/usr/lib/perl5/PDL/Basic.pm is in pdl 1:2.007-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | =head1 NAME
PDL::Basic -- Basic utility functions for PDL
=head1 DESCRIPTION
This module contains basic utility functions for
creating and manipulating piddles. Most of these functions
are simplified interfaces to the more flexible functions in
the modules
L<PDL::Primitive|PDL::Primitive>
and
L<PDL::Slices|PDL::Slices>.
=head1 SYNOPSIS
use PDL::Basic;
=head1 FUNCTIONS
=cut
package PDL::Basic;
use PDL::Core '';
use PDL::Types;
use PDL::Exporter;
use PDL::Options;
@ISA=qw/PDL::Exporter/;
@EXPORT_OK = qw/ ndcoords rvals axisvals allaxisvals xvals yvals zvals sec ins hist whist
similar_assign transpose sequence xlinvals ylinvals
zlinvals axislinvals/;
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
# Exportable functions
*axisvals = \&PDL::axisvals;
*allaxisvals = \&PDL::allaxisvals;
*sec = \&PDL::sec;
*ins = \&PDL::ins;
*hist = \&PDL::hist;
*whist = \&PDL::whist;
*similar_assign = \&PDL::similar_assign;
*transpose = \&PDL::transpose;
*xlinvals = \&PDL::xlinvals;
*ylinvals = \&PDL::ylinvals;
*zlinvals = \&PDL::zlinvals;
=head2 xvals
=for ref
Fills a piddle with X index values. Uses similar specifications to
L<zeroes|zeroes> and L<new_from_specification|new_from_specification>.
CAVEAT:
If you use the single argument piddle form (top row
in the usage table) the output will have the same type as the input;
this may give surprising results if, e.g., you have a byte array with
a dimension of size greater than 256. To force a type, use the third form.
=for usage
$x = xvals($somearray);
$x = xvals([OPTIONAL TYPE],$nx,$ny,$nz...);
$x = xvals([OPTIONAL TYPE], $somarray->dims);
etc. see L<zeroes|PDL::Core/zeroes>.
=for example
pdl> print xvals zeroes(5,10)
[
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
]
=head2 yvals
=for ref
Fills a piddle with Y index values. See the CAVEAT for L<xvals|xvals>.
=for usage
$x = yvals($somearray); yvals(inplace($somearray));
$x = yvals([OPTIONAL TYPE],$nx,$ny,$nz...);
etc. see L<zeroes|PDL::Core/zeroes>.
=for example
pdl> print yvals zeroes(5,10)
[
[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]
[3 3 3 3 3]
[4 4 4 4 4]
[5 5 5 5 5]
[6 6 6 6 6]
[7 7 7 7 7]
[8 8 8 8 8]
[9 9 9 9 9]
]
=head2 zvals
=for ref
Fills a piddle with Z index values. See the CAVEAT for L<xvals|xvals>.
=for usage
$x = zvals($somearray); zvals(inplace($somearray));
$x = zvals([OPTIONAL TYPE],$nx,$ny,$nz...);
etc. see L<zeroes|PDL::Core/zeroes>.
=for example
pdl> print zvals zeroes(3,4,2)
[
[
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
]
[
[1 1 1]
[1 1 1]
[1 1 1]
[1 1 1]
]
]
=head2 xlinvals
=for ref
X axis values between endpoints (see L<xvals|/xvals>).
=for usage
$a = zeroes(100,100);
$x = $a->xlinvals(0.5,1.5);
$y = $a->ylinvals(-2,-1);
# calculate Z for X between 0.5 and 1.5 and
# Y between -2 and -1.
$z = f($x,$y);
C<xlinvals>, C<ylinvals> and C<zlinvals> return a piddle with the same shape
as their first argument and linearly scaled values between the two other
arguments along the given axis.
=head2 ylinvals
=for ref
Y axis values between endpoints (see L<yvals|/yvals>).
See L<xlinvals|/xlinvals> for more information.
=head2 zlinvals
=for ref
Z axis values between endpoints (see L<zvals|/zvals>).
See L<xlinvals|/xlinvals> for more information.
=head2 xlogvals
=for ref
X axis values logarithmically spaced between endpoints (see L<xvals|/xvals>).
