/usr/include/paraview/vtkStructuredGridConnectivity.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkStructuredGridConnectivity.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkStructuredGridConnectivity.h -- Constructs structured connectivity
//
// .SECTION Description
// vtkStructuredGridConnectivity is a concrete instance of vtkObject that
// implements functionality for computing the neighboring topology within a
// single partitioned structured grid dataset. This class implementation does
// not have any support for distributed data. For the parallel implementation
// see vtkPStructuredGridConnectivity.
//
// .SECTION See Also
// vtkGhostArray vtkPStructuredGridConnectivity
#ifndef vtkStructuredGridConnectivity_H_
#define vtkStructuredGridConnectivity_H_
#define VTK_NO_OVERLAP 0
#define VTK_NODE_OVERLAP 1
#define VTK_EDGE_OVERLAP 2
#define VTK_PARTIAL_OVERLAP 3
// VTK include directives
#include "vtkFiltersGeometryModule.h" // For export macro
#include "vtkAbstractGridConnectivity.h"
#include "vtkStructuredNeighbor.h" // For Structured Neighbor object definition
#include "vtkStructuredData.h" // For data description definitions
// C++ include directives
#include <iostream> // For cout
#include <vector> // For STL vector
#include <map> // For STL map
#include <utility> // For STL pair and overloaded relational operators
#include <cassert> // For assert()
// Forward Declarations
class vtkIdList;
class vtkUnsignedCharArray;
class vtkPointData;
class vtkCellData;
class vtkPoints;
class VTKFILTERSGEOMETRY_EXPORT vtkStructuredGridConnectivity :
public vtkAbstractGridConnectivity
{
public:
static vtkStructuredGridConnectivity* New();
vtkTypeMacro( vtkStructuredGridConnectivity, vtkAbstractGridConnectivity );
void PrintSelf(ostream& os, vtkIndent indent );
// Description:
// Set/Get the whole extent of the grid
vtkSetVector6Macro(WholeExtent,int);
vtkGetVector6Macro(WholeExtent,int);
// Description:
// Returns the data dimension based on the whole extent
vtkGetMacro(DataDimension,int);
// Description:
// Set/Get the total number of domains distributed among processors
virtual void SetNumberOfGrids( const unsigned int N );
// Description:
// Registers the current grid corresponding to the grid ID by its global
// extent w.r.t. the whole extent.
virtual void RegisterGrid( const int gridID, int extents[6],
vtkUnsignedCharArray* nodesGhostArray,
vtkUnsignedCharArray* cellGhostArray,
vtkPointData* pointData,
vtkCellData* cellData,
vtkPoints* gridNodes );
// Description:
// Returns the grid extent of the grid corresponding to the given grid ID.
void GetGridExtent( const int gridID, int extent[6] );
// Description:
// Sets the ghosted grid extent for the grid corresponding to the given
// grid ID to the given extent.
void SetGhostedGridExtent( const int gridID, int ext[6] );
// Description:
// Returns the ghosted grid extent for the block corresponding the
void GetGhostedGridExtent( const int gridID, int ext[6] );
// Description:
// Computes neighboring information
virtual void ComputeNeighbors();
// Description:
// Returns the number of neighbors for the grid corresponding to the given
// grid ID.
int GetNumberOfNeighbors( const int gridID )
{ return( static_cast<int>(this->Neighbors[ gridID ].size() )); };
// Description:
// Returns the neighbor corresponding to the index nei for the grid with the
// given (global) grid ID.
vtkStructuredNeighbor GetGridNeighbor(const int gridID, const int nei);
// Description:
// Returns the list of neighboring blocks for the given grid and the
// corresponding overlapping extents are filled in the 1-D flat array
// strided by 6.
//
// NOTE: the flat array extents must be pre-allocated.
vtkIdList* GetNeighbors( const int gridID, int *extents );
// Description:
// Filles the mesh property arrays, nodes and cells, for the grid
// corresponding to the given grid ID.
