/usr/lib/perl5/PDL/GSL/INTEG.pm is in pdl 1:2.007-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::GSL::INTEG;
@EXPORT_OK = qw( gslinteg_qng gslinteg_qag gslinteg_qags gslinteg_qagp
gslinteg_qagi gslinteg_qagiu gslinteg_qagil gslinteg_qawc
gslinteg_qaws gslinteg_qawo gslinteg_qawf PDL::PP qng_meat PDL::PP qag_meat PDL::PP qags_meat PDL::PP qagp_meat PDL::PP qagi_meat PDL::PP qagiu_meat PDL::PP qagil_meat PDL::PP qawc_meat PDL::PP qaws_meat PDL::PP qawo_meat PDL::PP qawf_meat );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::GSL::INTEG ;
=head1 NAME
PDL::GSL::INTEG - PDL interface to numerical integration routines in GSL
=head1 DESCRIPTION
This is an interface to the numerical integration package present in the
GNU Scientific Library, which is an implementation of QUADPACK.
Functions are named B<gslinteg_{algorithm}> where {algorithm}
is the QUADPACK naming convention. The available functions are:
=over 3
=item gslinteg_qng: Non-adaptive Gauss-Kronrod integration
=item gslinteg_qag: Adaptive integration
=item gslinteg_qags: Adaptive integration with singularities
=item gslinteg_qagp: Adaptive integration with known singular points
=item gslinteg_qagi: Adaptive integration on infinite interval of the form (-\infty,\infty)
=item gslinteg_qagiu: Adaptive integration on infinite interval of the form (a,\infty)
=item gslinteg_qagil: Adaptive integration on infinite interval of the form (-\infty,b)
=item gslinteg_qawc: Adaptive integration for Cauchy principal values
=item gslinteg_qaws: Adaptive integration for singular functions
=item gslinteg_qawo: Adaptive integration for oscillatory functions
=item gslinteg_qawf: Adaptive integration for Fourier integrals
=back
Each algorithm computes an approximation to the integral, I,
of the function f(x)w(x), where w(x) is a weight function
(for general integrands w(x)=1). The user provides absolute
and relative error bounds (epsabs,epsrel) which specify
the following accuracy requirement:
|RESULT - I| <= max(epsabs, epsrel |I|)
The routines will fail to converge if the
error bounds are too stringent, but always return the best
approximation obtained up to that stage
All functions return the result, and estimate of the absolute
error and an error flag (which is zero if there were no problems).
You are responsible for checking for any errors, no warnings are issued
unless the option {Warn => 'y'} is specified in which case
the reason of failure will be printed.
You can nest integrals up to 20 levels. If you find yourself in
the unlikely situation that you need more, you can change the value
of 'max_nested_integrals' in the first line of the file 'FUNC.c'
and recompile.
=for ref
Please check the GSL documentation for more information.
=head1 SYNOPSIS
use PDL;
use PDL::GSL::INTEG;
my $a = 1.2;
my $b = 3.7;
my $epsrel = 0;
my $epsabs = 1e-6;
# Non adaptive integration
my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs);
# Warnings on
my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs,{Warn=>'y'});
# Adaptive integration with warnings on
my $limit = 1000;
my $key = 5;
my ($res,$abserr,$ierr) = gslinteg_qag(\&myf,$a,$b,$epsrel,
$epsabs,$limit,$key,{Warn=>'y'});
sub myf{
my ($x) = @_;
return exp(-$x**2);
}
=head1 FUNCTIONS
=head2 gslinteg_qng() -- Non-adaptive Gauss-Kronrod integration
This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point
integration rules in succession until an estimate of the integral of f over ($a,$b)
is achieved within the desired absolute and relative error limits, $epsabs and $epsrel.
It is meant for fast integration of smooth functions. It returns an array with the
result, an estimate of the absolute error, an error flag and the number of function
evaluations performed.
