This file is indexed.

/usr/include/paraview/vtkTransform.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkTransform.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

// .NAME vtkTransform - describes linear transformations via a 4x4 matrix
// .SECTION Description
// A vtkTransform can be used to describe the full range of linear (also
// known as affine) coordinate transformations in three dimensions,
// which are internally represented as a 4x4 homogeneous transformation
// matrix.  When you create a new vtkTransform, it is always initialized
// to the identity transformation.
// <P>The SetInput() method allows you to set another transform,
// instead of the identity transform, to be the base transformation.
// There is a pipeline mechanism to ensure that when the input is
// modified, the current transformation will be updated accordingly.
// This pipeline mechanism is also supported by the Concatenate() method.
// <P>Most of the methods for manipulating this transformation,
// e.g. Translate, Rotate, and Concatenate, can operate in either
// PreMultiply (the default) or PostMultiply mode.  In PreMultiply
// mode, the translation, concatenation, etc. will occur before any
// transformations which are represented by the current matrix.  In
// PostMultiply mode, the additional transformation will occur after
// any transformations represented by the current matrix.
// <P>This class performs all of its operations in a right handed
// coordinate system with right handed rotations. Some other graphics
// libraries use left handed coordinate systems and rotations.
// .SECTION See Also
// vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4
// vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter
// vtkImageReslice

#ifndef __vtkTransform_h
#define __vtkTransform_h

#include "vtkCommonTransformsModule.h" // For export macro
#include "vtkLinearTransform.h"

#include "vtkMatrix4x4.h" // Needed for inline methods

class VTKCOMMONTRANSFORMS_EXPORT vtkTransform : public vtkLinearTransform
{
 public:
  static vtkTransform *New();
  vtkTypeMacro(vtkTransform,vtkLinearTransform);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Set the transformation to the identity transformation.  If
  // the transform has an Input, then the transformation will be
  // reset so that it is the same as the Input.
  void Identity();

  // Description:
  // Invert the transformation.  This will also set a flag so that
  // the transformation will use the inverse of its Input, if an Input
  // has been set.
  void Inverse();

  // Description:
  // Create a translation matrix and concatenate it with the current
  // transformation according to PreMultiply or PostMultiply semantics.
  void Translate(double x, double y, double z) {
    this->Concatenation->Translate(x,y,z); };
  void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); };
  void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); };

  // Description:
  // Create a rotation matrix and concatenate it with the current
  // transformation according to PreMultiply or PostMultiply semantics.
  // The angle is in degrees, and (x,y,z) specifies the axis that the
  // rotation will be performed around.
  void RotateWXYZ(double angle, double x, double y, double z) {
    this->Concatenation->Rotate(angle,x,y,z); };
  void RotateWXYZ(double angle, const double axis[3]) {
    this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
  void RotateWXYZ(double angle, const float axis[3]) {
    this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };

  // Description:
  // Create a rotation matrix about the X, Y, or Z axis and concatenate
  // it with the current transformation according to PreMultiply or
  // PostMultiply semantics.  The angle is expressed in degrees.
  void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); };
  void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); };
  void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); };

  // Description:
  // Create a scale matrix (i.e. set the diagonal elements to x, y, z)
  // and concatenate it with the current transformation according to
  // PreMultiply or PostMultiply semantics.
  void Scale(double x, double y, double z) {
    this->Concatenation->Scale(x,y,z); };
  void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); };
  void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); };

  // Description:
  // Set the current matrix directly.  This actually calls Identity(),
  // followed by Concatenate(matrix).
  void SetMatrix(vtkMatrix4x4 *matrix) {
    this->SetMatrix(*matrix->Element); };
  void SetMatrix(const double elements[16]) {
    this->Identity(); this->Concatenate(elements); };

  // Description:
  // Concatenates the matrix with the current transformation according
  // to PreMultiply or PostMultiply semantics.
  void Concatenate(vtkMatrix4x4 *matrix) {
    this->Concatenate(*matrix->Element); };
  void Concatenate(const double elements[16]) {
    this->Concatenation->Concatenate(elements); };