// NOTE: this method assumes that ComputeNeighbors() has been called.
void FillGhostArrays(
const int gridID,
vtkUnsignedCharArray *nodesArray,
vtkUnsignedCharArray *cellsArray );
// Description:
// Creates ghost layers.
virtual void CreateGhostLayers( const int N=1 );
protected:
vtkStructuredGridConnectivity();
virtual ~vtkStructuredGridConnectivity();
// Description:
// Returns true iff Lo <= idx <= Hi, otherwise false.
bool InBounds( const int idx, const int Lo, const int Hi )
{ return( (idx>=Lo) && (idx<=Hi) ); };
// Description:
// Returns true iff Lo < idx < Hi, otherwise false.
bool StrictlyInsideBounds( const int idx, const int Lo, const int Hi )
{ return( (idx > Lo) && (idx < Hi) ); };
// Description:
// Returns true iff A is a subset of B, otherwise false.
bool IsSubset( int A[2], int B[2] )
{ return( this->InBounds(A[0], B[0], B[1]) &&
this->InBounds(A[1], B[0], B[1]) ); };
// Description:
// Returns the cardinality of a range S.
int Cardinality( int S[2] ) { return( S[1]-S[0]+1 ); };
// Description:
// Returns the number of nodes per cell according to the given dimension.
int GetNumberOfNodesPerCell( const int dim )
{
int numNodes = 0;
switch( dim )
{
case 1:
numNodes = 2; // line cell
break;
case 2:
numNodes = 4; // quad cell
break;
case 3:
numNodes = 8; // hex cell
break;
default:
assert( "ERROR: code should not reach here!" && false );
} // END switch
return( numNodes );
}
// Description:
// Fills the the ghost array for the nodes
void FillNodesGhostArray(
const int gridID, const int dataDescription,
int GridExtent[6], int RealExtent[6], vtkUnsignedCharArray *nodeArray );
// Description:
// Fills the ghost array for the grid cells
void FillCellsGhostArray(
const int dataDescription, const int numNodesPerCell,
int dims[3], int CellExtent[6], vtkUnsignedCharArray *nodesArray,
vtkUnsignedCharArray *cellsArray );
// Description:
// Given a point (i,j,k) belonging to the grid corresponding to the given
// gridID, this method searches for the grids that this point is neighboring
// with.
void SearchNeighbors(
const int gridID,
const int i, const int j, const int k,
vtkIdList *neiList );
// Description:
// Marks the node properties with the node with the given global i,j,k
// grid coordinates w.r.t. to the grid defined by the given extent ext.
void MarkNodeProperty(
const int gridID,
const int i, const int j, const int k,
int ext[6], int RealExtent[6], unsigned char &pfield );
// Description:
// Marks the cell property for the cell composed by the nodes with the
// given ghost fields.
void MarkCellProperty(
unsigned char &pfield,
unsigned char *nodeGhostFields, const int numNodes );
// Description:
// Given a grid extent, this method computes the RealExtent.
void GetRealExtent( const int gridID, int GridExtent[6],int RealExtent[6] );
// Description:
// Checks if the node corresponding to the given global i,j,k coordinates
// is a ghost node or not.
bool IsGhostNode(
int GridExtent[6], int RealExtent[6],
const int i, const int j, const int k );
// Description:
// Checks if the node corresponding to the given global i,j,k coordinates
// is on the boundary of the given extent.
bool IsNodeOnBoundaryOfExtent(
const int i, const int j, const int k, int ext[6] );
// Description:
// Checks if the node corresponding to the given global i,j,k coordinates
// is on the shared boundary, i.e., a partition interface.