=for usage
Usage:
($res,$abserr,$ierr,$neval) = gslinteg_qng($function_ref,$a,$b,
$epsrel,$epsabs,[{Warn => $warn}]);
=for example
Example:
my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9);
# with warnings on
my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9,{Warn => 'y'});
sub f{
my ($x) = @_;
return ($x**2.6)*log(1.0/$x);
}
=head2 gslinteg_qag() -- Adaptive integration
This function applies an integration rule adaptively until an estimate of
the integral of f over ($a,$b) is achieved within the desired absolute and
relative error limits, $epsabs and $epsrel. On each iteration the adaptive
integration strategy bisects the interval with the largest error estimate;
the maximum number of allowed subdivisions is given by the parameter $limit.
The integration rule is determined by the
value of $key, which has to be one of (1,2,3,4,5,6) and correspond to
the 15, 21, 31, 41, 51 and 61 point Gauss-Kronrod rules respectively.
It returns an array with the result, an estimate of the absolute error
and an error flag.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qag($function_ref,$a,$b,$epsrel,
$epsabs,$limit,$key,[{Warn => $warn}]);
=for example
Example:
my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1);
# with warnings on
my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1,{Warn => 'y'});
sub f{
my ($x) = @_;
return ($x**2.6)*log(1.0/$x);
}
=head2 gslinteg_qags() -- Adaptive integration with singularities
This function applies the Gauss-Kronrod 21-point integration rule
adaptively until an estimate of the integral of f over ($a,$b) is
achieved within the desired absolute and relative error limits,
$epsabs and $epsrel. The algorithm is such that it
accelerates the convergence of the integral in the presence of
discontinuities and integrable singularities.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qags($function_ref,$a,$b,$epsrel,
$epsabs,$limit,[{Warn => $warn}]);
=for example
Example:
my ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000,{Warn => 'y'});
sub f{
my ($x) = @_;
return ($x)*log(1.0/$x);
}
=head2 gslinteg_qagp() -- Adaptive integration with known singular points
This function applies the adaptive integration algorithm used by
gslinteg_qags taking into account the location of singular points
until an estimate of
the integral of f over ($a,$b) is achieved within the desired absolute and
relative error limits, $epsabs and $epsrel.
Singular points are supplied in the piddle $points, whose endpoints
determine the integration range.
So, for example, if the function has singular points at x_1 and x_2 and the
integral is desired from a to b (a < x_1 < x_2 < b), $points = pdl(a,x_1,x_2,b).
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qagp($function_ref,$points,$epsabs,
$epsrel,$limit,[{Warn => $warn}])
=for example
Example:
my $points = pdl(0,1,sqrt(2),3);
my ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000,{Warn => 'y'});
sub f{
my ($x) = @_;
my $x2 = $x**2;
my $x3 = $x**3;
return $x3 * log(abs(($x2-1.0)*($x2-2.0)));
}
=head2 gslinteg_qagi() -- Adaptive integration on infinite interval
This function estimates the integral of the function f over the
infinite interval (-\infty,+\infty) within the desired absolute and
relative error limits, $epsabs and $epsrel.
After a transformation, the algorithm
of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qagi($function_ref,$epsabs,
$epsrel,$limit,[{Warn => $warn}]);
=for example
Example:
my ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000,{Warn => 'y'});
sub myfn{
my ($x) = @_;
return exp(-$x - $x*$x) ;
}
=head2 gslinteg_qagiu() -- Adaptive integration on infinite interval
This function estimates the integral of the function f over the
infinite interval (a,+\infty) within the desired absolute and
relative error limits, $epsabs and $epsrel.