  // Description:
  // Concatenate the specified transform with the current transformation
  // according to PreMultiply or PostMultiply semantics.
  // The concatenation is pipelined, meaning that if any of the
  // transformations are changed, even after Concatenate() is called,
  // those changes will be reflected when you call TransformPoint().
  void Concatenate(vtkLinearTransform *transform);

  // Description:
  // Sets the internal state of the transform to PreMultiply. All subsequent
  // operations will occur before those already represented in the
  // current transformation.  In homogeneous matrix notation, M = M*A where
  // M is the current transformation matrix and A is the applied matrix.
  // The default is PreMultiply.
  void PreMultiply() {
    if (this->Concatenation->GetPreMultiplyFlag()) { return; }
    this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); };

  // Description:
  // Sets the internal state of the transform to PostMultiply. All subsequent
  // operations will occur after those already represented in the
  // current transformation.  In homogeneous matrix notation, M = A*M where
  // M is the current transformation matrix and A is the applied matrix.
  // The default is PreMultiply.
  void PostMultiply()  {
    if (!this->Concatenation->GetPreMultiplyFlag()) { return; }
    this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); };

  // Description:
  // Get the total number of transformations that are linked into this
  // one via Concatenate() operations or via SetInput().
  int GetNumberOfConcatenatedTransforms() {
    return this->Concatenation->GetNumberOfTransforms() +
      (this->Input == NULL ? 0 : 1); };

  // Description
  // Get one of the concatenated transformations as a vtkAbstractTransform.
  // These transformations are applied, in series, every time the
  // transformation of a coordinate occurs.  This method is provided
  // to make it possible to decompose a transformation into its
  // constituents, for example to save a transformation to a file.
  vtkLinearTransform *GetConcatenatedTransform(int i)
    {
      vtkAbstractTransform *t;
      if (this->Input == NULL)
        {
        t=this->Concatenation->GetTransform(i);
        }
      else if (i < this->Concatenation->GetNumberOfPreTransforms())
        {
        t=this->Concatenation->GetTransform(i);
        }
      else if (i > this->Concatenation->GetNumberOfPreTransforms())
        {
        t=this->Concatenation->GetTransform(i-1);
        }
      else if (this->GetInverseFlag())
        {
        t=this->Input->GetInverse();
        }
      else
        {
        t=this->Input;
        }
      return static_cast<vtkLinearTransform *>(t);
    }

  // Description:
  // Get the x, y, z orientation angles from the transformation matrix as an
  // array of three floating point values.
  void GetOrientation(double orient[3]);
  void GetOrientation(float orient[3]) {
    double temp[3]; this->GetOrientation(temp);
    orient[0] = static_cast<float>(temp[0]);
    orient[1] = static_cast<float>(temp[1]);
    orient[2] = static_cast<float>(temp[2]); };
  double *GetOrientation() {
    this->GetOrientation(this->ReturnValue); return this->ReturnValue; };

  // Description:
  // Convenience function to get the x, y, z orientation angles from
  // a transformation matrix as an array of three floating point values.
  static void GetOrientation(double orient[3], vtkMatrix4x4 *matrix);

  // Description:
  // Return the wxyz angle+axis representing the current orientation.
  // The angle is in degrees and the axis is a unit vector.
  void GetOrientationWXYZ(double wxyz[4]);
  void GetOrientationWXYZ(float wxyz[4]) {
    double temp[4]; this->GetOrientationWXYZ(temp);
    wxyz[0]=static_cast<float>(temp[0]);
    wxyz[1]=static_cast<float>(temp[1]);
    wxyz[2]=static_cast<float>(temp[2]);
    wxyz[3]=static_cast<float>(temp[3]);};
  double *GetOrientationWXYZ() {
    this->GetOrientationWXYZ(this->ReturnValue); return this->ReturnValue; };

  // Description:
  // Return the position from the current transformation matrix as an array
  // of three floating point numbers. This is simply returning the translation
  // component of the 4x4 matrix.
  void GetPosition(double pos[3]);
  void GetPosition(float pos[3]) {
    double temp[3]; this->GetPosition(temp);
    pos[0] = static_cast<float>(temp[0]);
    pos[1] = static_cast<float>(temp[1]);
    pos[2] = static_cast<float>(temp[2]); };
  double *GetPosition() {
    this->GetPosition(this->ReturnValue); return this->ReturnValue; };