// NOTE: A node on a shared boundary, may also be on a real boundary.
bool IsNodeOnSharedBoundary(
const int gridID, int RealExtent[6],
const int i, const int j, const int k );
// Description:
// Checks if the node corresponding to the given global i,j,k coordinates
// touches the real boundaries of the domain given the whole extent.
bool IsNodeOnBoundary( const int i, const int j, const int k );
// Description:
// Checks if the node, corresponding to the given global i,j,k coordinates
// is within the interior of the given global grid extent.
bool IsNodeInterior(
const int i, const int j, const int k,
int GridExtent[6] );
// Description:
// Checks if the node corresponding to the given global i,j,k coordinates
// is within the given extent, inclusive of the extent bounds.
bool IsNodeWithinExtent(
const int i, const int j, const int k,
int GridExtent[6] )
{
bool status = false;
switch( this->DataDescription )
{
case VTK_X_LINE:
if( (GridExtent[0] <= i) && (i <= GridExtent[1]) )
{
status = true;
}
break;
case VTK_Y_LINE:
if( (GridExtent[2] <= j) && (j <= GridExtent[3] ) )
{
status = true;
}
break;
case VTK_Z_LINE:
if( (GridExtent[4] <= k) && (k <= GridExtent[5] ) )
{
status = true;
}
break;
case VTK_XY_PLANE:
if( (GridExtent[0] <= i) && (i <= GridExtent[1]) &&
(GridExtent[2] <= j) && (j <= GridExtent[3]) )
{
status = true;
}
break;
case VTK_YZ_PLANE:
if( (GridExtent[2] <= j) && (j <= GridExtent[3] ) &&
(GridExtent[4] <= k) && (k <= GridExtent[5] ) )
{
status = true;
}
break;
case VTK_XZ_PLANE:
if( (GridExtent[0] <= i) && (i <= GridExtent[1] ) &&
(GridExtent[4] <= k) && (k <= GridExtent[5] ) )
{
status = true;
}
break;
case VTK_XYZ_GRID:
if( (GridExtent[0] <= i) && (i <= GridExtent[1]) &&
(GridExtent[2] <= j) && (j <= GridExtent[3]) &&
(GridExtent[4] <= k) && (k <= GridExtent[5]) )
{
status = true;
}
break;
default:
std::cout << "Data description is: " << this->DataDescription << "\n";
std::cout.flush();
assert( "pre: Undefined data-description!" && false );
} // END switch
return( status );
}
// Description:
// Creates a neighbor from i-to-j and from j-to-i.
void SetNeighbors(
const int i, const int j,
int i2jOrientation[3], int j2iOrientation[3],
int overlapExtent[6] );
// Description:
// Given two overlapping extents A,B and the corresponding overlap extent
// this method computes A's relative neighboring orientation
// w.r.t to its neighbor, B. The resulting orientation is stored in an
// integer 3-tuple that holds the orientation of A relative to B alone each
// axis, i, j, k. See vtkStructuredNeighbor::NeighborOrientation for a list
// of valid orientation values.
void DetermineNeighborOrientation(
const int idx, int A[2], int B[2], int overlap[2], int orient[3] );
// Description:
// Detects if the two extents, ex1 and ex2, corresponding to the grids
// with grid IDs i,j respectively, are neighbors, i.e, they either share
// a corner, an edge or a plane in 3-D.
void DetectNeighbors(
const int i, const int j, int ex1[6], int ex2[6],
int orientation[3], int ndim);
// Description:
// Checks if the intervals A,B overlap. The intersection of A,B is returned
// in the overlap array and a return code is used to indicate the type of
// overlap. The return values are defined as follows:
// VTK_NO_OVERLAP 0
// VTK_NODE_OVERLAP 1
// VTK_EDGE_OVERLAP 2
// VTK_PARTIAL_OVERLAP 3
int IntervalOverlap( int A[2], int B[2], int overlap[2] );
// Description:
// Checks if the internals s,S partially overlap where |s| < |S|.