After a transformation, the algorithm
of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qagiu($function_ref,$a,$epsabs,
$epsrel,$limit,[{Warn => $warn}]);
=for example
Example:
my $alfa = 1;
my ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000,{Warn => 'y'});
sub f{
my ($x) = @_;
if (($x==0) && ($alfa == 1)) {return 1;}
if (($x==0) && ($alfa > 1)) {return 0;}
return ($x**($alfa-1))/((1+10*$x)**2);
}
=head2 gslinteg_qagil() -- Adaptive integration on infinite interval
This function estimates the integral of the function f over the
infinite interval (-\infty,b) within the desired absolute and
relative error limits, $epsabs and $epsrel.
After a transformation, the algorithm
of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qagl($function_ref,$b,$epsabs,
$epsrel,$limit,[{Warn => $warn}]);
=for example
Example:
my ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000,{Warn => 'y'});
sub myfn{
my ($x) = @_;
return exp($x);
}
=head2 gslinteg_qawc() -- Adaptive integration for Cauchy principal values
This function computes the Cauchy principal value of the integral of f over (a,b),
with a singularity at c, I = \int_a^b dx f(x)/(x - c). The integral is
estimated within the desired absolute and relative error limits, $epsabs and $epsrel.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qawc($function_ref,$a,$b,$c,$epsabs,$epsrel,$limit)
=for example
Example:
my ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000,{Warn => 'y'});
sub f{
my ($x) = @_;
return 1.0 / (5.0 * $x * $x * $x + 6.0) ;
}
=head2 gslinteg_qaws() -- Adaptive integration for singular functions
The algorithm in gslinteg_qaws is designed for integrands with algebraic-logarithmic
singularities at the end-points of an integration region.
Specifically, this function computes the integral given by
I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x).
The integral is
estimated within the desired absolute and relative error limits, $epsabs and $epsrel.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) =
gslinteg_qawc($function_ref,$alpha,$beta,$mu,$nu,$a,$b,
$epsabs,$epsrel,$limit,[{Warn => $warn}]);
=for example
Example:
my ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000,{Warn => 'y'});
sub f{
my ($x) = @_;
if($x==0){return 0;}
else{
my $u = log($x);
my $v = 1 + $u*$u;
return 1.0/($v*$v);
}
}
=head2 gslinteg_qawo() -- Adaptive integration for oscillatory functions
This function uses an adaptive algorithm to compute the integral of f over
(a,b) with the weight function sin(omega*x) or cos(omega*x) -- which of
sine or cosine is used is determined by the parameter $opt ('cos' or 'sin').
The integral is
estimated within the desired absolute and relative error limits, $epsabs and $epsrel.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
($res,$abserr,$ierr) = gslinteg_qawo($function_ref,$omega,$sin_or_cos,
$a,$b,$epsabs,$epsrel,$limit,[opt])
=for example
Example:
my $PI = 3.14159265358979323846264338328;
my ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000);
# with warnings on
($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000,{Warn => 'y'});
sub f{
my ($x) = @_;
if($x==0){return 0;}
else{ return log($x);}
}
=head2 gslinteg_qawf() -- Adaptive integration for Fourier integrals
This function attempts to compute a Fourier integral of the function
f over the semi-infinite interval [a,+\infty). Specifically, it attempts
tp compute I = \int_a^{+\infty} dx f(x)w(x), where w(x) is sin(omega*x)
or cos(omega*x) -- which of sine or cosine is used is determined by
the parameter $opt ('cos' or 'sin').
The integral is
estimated within the desired absolute error limit $epsabs.
The maximum number of allowed subdivisions done by the adaptive
algorithm must be supplied in the parameter $limit.
=for ref
Please check the GSL documentation for more information.
=for usage
Usage:
gslinteg_qawf($function_ref,$omega,$sin_or_cos,$a,$epsabs,$limit,[opt])
=for example
Example:
my ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000);
# with warnings on
($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000,{Warn => 'y'});
sub f{
my ($x) = @_;
if ($x == 0){return 0;}
return 1.0/sqrt($x)
}
=head1 BUGS
Feedback is welcome. Log bugs in the PDL bug database (the
database is always linked from L<http://pdl.perl.org>).