  // Description:
  // Return the scale factors of the current transformation matrix as
  // an array of three float numbers.  These scale factors are not necessarily
  // about the x, y, and z axes unless unless the scale transformation was
  // applied before any rotations.
  void GetScale(double scale[3]);
  void GetScale(float scale[3]) {
    double temp[3]; this->GetScale(temp);
    scale[0] = static_cast<float>(temp[0]);
    scale[1] = static_cast<float>(temp[1]);
    scale[2] = static_cast<float>(temp[2]); };
  double *GetScale() {
    this->GetScale(this->ReturnValue); return this->ReturnValue; };

  // Description:
  // Return a matrix which is the inverse of the current transformation
  // matrix.
  void GetInverse(vtkMatrix4x4 *inverse);

  // Description:
  // Return a matrix which is the transpose of the current transformation
  // matrix.  This is equivalent to the inverse if and only if the
  // transformation is a pure rotation with no translation or scale.
  void GetTranspose(vtkMatrix4x4 *transpose);

  // Description:
  // Set the input for this transformation.  This will be used as the
  // base transformation if it is set.  This method allows you to build
  // a transform pipeline: if the input is modified, then this transformation
  // will automatically update accordingly.  Note that the InverseFlag,
  // controlled via Inverse(), determines whether this transformation
  // will use the Input or the inverse of the Input.
  void SetInput(vtkLinearTransform *input);
  vtkLinearTransform *GetInput() { return this->Input; };

  // Description:
  // Get the inverse flag of the transformation.  This controls
  // whether it is the Input or the inverse of the Input that
  // is used as the base transformation.  The InverseFlag is
  // flipped every time Inverse() is called.  The InverseFlag
  // is off when a transform is first created.
  int GetInverseFlag() {
    return this->Concatenation->GetInverseFlag(); };

  // Description:
  // Pushes the current transformation onto the transformation stack.
  void Push() { if (this->Stack == NULL) {
                    this->Stack = vtkTransformConcatenationStack::New(); }
                this->Stack->Push(&this->Concatenation);
                this->Modified(); };

  // Description:
  // Deletes the transformation on the top of the stack and sets the top
  // to the next transformation on the stack.
  void Pop() { if (this->Stack == NULL) { return; }
               this->Stack->Pop(&this->Concatenation);
               this->Modified(); };

  // Description:
  // Check for self-reference.  Will return true if concatenating
  // with the specified transform, setting it to be our inverse,
  // or setting it to be our input will create a circular reference.
  // CircuitCheck is automatically called by SetInput(), SetInverse(),
  // and Concatenate(vtkXTransform *).  Avoid using this function,
  // it is experimental.
  int CircuitCheck(vtkAbstractTransform *transform);

  // Return an inverse transform which will always update itself
  // to match this transform.
  vtkAbstractTransform *GetInverse() {
    return vtkLinearTransform::GetInverse(); }

  // Description:
  // Make a new transform of the same type.
  vtkAbstractTransform *MakeTransform();

  // Description:
  // Override GetMTime to account for input and concatenation.
  unsigned long GetMTime();

  // Description:
  // Use this method only if you wish to compute the transformation in
  // homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint().
  // This method calls this->GetMatrix()->MultiplyPoint().
  void MultiplyPoint(const float in[4], float out[4]) {
    this->GetMatrix()->MultiplyPoint(in,out);};
  void MultiplyPoint(const double in[4], double out[4]) {
    this->GetMatrix()->MultiplyPoint(in,out);};

protected:
  vtkTransform ();
  ~vtkTransform ();

  void InternalDeepCopy(vtkAbstractTransform *t);

  void InternalUpdate();

  vtkLinearTransform *Input;
  vtkTransformConcatenation *Concatenation;
  vtkTransformConcatenationStack *Stack;

  // this allows us to check whether people have been fooling
  // around with our matrix
  unsigned long MatrixUpdateMTime;

  float Point[4];
  double DoublePoint[4];
  double ReturnValue[4];
private:
  vtkTransform (const vtkTransform&);  // Not implemented
  void operator=(const vtkTransform&);  // Not implemented
};

#endif