// The intersection of s,S is stored in the supplied overlap array and a
// return code is used to indicate the type of overlap. The return values
// are defined as follows:
// VTK_NO_OVERLAP 0
// VTK_NODE_OVERLAP 1
// VTK_PARTIAL_OVERLAP 3
int DoPartialOverlap( int s[2], int S[2], int overlap[2] );
// Description:
// Checks if the intervals A,B partially overlap. The region of partial
// overlap is returned in the provided overlap array and a return code is
// used to indicate whether there is partial overlap or not. The return
// values are defined as follows:
// VTK_NO_OVERLAP 0
// VTK_NODE_OVERLAP 1
// VTK_PARTIAL_OVERLAP 3
int PartialOverlap(
int A[2], const int CofA,
int B[2], const int CofB,
int overlap[2] );
// Description:
// Establishes the neighboring information between the two grids
// corresponding to grid ids "i" and "j" with i < j.
void EstablishNeighbors( const int i, const int j );
// Description:
// Based on the user-supplied WholeExtent, this method determines the
// topology of the structured domain, e.g., VTK_XYZ_GRID, VTK_XY_PLANE, etc.
void AcquireDataDescription();
// Description:
// Checks if the block corresponding to the given grid ID has a block
// adjacent to it in the given block direction.
// NOTE: The block direction is essentially one of the 6 faces of the
// block defined as follows:
// <ul>
// <li> FRONT = 0 (+k diretion) </li>
// <li> BACK = 1 (-k direction) </li>
// <li> RIGHT = 2 (+i direction) </li>
// <li> LEFT = 3 (-i direction) </li>
// <li> TOP = 4 (+j direction) </li>
// <li> BOTTOM = 5 (-j direction) </li>
// </ul>
bool HasBlockConnection( const int gridID, const int blockDirection );
// Description:
// Removes a block connection along the given direction for the block
// corresponding to the given gridID.
// NOTE: The block direction is essentially one of the 6 faces of the
// block defined as follows:
// <ul>
// <li> FRONT = 0 (+k diretion) </li>
// <li> BACK = 1 (-k direction) </li>
// <li> RIGHT = 2 (+i direction) </li>
// <li> LEFT = 3 (-i direction) </li>
// <li> TOP = 4 (+j direction) </li>
// <li> BOTTOM = 5 (-j direction) </li>
// </ul>
void RemoveBlockConnection( const int gridID, const int blockDirection );
// Description:
// Adds a block connection along the given direction for the block
// corresponding to the given gridID.
// NOTE: The block direction is essentially one of the 6 faces of the
// block defined as follows:
// <ul>
// <li> FRONT = 0 (+k diretion) </li>
// <li> BACK = 1 (-k direction) </li>
// <li> RIGHT = 2 (+i direction) </li>
// <li> LEFT = 3 (-i direction) </li>
// <li> TOP = 4 (+j direction) </li>
// <li> BOTTOM = 5 (-j direction) </li>
// </ul>
void AddBlockConnection( const int gridID, const int blockDirection );
// Description:
// Clears all block connections for the block corresponding to the given
// grid ID.
void ClearBlockConnections( const int gridID );
// Description:
// Returns the number of faces of the block corresponding to the given grid
// ID that are adjacent to at least one other block. Note, this is not the
// total number of neighbors for the block. This method simply checks how
// many out of the 6 block faces have connections. Thus, the return value
// has an upper-bound of 6.
int GetNumberOfConnectingBlockFaces( const int gridID );
// Description:
// Sets the block topology connections for the grid corresponding to gridID.
void SetBlockTopology( const int gridID );
// Description:
// Given i-j-k coordinates and the grid defined by tis extent, ext, this
// method determines IJK orientation with respect to the block boundaries,
// i.e., the 6 block faces. If the node is not on a boundary, then
// orientation[i] = BlockFace::NOT_ON_BLOCK_FACE for all i in [0,2].
void GetIJKBlockOrientation(
const int i, const int j, const int k, int ext[6], int orientation[3] );
// Description:
// A helper method that computes the 1-D i-j-k orientation to facilitate the
// implementation of GetNodeBlockOrientation.
