate the index)
  // vtkPolyData::ERR_INCORRECT_FIELD: the number of entries in the scalar field
  // array is different form the number of vertices in the mesh.
  // vtkPolyData::ERR_NO_SUCH_FIELD: the specified scalar field does not exist.
  enum
    {
    ERR_NO_SUCH_FIELD = -4,
    ERR_INCORRECT_FIELD = -3,
    ERR_NON_MANIFOLD_STAR = -2,
    REGULAR_POINT = -1,
    MINIMUM = 0,
    SADDLE = 1,
    MAXIMUM = 2
    };
//ETX
  int GetScalarFieldCriticalIndex (vtkIdType pointId,
                                   vtkDataArray *scalarField);
  int GetScalarFieldCriticalIndex (vtkIdType pointId, int fieldId);
  int GetScalarFieldCriticalIndex (vtkIdType pointId, const char* fieldName);

protected:
  vtkPolyData();
  ~vtkPolyData();

  // constant cell objects returned by GetCell called.
  vtkVertex *Vertex;
  vtkPolyVertex *PolyVertex;
  vtkLine *Line;
  vtkPolyLine *PolyLine;
  vtkTriangle *Triangle;
  vtkQuad *Quad;
  vtkPolygon *Polygon;
  vtkTriangleStrip *TriangleStrip;
  vtkEmptyCell *EmptyCell;

  // points inherited
  // point data (i.e., scalars, vectors, normals, tcoords) inherited
  vtkCellArray *Verts;
  vtkCellArray *Lines;
  vtkCellArray *Polys;
  vtkCellArray *Strips;

  // dummy static member below used as a trick to simplify traversal
  static vtkCellArray *Dummy;

  // supporting structures for more complex topological operations
  // built only when necessary
  vtkCellTypes *Cells;
  vtkCellLinks *Links;

private:
  // Hide these from the user and the compiler.

  // Description:
  // For legacy compatibility. Do not use.
  void GetCellNeighbors(vtkIdType cellId, vtkIdList& ptIds, vtkIdList& cellIds)
    {this->GetCellNeighbors(cellId, &ptIds, &cellIds);}

  void Cleanup();

private:
  vtkPolyData(const vtkPolyData&);  // Not implemented.
  void operator=(const vtkPolyData&);  // Not implemented.
};

inline void vtkPolyData::GetPointCells(vtkIdType ptId, unsigned short& ncells,
                                       vtkIdType* &cells)
{
  ncells = this->Links->GetNcells(ptId);
  cells = this->Links->GetCells(ptId);
}

inline int vtkPolyData::IsTriangle(int v1, int v2, int v3)
{
  unsigned short int n1;
  int i, j, tVerts[3];
  vtkIdType *cells, *tVerts2, n2;

  tVerts[0] = v1;
  tVerts[1] = v2;
  tVerts[2] = v3;

  for (i=0; i<3; i++)
    {
    this->GetPointCells(tVerts[i], n1, cells);
    for (j=0; j<n1; j++)
      {
      this->GetCellPoints(cells[j], n2, tVerts2);
      if ( (tVerts[0] == tVerts2[0] || tVerts[0] == tVerts2[1] ||
            tVerts[0] == tVerts2[2]) &&
           (tVerts[1] == tVerts2[0] || tVerts[1] == tVerts2[1] ||
            tVerts[1] == tVerts2[2]) &&
           (tVerts[2] == tVerts2[0] || tVerts[2] == tVerts2[1] ||
            tVerts[2] == tVerts2[2]) )
        {
        return 1;
        }
      }
    }
  return 0;
}

inline int vtkPolyData::IsPointUsedByCell(vtkIdType ptId, vtkIdType cellId)
{
  vtkIdType *pts, npts;

  this->GetCellPoints(cellId, npts, pts);
  for (vtkIdType i=0; i < npts; i++)
    {
    if ( pts[i] == ptId )
      {
      return 1;
      }
    }

  return 0;
}

inline void vtkPolyData::DeletePoint(vtkIdType ptId)
{
  this->Links->DeletePoint(ptId);
}

inline void vtkPolyData::DeleteCell(vtkIdType cellId)
{
  this->Cells->DeleteCell(cellId);
}

inline void vtkPolyData::RemoveCellReference(vtkIdType cellId)
{
  vtkIdType *pts, npts;

  this->GetCellPoints(cellId, npts, pts);
  for (vtkIdType i=0; i<npts; i++)
    {
    this->Links->RemoveCellReference(cellId, pts[i]);
    }
}

inline void vtkPolyData::AddCellReference(vtkIdType cellId)
{
  vtkIdType *pts, npts;

  this->GetCellPoints(cellId, npts, pts);
  for (vtkIdType i=0; i<npts; i++)
    {
    this->Links->AddCellReference(cellId, pts[i]);
    }
}

inline void vtkPolyData::ResizeCellList(vtkIdType ptId, int size)
{
  this->Links->ResizeCellList(ptId,size);
}

inline void vtkPolyData::ReplaceCellPoint(vtkIdType cellId, vtkIdType oldPtId,
                                          vtkIdType newPtId)
{
  int i;
  vtkIdType *verts, nverts;

  this->GetCellPoints(cellId,nverts,verts);
  for ( i=0; i < nverts; i++ )
    {
    if ( verts[i] == oldPtId )
      {
      verts[i] = newPtId; // this is very nasty! direct write!
      return;
      }
    }
}

#endif