=for usage
$a = zeroes(100,100);
$x = $a->xlogvals(1e-6,1e-3);
$y = $a->ylinvals(1e-4,1e3);
# calculate Z for X between 1e-6 and 1e-3 and
# Y between 1e-4 and 1e3.
$z = f($x,$y);
C<xlogvals>, C<ylogvals> and C<zlogvals> return a piddle with the same shape
as their first argument and logarithmically scaled values between the two other
arguments along the given axis.
=head2 ylogvals
=for ref
Y axis values logarithmically spaced between endpoints (see L<yvals|/yvals>).
See L<xlogvals|/xlogvals> for more information.
=head2 zlogvals
=for ref
Z axis values logarithmically spaced between endpoints (see L<zvals|/zvals>).
See L<xlogvals|/xlogvals> for more information.
=cut
# Conveniently named interfaces to axisvals()
sub xvals { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->xvals : PDL->xvals(@_) }
sub yvals { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->yvals : PDL->yvals(@_) }
sub zvals { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->zvals : PDL->zvals(@_) }
sub PDL::xvals {
my $class = shift;
my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
axisvals2($pdl,0);
return $pdl;
}
sub PDL::yvals {
my $class = shift;
my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
axisvals2($pdl,1);
return $pdl;
}
sub PDL::zvals {
my $class = shift;
my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
axisvals2($pdl,2);
return $pdl;
}
sub PDL::xlinvals {
my $dim = $_[0]->getdim(0);
barf "Must have at least two elements in dimension for xlinvals"
if $dim <= 1;
return $_[0]->xvals * (($_[2] - $_[1]) / ($dim-1)) + $_[1];
}
sub PDL::ylinvals {
my $dim = $_[0]->getdim(1);
barf "Must have at least two elements in dimension for ylinvals"
if $dim <= 1;
return $_[0]->yvals * (($_[2] - $_[1]) / ($dim-1)) + $_[1];
}
sub PDL::zlinvals {
my $dim = $_[0]->getdim(2);
barf "Must have at least two elements in dimension for zlinvals"
if $dim <= 1;
return $_[0]->zvals * (($_[2] - $_[1]) / ($dim-1)) + $_[1];
}
sub PDL::xlogvals {
my $dim = $_[0]->getdim(0);
barf "Must have at least two elements in dimension for xlogvals"
if $dim <= 1;
my ($xmin,$xmax) = @_[1,2];
barf "xmin and xmax must be positive"
if $xmin <= 0 || $xmax <= 0;
my ($lxmin,$lxmax) = (log($xmin), log($xmax));
return exp($_[0]->xvals * (($lxmax - $lxmin) / ($dim-1)) + $lxmin);
}
sub PDL::ylogvals {
my $dim = $_[0]->getdim(1);
barf "Must have at least two elements in dimension for xlogvals"
if $dim <= 1;
my ($xmin,$xmax) = @_[1,2];
barf "xmin and xmax must be positive"
if $xmin <= 0 || $xmax <= 0;
my ($lxmin,$lxmax) = (log($xmin), log($xmax));
return exp($_[0]->yvals * (($lxmax - $lxmin) / ($dim-1)) + $lxmin);
}
sub PDL::zlogvals {
my $dim = $_[0]->getdim(2);
barf "Must have at least two elements in dimension for xlogvals"
if $dim <= 1;
my ($xmin,$xmax) = @_[1,2];
barf "xmin and xmax must be positive"
if $xmin <= 0 || $xmax <= 0;
my ($lxmin,$lxmax) = (log($xmin), log($xmax));
return exp($_[0]->zvals * (($lxmax - $lxmin) / ($dim-1)) + $lxmin);
}
=head2 allaxisvals
=for ref
Synonym for L<ndcoords|ndcoords> - enumerates all coordinates in a
PDL or dim list, adding an extra dim on the front to accomodate
the vector coordinate index (the form expected by L<indexND|indexND>,
L<range|range>, and L<interpND|interpND>). See L<ndcoords|ndcoords> for more detail.