int Get1DOrientation(
const int idx, const int ExtentLo, const int ExtentHi,
const int OnLo, const int OnHi, const int NotOnBoundary );
// Description:
// Creates the ghosted extent of the grid corresponding to the given
// gridID.
void CreateGhostedExtent( const int gridID, const int N );
// Description:
// Gets the ghosted extent from the given grid extent along the dimension
// given by minIdx and maxIdx. This method is a helper method for the
// implementation of CreateGhostedExtent.
void GetGhostedExtent(
int *ghostedExtent, int GridExtent[6],
const int minIdx, const int maxIdx, const int N);
// Description:
// This method creates the ghosted mask arrays, i.e., the NodeGhostArrays
// and the CellGhostArrays for the grid corresponding to the given gridID.
void CreateGhostedMaskArrays(const int gridID);
// Description:
// This method initializes the ghost data according to the computed ghosted
// grid extent for the grid with the given grid ID. Specifically, PointData,
// CellData and grid coordinates are allocated for the ghosted grid
// accordingly.
void InitializeGhostData( const int gridID );
// Description:
// Adds/creates all the arrays in the reference grid point data, RPD, to
// the user-supplied point data instance, PD, where the number of points
// is given by N.
void AllocatePointData( vtkPointData *RPD, const int N, vtkPointData *PD );
// Description:
// Adds/creates all the arrays in the reference grid cell data, RCD, to the
// user-supplied cell data instance, CD, where the number of cells is given
// by N.
void AllocateCellData( vtkCellData *RCD, const int N, vtkCellData *CD );
// Description:
// This method transfers the registered grid data to the corresponding
// ghosted grid data.
void TransferRegisteredDataToGhostedData( const int gridID );
// Description:
// This method computes, the send and rcv extents for each neighbor of
// each grid.
void ComputeNeighborSendAndRcvExtent( const int gridID, const int N );
// Description:
// This method transfers the fields (point data and cell data) to the
// ghost extents from the neighboring grids of the grid corresponding
// to the given gridID.
virtual void TransferGhostDataFromNeighbors( const int gridID );
// Description:
// This method transfers the fields
void TransferLocalNeighborData(
const int gridID, const vtkStructuredNeighbor& Neighor);
// Description:
// Copies the coordinates from the source points to the target points.
void CopyCoordinates(
vtkPoints *source, vtkIdType sourceIdx,
vtkPoints *target, vtkIdType targetIdx );
// Description:
// Loops through all arrays in the source and for each array, it copies the
// tuples from sourceIdx to the target at targetIdx. This method assumes
// that the source and target have a one-to-one array correspondance, that
// is array i in the source corresponds to array i in the target.
void CopyFieldData(
vtkFieldData *source, vtkIdType sourceIdx,
vtkFieldData *target, vtkIdType targetIdx );
// Description:
// Given a global grid ID and the neighbor grid ID, this method returns the
// neighbor index w.r.t. the Neighbors list of the grid with grid ID
// gridIdx.
