This file is indexed.

/usr/include/paraview/vtkTriangle.h is in paraview-dev 4.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkTriangle.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkTriangle - a cell that represents a triangle
// .SECTION Description
// vtkTriangle is a concrete implementation of vtkCell to represent a triangle
// located in 3-space.

#ifndef __vtkTriangle_h
#define __vtkTriangle_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkCell.h"

#include "vtkMath.h" // Needed for inline methods

class vtkLine;
class vtkQuadric;
class vtkIncrementalPointLocator;

class VTKCOMMONDATAMODEL_EXPORT vtkTriangle : public vtkCell
{
public:
  static vtkTriangle *New();
  vtkTypeMacro(vtkTriangle,vtkCell);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Get the edge specified by edgeId (range 0 to 2) and return that edge's
  // coordinates.
  vtkCell *GetEdge(int edgeId);

  // Description:
  // See the vtkCell API for descriptions of these methods.
  int GetCellType() {return VTK_TRIANGLE;};
  int GetCellDimension() {return 2;};
  int GetNumberOfEdges() {return 3;};
  int GetNumberOfFaces() {return 0;};
  vtkCell *GetFace(int) {return 0;};
  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
  void Contour(double value, vtkDataArray *cellScalars,
               vtkIncrementalPointLocator *locator, vtkCellArray *verts,
               vtkCellArray *lines, vtkCellArray *polys,
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3],
                       double& dist2, double *weights);
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights);
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
  void Derivatives(int subId, double pcoords[3], double *values,
                   int dim, double *derivs);
  virtual double *GetParametricCoords();

  // Description:
  // A convenience function to compute the area of a vtkTriangle.
  double ComputeArea();

  // Description:
  // Clip this triangle using scalar value provided. Like contouring, except
  // that it cuts the triangle to produce other triangles.
  void Clip(double value, vtkDataArray *cellScalars,
            vtkIncrementalPointLocator *locator, vtkCellArray *polys,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut);

  // Description:
  // @deprecated Replaced by vtkTriangle::InterpolateFunctions as of VTK 5.2
  static void InterpolationFunctions(double pcoords[3], double sf[3]);
  // Description:
  // @deprecated Replaced by vtkTriangle::InterpolateDerivs as of VTK 5.2
  static void InterpolationDerivs(double pcoords[3], double derivs[6]);
  // Description:
  // Compute the interpolation functions/derivatives
  // (aka shape functions/derivatives)
  virtual void InterpolateFunctions(double pcoords[3], double sf[3])
    {
    vtkTriangle::InterpolationFunctions(pcoords,sf);
    }
  virtual void InterpolateDerivs(double pcoords[3], double derivs[6])
    {
    vtkTriangle::InterpolationDerivs(pcoords,derivs);
    }
  // Description:
  // Return the ids of the vertices defining edge (`edgeId`).
  // Ids are related to the cell, not to the dataset.
  int *GetEdgeArray(int edgeId);

  // Description:
  // Plane intersection plus in/out test on triangle. The in/out test is
  // performed using tol as the tolerance.
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId);

  // Description:
  // Return the center of the triangle in parametric coordinates.
  int GetParametricCenter(double pcoords[3]);

  // Description:
  // Return the distance of the parametric coordinate provided to the
  // cell. If inside the cell, a distance of zero is returned.
  double GetParametricDistance(double pcoords[3]);

  // Description:
  // Compute the center of the triangle.
  static void TriangleCenter(double p1[3], double p2[3], double p3[3],
                             double center[3]);

  // Description:
  // Compute the area of a triangle in 3D.
  // See also vtkTriangle::ComputeArea()
  static double TriangleArea(double p1[3], double p2[3], double p3[3]);

  // Description:
  // Compute the circumcenter (center[3]) and radius squared (method
  // return value) of a triangle defined by the three points x1, x2,
  // and x3. (Note that the coordinates are 2D. 3D points can be used
  // but the z-component will be ignored.)
  static double Circumcircle(double  p1[2], double p2[2], double p3[2],
                            double center[2]);

  // Description:
  // Given a 2D point x[2], determine the barycentric coordinates of the point.
  // Barycentric coordinates are a natural coordinate system for simplices that
  // express a position as a linear combination of the vertices. For a
  // triangle, there are three barycentric coordinates (because there are
  // three vertices), and the sum of the coordinates must equal 1. If a
  // point x is inside a simplex, then all three coordinates will be strictly
  // positive.  If two coordinates are zero (so the third =1), then the
  // point x is on a vertex. If one coordinates are zero, the point x is on an
  // edge. In this method, you must specify the vertex coordinates x1->x3.
  // Returns 0 if triangle is degenerate.
  static int BarycentricCoords(double x[2], double  x1[2], double x2[2],
                               double x3[2], double bcoords[3]);


