/usr/include/paraview/vtkTetra.h is in paraview-dev 4.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkTetra.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkTetra - a 3D cell that represents a tetrahedron
// .SECTION Description
// vtkTetra is a concrete implementation of vtkCell to represent a 3D
// tetrahedron. vtkTetra uses the standard isoparametric shape functions
// for a linear tetrahedron. The tetrahedron is defined by the four points
// (0-3); where (0,1,2) is the base of the tetrahedron which, using the
// right hand rule, forms a triangle whose normal points in the direction
// of the fourth point.
// .SECTION See Also
// vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge
#ifndef __vtkTetra_h
#define __vtkTetra_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkCell3D.h"
class vtkLine;
class vtkTriangle;
class vtkUnstructuredGrid;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkTetra : public vtkCell3D
{
public:
static vtkTetra *New();
vtkTypeMacro(vtkTetra,vtkCell3D);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// See vtkCell3D API for description of these methods.
virtual void GetEdgePoints(int edgeId, int* &pts);
virtual void GetFacePoints(int faceId, int* &pts);
// Description:
// See the vtkCell API for descriptions of these methods.
int GetCellType() {return VTK_TETRA;}
int GetNumberOfEdges() {return 6;}
int GetNumberOfFaces() {return 4;}
vtkCell *GetEdge(int edgeId);
vtkCell *GetFace(int faceId);
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *connectivity,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut);
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights);
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights);
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId);
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs);
virtual double *GetParametricCoords();
// Description:
// Returns the set of points that are on the boundary of the tetrahedron that
// are closest parametrically to the point specified. This may include faces,
// edges, or vertices.
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
// Description:
// Return the center of the tetrahedron in parametric coordinates.
int GetParametricCenter(double pcoords[3]);
// Description:
// Return the distance of the parametric coordinate provided to the
// cell. If inside the cell, a distance of zero is returned.
double GetParametricDistance(double pcoords[3]);
// Description:
// Compute the center of the tetrahedron,
static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3],
double center[3]);
// Description:
// Compute the circumcenter (center[3]) and radius squared (method
// return value) of a tetrahedron defined by the four points x1, x2,
// x3, and x4.
static double Circumsphere(double p1[3], double p2[3], double p3[3],
double p4[3], double center[3]);
// Description:
// Compute the center (center[3]) and radius (method return value) of
// a sphere that just fits inside the faces of a tetrahedron defined
// by the four points x1, x2, x3, and x4.
static double Insphere(double p1[3], double p2[3], double p3[3],
double p4[3], double center[3]);
// Description:
// Given a 3D point x[3], determine the barycentric coordinates of the point.
// Barycentric coordinates are a natural coordinate system for simplices that
// express a position as a linear combination of the vertices. For a
// tetrahedron, there are four barycentric coordinates (because there are
// four vertices), and the sum of the coordinates must equal 1. If a
// point x is inside a simplex, then all four coordinates will be strictly
// positive. If three coordinates are zero (so the fourth =1), then the
// point x is on a vertex. If two coordinates are zero, the point x is on an
// edge (and so on). In this method, you must specify the vertex coordinates
// x1->x4. Returns 0 if tetrahedron is degenerate.
static int BarycentricCoords(double x[3], double x1[3], double x2[3],
double x3[3], double x4[3], double bcoords[4]);
// Description:
// Compute the volume of a tetrahedron defined by the four points
// p1, p2, p3, and p4.
static double ComputeVolume(double p1[3], double p2[3], double p3[3],
double p4[3]);
// Description:
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives. Returns 0 if no inverse exists.
int JacobianInverse(double **inverse, double derivs[12]);
// Description:
// @deprecated Replaced by vtkTetra::InterpolateFunctions as of VTK 5.2
static void InterpolationFunctions(double pcoords[3], double weights[4]);
// Description:
// @deprecated Replaced by vtkTetra::InterpolateDerivs as of VTK 5.2
static void InterpolationDerivs(double pcoords[3], double derivs[12]);
// Description:
// Compute the interpolation functions/derivatives
// (aka shape functions/derivatives)
virtual void InterpolateFunctions(double pcoords[3], double weights[4])
{
vtkTetra::InterpolationFunctions(pcoords,weights);
}
virtual void InterpolateDerivs(double pcoords[3], double derivs[12])
{
vtkTetra::InterpolationDerivs(pcoords,derivs);
}
// Description:
// Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
// Ids are related to the cell, not to the dataset.
static int *GetEdgeArray(int edgeId);
static int *GetFaceArray(int faceId);
protected:
vtkTetra();
~vtkTetra();
vtkLine *Line;
vtkTriangle *Triangle;
private:
vtkTetra(const vtkTetra&); // Not implemented.
void operator=(const vtkTetra&); // Not implemented.
};
inline int vtkTetra::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = pcoords[2] = 0.25;
return 0;
}
#endif
|