=for usage
$indices = allaxisvals($pdl);
$indices = allaxisvals(@dimlist);
$indices = allaxisvals($type,@dimlist);
=cut
=head2 ndcoords
=for ref
Enumerate pixel coordinates for an N-D piddle
Returns an enumerated list of coordinates suitable for use in
L<indexND|PDL::Slices/indexND> or L<range|PDL::Slices/range>: you feed
in a dimension list and get out a piddle whose 0th dimension runs over
dimension index and whose 1st through Nth dimensions are the
dimensions given in the input. If you feed in a piddle instead of a
perl list, then the dimension list is used, as in L<xvals|xvals> etc.
Unlike L<xvals|xvals> etc., if you supply a piddle input, you get
out a piddle of the default piddle type: double. This causes less
surprises than the previous default of keeping the data type of
the input piddle since that rarely made sense in most usages.
=for usage
$indices = ndcoords($pdl);
$indices = ndcoords(@dimlist);
$indices = ndcoords($type,@dimlist);
=for example
pdl> print ndcoords(2,3)
[
[
[0 0]
[1 0]
]
[
[0 1]
[1 1]
]
[
[0 2]
[1 2]
]
]
pdl> $a = zeroes(byte,2,3); # $a is a 2x3 byte piddle
pdl> $b = ndcoords($a); # $b inherits $a's type
pdl> $c = ndcoords(long,$a->dims); # $c is a long piddle, same dims as $b
pdl> help $b;
This variable is Byte D [2,2,3] P 0.01Kb
pdl> help $c;
This variable is Long D [2,2,3] P 0.05Kb
=cut
sub PDL::ndcoords {
my $type;
if(ref $_[0] eq 'PDL::Type') {
$type = shift;
}
my @dims = (ref $_[0]) ? (shift)->dims : @_;
my @d = @dims;
unshift(@d,scalar(@dims));
unshift(@d,$type) if defined($type);
$out = PDL->zeroes(@d);
for my $d(0..$#dims) {
my $a = $out->index($d)->mv($d,0);
$a .= xvals($a);
}
$out;
}
*ndcoords = \&PDL::ndcoords;
*allaxisvals = \&PDL::ndcoords;
*PDL::allaxisvals = \&PDL::ndcoords;
=head2 hist
=for ref
Create histogram of a piddle
=for usage
$hist = hist($data);
($xvals,$hist) = hist($data);
or
$hist = hist($data,$min,$max,$step);
($xvals,$hist) = hist($data,[$min,$max,$step]);
If C<hist> is run in list context, C<$xvals> gives the
computed bin centres as double values.
A nice idiom (with
L<PDL::Graphics::PGPLOT|PDL::Graphics::PGPLOT>) is
bin hist $data; # Plot histogram
=for example
pdl> p $y
[13 10 13 10 9 13 9 12 11 10 10 13 7 6 8 10 11 7 12 9 11 11 12 6 12 7]
pdl> $h = hist $y,0,20,1; # hist with step 1, min 0 and 20 bins
pdl> p $h
[0 0 0 0 0 0 2 3 1 3 5 4 4 4 0 0 0 0 0 0]
=cut
sub PDL::hist {
my $usage = "\n" . ' Usage: $hist = hist($data)' . "\n" .
' $hist = hist($data,$min,$max,$step)' . "\n" .
' ($xvals,$hist) = hist($data)' . "\n" .
' ($xvals,$hist) = hist($data,$min,$max,$step)' . "\n" ;
barf($usage) if $#_<0;
my($pdl,$min,$max,$step)=@_;
my $xvals;
($step, $min, $bins, $xvals) =
_hist_bin_calc($pdl, $min, $max, $step, wantarray());
PDL::Primitive::histogram($pdl->clump(-1),(my $hist = null),
$step,$min,$bins);
return wantarray() ? ($xvals,$hist) : $hist;
}
=head2 whist
=for ref
Create a weighted histogram of a piddle
=for usage
$hist = whist($data, $wt, [$min,$max,$step]);
($xvals,$hist) = whist($data, $wt, [$min,$max,$step]);
If requested, C<$xvals> gives the computed bin centres
as type double values. C<$data> and C<$wt> should have
the same dimensionality and extents.