  // Description:
  // Project triangle defined in 3D to 2D coordinates. Returns 0 if
  // degenerate triangle; non-zero value otherwise. Input points are x1->x3;
  // output 2D points are v1->v3.
  static int ProjectTo2D(double x1[3], double x2[3], double x3[3],
                         double v1[2], double v2[2], double v3[2]);

  // Description:
  // Compute the triangle normal from a points list, and a list of point ids
  // that index into the points list.
  static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts,
                            double n[3]);

  // Description:
  // Compute the triangle normal from three points.
  static void ComputeNormal(double v1[3], double v2[3], double v3[3], double n[3]);

  // Description:
  // Compute the (unnormalized) triangle normal direction from three points.
  static void ComputeNormalDirection(double v1[3], double v2[3], double v3[3],
                                     double n[3]);

  // Description:
  // Given a point x, determine whether it is inside (within the
  // tolerance squared, tol2) the triangle defined by the three
  // coordinate values p1, p2, p3. Method is via comparing dot products.
  // (Note: in current implementation the tolerance only works in the
  // neighborhood of the three vertices of the triangle.
  static int PointInTriangle(double x[3], double x1[3],
                             double x2[3], double x3[3],
                             double tol2);

  // Description:
  // Calculate the error quadric for this triangle.  Return the
  // quadric as a 4x4 matrix or a vtkQuadric.  (from Peter
  // Lindstrom's Siggraph 2000 paper, "Out-of-Core Simplification of
  // Large Polygonal Models")
  static void ComputeQuadric(double x1[3], double x2[3], double x3[3],
                             double quadric[4][4]);
  static void ComputeQuadric(double x1[3], double x2[3], double x3[3],
                             vtkQuadric *quadric);


protected:
  vtkTriangle();
  ~vtkTriangle();

  vtkLine *Line;

private:
  vtkTriangle(const vtkTriangle&);  // Not implemented.
  void operator=(const vtkTriangle&);  // Not implemented.
};

//----------------------------------------------------------------------------
inline int vtkTriangle::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = 1./3; pcoords[2] = 0.0;
  return 0;
}

//----------------------------------------------------------------------------
inline void vtkTriangle::ComputeNormalDirection(double v1[3], double v2[3],
                                       double v3[3], double n[3])
{
  double ax, ay, az, bx, by, bz;

  // order is important!!! maintain consistency with triangle vertex order
  ax = v3[0] - v2[0]; ay = v3[1] - v2[1]; az = v3[2] - v2[2];
  bx = v1[0] - v2[0]; by = v1[1] - v2[1]; bz = v1[2] - v2[2];

  n[0] = (ay * bz - az * by);
  n[1] = (az * bx - ax * bz);
  n[2] = (ax * by - ay * bx);
}

//----------------------------------------------------------------------------
inline void vtkTriangle::ComputeNormal(double v1[3], double v2[3],
                                       double v3[3], double n[3])
{
  double length;

  vtkTriangle::ComputeNormalDirection(v1, v2, v3, n);

  if ( (length = sqrt((n[0]*n[0] + n[1]*n[1] + n[2]*n[2]))) != 0.0 )
    {
    n[0] /= length;
    n[1] /= length;
    n[2] /= length;
    }
}

//----------------------------------------------------------------------------
inline void vtkTriangle::TriangleCenter(double p1[3], double p2[3],
                                        double p3[3], double center[3])
{
  center[0] = (p1[0]+p2[0]+p3[0]) / 3.0;
  center[1] = (p1[1]+p2[1]+p3[1]) / 3.0;
  center[2] = (p1[2]+p2[2]+p3[2]) / 3.0;
}

//----------------------------------------------------------------------------
inline double vtkTriangle::TriangleArea(double p1[3], double p2[3], double p3[3])
{
  double a,b,c;
  a = vtkMath::Distance2BetweenPoints(p1,p2);
  b = vtkMath::Distance2BetweenPoints(p2,p3);
  c = vtkMath::Distance2BetweenPoints(p3,p1);
  return (0.25* sqrt(fabs(4.0*a*c - (a-b+c)*(a-b+c))));
}

#endif