int GetNeighborIndex( const int gridIdx, const int NeighborGridIdx );
// Description:
// Prints the extent, used for debugging
void PrintExtent( int extent[6] );
int DataDimension;
int DataDescription;
int WholeExtent[6];
// BTX
std::vector< int > GridExtents;
std::vector< int > GhostedExtents;
std::vector< unsigned char > BlockTopology;
std::vector< std::vector<vtkStructuredNeighbor> > Neighbors;
std::map< std::pair< int,int >, int > NeighborPair2NeighborListIndex;
// ETX
private:
vtkStructuredGridConnectivity( const vtkStructuredGridConnectivity& ); // Not implemented
void operator=(const vtkStructuredGridConnectivity& ); // Not implemented
};
//=============================================================================
// INLINE METHODS
//=============================================================================
//------------------------------------------------------------------------------
inline int vtkStructuredGridConnectivity::GetNeighborIndex(
const int gridIdx, const int NeighborGridIdx )
{
assert("pre: Grid index is out-of-bounds!" &&
(gridIdx >= 0) &&
(gridIdx < static_cast<int>(this->NumberOfGrids)));
assert("pre: Neighbor grid index is out-of-bounds!" &&
(NeighborGridIdx >= 0) &&
(NeighborGridIdx < static_cast<int>(this->NumberOfGrids) ) );
std::pair<int,int> gridPair = std::make_pair(gridIdx,NeighborGridIdx);
assert("pre: Neighboring grid pair does not exist in hash!" &&
(this->NeighborPair2NeighborListIndex.find(gridPair) !=
this->NeighborPair2NeighborListIndex.end() ) );
return(this->NeighborPair2NeighborListIndex[gridPair]);
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::GetGhostedExtent(
int *ghostedExtent, int GridExtent[6],
const int minIdx, const int maxIdx, const int N )
{
assert( "pre: Number of ghost layers must be N >= 1" && (N >= 1) );
assert( "pre: ghosted extent pointer is NULL" && ghostedExtent != NULL);
ghostedExtent[minIdx] = GridExtent[minIdx]-N;
ghostedExtent[maxIdx] = GridExtent[maxIdx]+N;
// Clamp the ghosted extent to be within the WholeExtent
ghostedExtent[minIdx] =
(ghostedExtent[minIdx] < this->WholeExtent[minIdx] )?
this->WholeExtent[minIdx] : ghostedExtent[minIdx];
ghostedExtent[maxIdx] =
(ghostedExtent[maxIdx] > this->WholeExtent[maxIdx])?
this->WholeExtent[maxIdx] : ghostedExtent[maxIdx];
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::SetGhostedGridExtent(
const int gridID, int ext[6] )
{
assert( "pre: gridID is out-of-bounds" &&
(gridID >= 0) && (gridID < static_cast<int>(this->NumberOfGrids)));
assert( "pre: ghosted-extents vector has not been allocated" &&
(this->NumberOfGrids == this->GhostedExtents.size()/6 ) );
for( int i=0; i < 6; ++i )
{
this->GhostedExtents[ gridID*6+i ] = ext[i];
}
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::GetGridExtent(
const int gridID, int ext[6])
{
assert( "pre: gridID out-of-bounds!" &&
(gridID >= 0 && gridID < static_cast<int>(this->NumberOfGrids)));
for( int i=0; i < 6; ++i )
{
ext[i] = this->GridExtents[ gridID*6+i ];
}
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::GetGhostedGridExtent(
const int gridID, int ext[6])
{
assert( "pre: gridID out-of-bounds!" &&
(gridID >= 0 && gridID < static_cast<int>(this->NumberOfGrids)));
if( this->GhostedExtents.size() == 0 )
{
vtkErrorMacro( "No ghosted extents found for registered grid extends!!!" );
return;
}
assert( "GhostedExtents are not aligned with registered grid extents" &&
( this->GhostedExtents.size() == this->GridExtents.size() ) );
for( int i=0; i < 6; ++i )
{
ext[i] = this->GhostedExtents[ gridID*6+i ];
}
}
//------------------------------------------------------------------------------
inline bool vtkStructuredGridConnectivity::IsNodeOnBoundaryOfExtent(
const int i, const int j, const int k, int ext[6] )