A nice idiom (with
L<PDL::Graphics::PGPLOT|PDL::Graphics::PGPLOT>) is
bin whist $data, $wt; # Plot histogram
=for example
pdl> p $y
[13 10 13 10 9 13 9 12 11 10 10 13 7 6 8 10 11 7 12 9 11 11 12 6 12 7]
pdl> $wt = grandom($y->nelem)
pdl> $h = whist $y, $wt, 0, 20, 1 # hist with step 1, min 0 and 20 bins
pdl> p $h
[0 0 0 0 0 0 -0.49552342 1.7987439 0.39450696 4.0073722 -2.6255299 -2.5084501 2.6458365 4.1671676 0 0 0 0 0 0]
=cut
sub PDL::whist {
barf('Usage: ([$xvals],$hist) = whist($data,$wt,[$min,$max,$step])')
if @_ < 2;
my($pdl,$wt,$min,$max,$step)=@_;
my $xvals;
($step, $min, $bins, $xvals) =
_hist_bin_calc($pdl, $min, $max, $step, wantarray());
PDL::Primitive::whistogram($pdl->clump(-1),$wt->clump(-1),
(my $hist = null), $step, $min, $bins);
return wantarray() ? ($xvals,$hist) : $hist;
}
sub _hist_bin_calc {
my($pdl,$min,$max,$step,$wantarray)=@_;
$min = $pdl->min() unless defined $min;
$max = $pdl->max() unless defined $max;
my $ntype = $pdl->get_datatype;
barf "empty piddle, no values to work with" if $pdl->nelem == 0;
unless (defined $step) {
my $defbins = sqrt($pdl->nelem);
$defbins = ($defbins>100) ? 100 : $defbins;
$step = ($max-$min)/$defbins;
}
barf "step is zero (or all data equal to one value)" if $step == 0;
my $bins = int(($max-$min)/$step+0.5);
print "hist with step $step, min $min and $bins bins\n"
if $PDL::debug;
# Need to use double for $xvals here
my $xvals = $min + $step/2 + sequence(PDL::Core::double,$bins)*$step if $wantarray;
return ( $step, $min, $bins, $xvals );
}
=head2 sequence
=for ref
Create array filled with a sequence of values
=for usage
$a = sequence($b); $a = sequence [OPTIONAL TYPE], @dims;
etc. see L<zeroes|PDL::Core/zeroes>.
=for example
pdl> p sequence(10)
[0 1 2 3 4 5 6 7 8 9]
pdl> p sequence(3,4)
[
[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]
]
=cut
sub sequence { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->sequence : PDL->sequence(@_) }
sub PDL::sequence {
my $class = shift;
my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
my $bar = $pdl->clump(-1)->inplace;
my $foo = $bar->xvals;
return $pdl;
}
=head2 rvals
=for ref
Fills a piddle with radial distance values from some centre.
=for usage
$r = rvals $piddle,{OPTIONS};
$r = rvals [OPTIONAL TYPE],$nx,$ny,...{OPTIONS};
=for options
Options:
Centre => [$x,$y,$z...] # Specify centre
Center => [$x,$y.$z...] # synonym.
Squared => 1 # return distance squared (i.e., don't take the square root)
=for example
pdl> print rvals long,7,7,{Centre=>[2,2]}
[
[2 2 2 2 2 3 4]
[2 1 1 1 2 3 4]
[2 1 0 1 2 3 4]
[2 1 1 1 2 3 4]
[2 2 2 2 2 3 4]
[3 3 3 3 3 4 5]
[4 4 4 4 4 5 5]
]
If C<Center> is not specified, the midpoint for a given dimension of
size C<N> is given by C< int(N/2) > so that the midpoint always falls
on an exact pixel point in the data. For dimensions of even size,
that means the midpoint is shifted by 1/2 pixel from the true center
of that dimension.
Also note that the calculation for C<rvals> for integer values
does not promote the datatype so you will have wraparound when
the value calculated for C< r**2 > is greater than the datatype
can hold. If you need exact values, be sure to use large integer
or floating point datatypes.
For a more general metric, one can define, e.g.,
sub distance {
my ($a,$centre,$f) = @_;
my ($r) = $a->allaxisvals-$centre;
$f->($r);
}
sub l1 { sumover(abs($_[0])); }
sub euclid { use PDL::Math 'pow'; pow(sumover(pow($_[0],2)),0.5); }
sub linfty { maximum(abs($_[0])); }
so now
distance($a, $centre, \&euclid);
will emulate rvals, while C<\&l1> and C<\&linfty> will generate other
well-known norms.