{
if( !this->IsNodeWithinExtent( i,j,k, ext) )
{
return false;
}
bool status = false;
switch( this->DataDescription )
{
case VTK_X_LINE:
if( i==ext[0] || i==ext[1] )
{
status = true;
}
break;
case VTK_Y_LINE:
if( j==ext[2] || j==ext[3] )
{
status = true;
}
break;
case VTK_Z_LINE:
if( k==ext[4] || k==ext[5] )
{
status = true;
}
break;
case VTK_XY_PLANE:
if( (i==ext[0] || i==ext[1]) ||
(j==ext[2] || j==ext[3]) )
{
status = true;
}
break;
case VTK_YZ_PLANE:
if( (j==ext[2] || j==ext[3]) ||
(k==ext[4] || k==ext[5]) )
{
status = true;
}
break;
case VTK_XZ_PLANE:
if( (i==ext[0] || i==ext[1]) ||
(k==ext[4] || k==ext[5]) )
{
status = true;
}
break;
case VTK_XYZ_GRID:
if( (i==ext[0] || i==ext[1]) ||
(j==ext[2] || j==ext[3]) ||
(k==ext[4] || k==ext[5]) )
{
status = true;
}
break;
default:
std::cout << "Data description is: " << this->DataDescription << "\n";
std::cout.flush();
assert( "pre: Undefined data-description!" && false );
} // END switch
return( status );
}
//------------------------------------------------------------------------------
inline bool vtkStructuredGridConnectivity::IsNodeInterior(
const int i, const int j, const int k,
int GridExtent[6] )
{
bool status = false;
switch( this->DataDescription )
{
case VTK_X_LINE:
if( (GridExtent[0] < i) && (i < GridExtent[1]) )
{
status = true;
}
break;
case VTK_Y_LINE:
if( (GridExtent[2] < j) && (j < GridExtent[3] ) )
{
status = true;
}
break;
case VTK_Z_LINE:
if( (GridExtent[4] < k) && (k < GridExtent[5] ) )
{
status = true;
}
break;
case VTK_XY_PLANE:
if( (GridExtent[0] < i) && (i < GridExtent[1]) &&
(GridExtent[2] < j) && (j < GridExtent[3]) )
{
status = true;
}
break;
case VTK_YZ_PLANE:
if( (GridExtent[2] < j) && (j < GridExtent[3] ) &&
(GridExtent[4] < k) && (k < GridExtent[5] ) )
{
status = true;
}
break;
case VTK_XZ_PLANE:
if( (GridExtent[0] < i) && (i < GridExtent[1] ) &&
(GridExtent[4] < k) && (k < GridExtent[5] ) )
{
status = true;
}
break;
case VTK_XYZ_GRID:
if( (GridExtent[0] < i) && (i < GridExtent[1]) &&
(GridExtent[2] < j) && (j < GridExtent[3]) &&
(GridExtent[4] < k) && (k < GridExtent[5]) )
{
status = true;
}
break;
default:
std::cout << "Data description is: " << this->DataDescription << "\n";
std::cout.flush();
assert( "pre: Undefined data-description!" && false );
} // END switch
return( status );
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::DetermineNeighborOrientation(
const int idx, int A[2], int B[2], int overlap[2], int orient[3] )
{
assert( "pre: idx is out-of-bounds" && (idx >= 0) && (idx < 3) );
// A. Non-overlapping cases
if( overlap[0] == overlap[1] )
{
if( A[1] == B[0] )
{
orient[ idx ] = vtkStructuredNeighbor::HI;
}
else if( A[0] == B[1] )
{
orient[ idx ] = vtkStructuredNeighbor::LO;
}
else
{
orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
assert( "ERROR: Code should not reach here!" && false );
}
} // END non-overlapping cases
// B. Sub-set cases
else if( this->IsSubset( A, B) )
{
if( (A[0] == B[0]) && (A[1] == B[1]) )
{
orient[ idx ] = vtkStructuredNeighbor::ONE_TO_ONE;
}
else if( this->StrictlyInsideBounds( A[0], B[0], B[1] ) &&
this->StrictlyInsideBounds( A[1], B[0], B[1] ) )
{
orient[ idx ] = vtkStructuredNeighbor::SUBSET_BOTH;
}
else if( A[0] == B[0] )
{
orient[ idx ] = vtkStructuredNeighbor::SUBSET_HI;
}
else if( A[1] == B[1] )
{
orient[ idx ] = vtkStructuredNeighbor::SUBSET_LO;
}
else
{
orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
assert( "ERROR: Code should not reach here!" && false );
}
}
// C. Super-set cases
else if( this->IsSubset( B, A ) )
{
orient[ idx ] = vtkStructuredNeighbor::SUPERSET;
}
// D. Partially-overlapping (non-subset) cases
else if( !(this->IsSubset(A,B) || this->IsSubset(A,B)) )
{
if( this->InBounds( A[0], B[0], B[1] ) )
{