=cut
sub rvals { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->rvals(@_[1..$#_]) : PDL->rvals(@_) }
sub PDL::rvals { # Return radial distance from given point and offset
my $class = shift;
my $opt = pop @_ if ref($_[$#_]) eq "HASH";
my %opt = defined $opt ?
iparse( {
CENTRE => undef, # needed, otherwise centre/center handling painful
Squared => 0,
}, $opt ) : ();
my $r = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
my @pos;
@pos = @{$opt{CENTRE}} if defined $opt{CENTRE};
my $offset;
$r .= 0.0;
my $tmp = $r->copy;
my $i;
for ($i=0; $i<$r->getndims; $i++) {
$offset = (defined $pos[$i] ? $pos[$i] : int($r->getdim($i)/2));
# Note careful coding for speed and min memory footprint
PDL::Primitive::axisvalues($tmp->xchg(0,$i));
$tmp -= $offset; $tmp *= $tmp;
$r += $tmp;
}
return $opt{Squared} ? $r : $r->inplace->sqrt;
}
=head2 axisvals
=for ref
Fills a piddle with index values on Nth dimension
=for usage
$z = axisvals ($piddle, $nth);
This is the routine, for which L<xvals|/xvals>, L<yvals|/yvals> etc
are mere shorthands. C<axisvals> can be used to fill along any dimension,
using a parameter.
See also L<allaxisvals|allaxisvals>, which generates all axis values
simultaneously in a form useful for L<range|range>, L<interpND|interpND>,
L<indexND|indexND>, etc.
Note the 'from specification' style (see L<zeroes|PDL::Core/zeroes>) is
not available here, for obvious reasons.
=cut
sub PDL::axisvals {
my($this,$nth) = @_;
my $dummy = $this->new_or_inplace;
if($dummy->getndims() <= $nth) {
# This is 'kind of' consistency...
$dummy .= 0;
return $dummy;
# barf("Too few dimensions given to axisvals $nth\n");
}
my $bar = $dummy->xchg(0,$nth);
PDL::Primitive::axisvalues($bar);
return $dummy;
}
# We need this version for xvals etc to work in place
sub axisvals2 {
my($this,$nth) = @_;
my $dummy = shift;
if($dummy->getndims() <= $nth) {
# This is 'kind of' consistency...
$dummy .= 0;
return $dummy;
# barf("Too few dimensions given to axisvals $nth\n");
}
my $bar = $dummy->xchg(0,$nth);
PDL::Primitive::axisvalues($bar);
return $dummy;
}
sub PDL::sec {
my($this,@coords) = @_;
my $i; my @maps;
while($#coords > -1) {
$i = int(shift @coords) ;
push @maps, "$i:".int(shift @coords);
}
my $tmp = PDL->null;
$tmp .= $this->slice(join ',',@maps);
return $tmp;
}
sub PDL::ins {
my($this,$what,@coords) = @_;
my $w = PDL::Core::alltopdl($PDL::name,$what);
my $tmp;
if($this->is_inplace) {
$this->set_inplace(0);
} else {
$this = $this->copy;
}
($tmp = $this->slice(
(join ',',map {int($coords[$_]).":".
((int($coords[$_])+$w->getdim($_)-1)<$this->getdim($_) ?
(int($coords[$_])+$w->getdim($_)-1):$this->getdim($_))
}
0..$#coords)))
.= $w;
return $this;
}
sub PDL::similar_assign {
my($from,$to) = @_;
if((join ',',@{$from->dims}) ne (join ',',@{$to->dims})) {
barf "Similar_assign: dimensions [".
(join ',',@{$from->dims})."] and [".
(join ',',@{$to->dims})."] do not match!\n";
}
$to .= $from;
}
=head2 transpose
=for ref
transpose rows and columns.
=for usage
$b = transpose($a);
=for example
pdl> $a = sequence(3,2)
pdl> p $a
[
[0 1 2]
[3 4 5]
]
pdl> p transpose( $a )
[
[0 3]
[1 4]
[2 5]
]
=cut
sub PDL::transpose {
my($this) = @_;
if($this->getndims <= 1) {
if($this->getndims==0) {
return pdl $this->dummy(0)->dummy(0);
} else {
return pdl $this->dummy(0);
}
}
return $this->xchg(0,1);
}
1;
|