orient[ idx ] = vtkStructuredNeighbor::LO;
}
else if( this->InBounds( A[1], B[0], B[1] ) )
{
orient[ idx ] = vtkStructuredNeighbor::HI;
}
else
{
orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
assert( "ERROR: Code should not reach here!" && false );
}
}
else
{
orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
assert( "ERROR: Code should not reach here!" && false );
}
}
//------------------------------------------------------------------------------
inline int vtkStructuredGridConnectivity::Get1DOrientation(
const int idx, const int ExtentLo, const int ExtentHi,
const int OnLo, const int OnHi, const int NotOnBoundary )
{
if( idx == ExtentLo )
{
return OnLo;
}
else if( idx == ExtentHi )
{
return OnHi;
}
return NotOnBoundary;
}
//------------------------------------------------------------------------------
inline bool vtkStructuredGridConnectivity::HasBlockConnection(
const int gridID, const int blockDirection )
{
// Sanity check
assert("pre: gridID is out-of-bounds" &&
(gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
assert("pre: BlockTopology has not been properly allocated" &&
(this->NumberOfGrids == this->BlockTopology.size()));
assert("pre: blockDirection is out-of-bounds" &&
(blockDirection >= 0) && (blockDirection < 6) );
bool status = false;
if( this->BlockTopology[ gridID ] & (1 << blockDirection) )
{
status = true;
}
return( status );
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::RemoveBlockConnection(
const int gridID, const int blockDirection )
{
// Sanity check
assert("pre: gridID is out-of-bounds" &&
(gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
assert("pre: BlockTopology has not been properly allocated" &&
(this->NumberOfGrids == this->BlockTopology.size()));
assert("pre: blockDirection is out-of-bounds" &&
(blockDirection >= 0) && (blockDirection < 6) );
this->BlockTopology[ gridID ] &= ~(1 << blockDirection);
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::AddBlockConnection(
const int gridID, const int blockDirection )
{
// Sanity check
assert("pre: gridID is out-of-bounds" &&
(gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
assert("pre: BlockTopology has not been properly allocated" &&
(this->NumberOfGrids == this->BlockTopology.size()));
assert("pre: blockDirection is out-of-bounds" &&
(blockDirection >= 0) && (blockDirection < 6) );
this->BlockTopology[ gridID ] |= (1 << blockDirection);
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::ClearBlockConnections(
const int gridID )
{
// Sanity check
assert("pre: gridID is out-of-bounds" &&
(gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
assert("pre: BlockTopology has not been properly allocated" &&
(this->NumberOfGrids == this->BlockTopology.size()));
for( int i=0; i < 6; ++i )
{
this->RemoveBlockConnection( gridID, i );
} // END for all block directions
}
//------------------------------------------------------------------------------
inline int vtkStructuredGridConnectivity::GetNumberOfConnectingBlockFaces(
const int gridID )
{
// Sanity check
assert("pre: gridID is out-of-bounds" &&
(gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
assert("pre: BlockTopology has not been properly allocated" &&
(this->NumberOfGrids == this->BlockTopology.size()));
int count = 0;
for( int i=0; i < 6; ++i )
{
if( this->HasBlockConnection( gridID, i ) )
{
++count;
}
}
assert( "post: count must be in [0,5]" && (count >=0 && count <= 6) );
return( count );
}
//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::SetNumberOfGrids(
const unsigned int N )
{
this->NumberOfGrids = N;
this->AllocateUserRegisterDataStructures();
this->GridExtents.resize( 6*N,-1);
this->Neighbors.resize( N );
this->BlockTopology.resize( N );
}
#endif /* vtkStructuredGridConnectivity_H_ */
|