=head1 SEE ALSO
L<PDL>
The GSL documentation is online at
http://www.gnu.org/software/gsl/manual/
=head1 AUTHOR
This file copyright (C) 2003,2005 Andres Jordan <ajordan@eso.org>
All rights reserved. There is no warranty. You are allowed to redistribute
this software documentation under certain conditions. For details, see the file
COPYING in the PDL distribution. If this file is separated from the
PDL distribution, the copyright notice should be included in the file.
The GSL integration routines were written by Brian Gough. QUADPACK
was written by Piessens, Doncker-Kapenga, Uberhuber and Kahaner.
=cut
=head1 FUNCTIONS
=cut
sub gslinteg_qng{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$a,$b,$epsabs,$epsrel) = @_;
barf 'Usage: gslinteg_qng($function_ref,$a,$b,$epsabs,$epsrel,[opt]) '
unless ($#_ == 4);
my ($res,$abserr,$neval,$ierr) = qng_meat($a,$b,$epsabs,$epsrel,$warn,$f);
return ($res,$abserr,$ierr,$neval);
}
=head2 qng_meat
=for sig
Signature: (double a(); double b(); double epsabs();
double epsrel(); double [o] result(); double [o] abserr();
int [o] neval(); int [o] ierr(); int warn(); SV* funcion)
=for ref
info not available
=for bad
qng_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qng_meat = \&PDL::qng_meat;
sub gslinteg_qag{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$a,$b,$epsabs,$epsrel,$limit,$key) = @_;
barf 'Usage: gslinteg_qag($function_ref,$a,$b,$epsabs,$epsrel,$limit,$key,[opt]) '
unless ($#_ == 6);
my ($res,$abserr,$ierr) = qag_meat($a,$b,$epsabs,$epsrel,$limit,$key,$limit,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qag_meat
=for sig
Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
int key(); double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qag_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qag_meat = \&PDL::qag_meat;
sub gslinteg_qags{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$a,$b,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qags($function_ref,$a,$b,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 5);
my ($res,$abserr,$ierr) = qags_meat($a,$b,$epsabs,$epsrel,$limit,$limit,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qags_meat
=for sig
Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qags_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qags_meat = \&PDL::qags_meat;
sub gslinteg_qagp{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$points,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qagp($function_ref,$points,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 4);
my ($res,$abserr,$ierr) = qagp_meat($points,$epsabs,$epsrel,$limit,$limit,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qagp_meat
=for sig
Signature: (double pts(l); double epsabs();double epsrel();int limit();
double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qagp_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qagp_meat = \&PDL::qagp_meat;
sub gslinteg_qagi{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qagi($function_ref,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 3);
my ($res,$abserr,$ierr) = qagi_meat($epsabs,$epsrel,$limit,$limit,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qagi_meat
=for sig
Signature: (double epsabs();double epsrel(); int limit();
double [o] result(); double [o] abserr(); int n(); int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qagi_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qagi_meat = \&PDL::qagi_meat;
sub gslinteg_qagiu{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$a,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qagiu($function_ref,$a,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 4);
my ($res,$abserr,$ierr) = qagiu_meat($a,$epsabs,$epsrel,$limit,$limit,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qagiu_meat
=for sig
Signature: (double a(); double epsabs();double epsrel();int limit();
double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qagiu_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qagiu_meat = \&PDL::qagiu_meat;
sub gslinteg_qagil{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$b,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qagil($function_ref,$b,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 4);
my ($res,$abserr,$ierr) = qagil_meat($b,$epsabs,$epsrel,$limit,$limit,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qagil_meat
=for sig
Signature: (double b(); double epsabs();double epsrel();int limit();
double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qagil_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qagil_meat = \&PDL::qagil_meat;
sub gslinteg_qawc{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$a,$b,$c,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qawc($function_ref,$a,$b,$c,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 6);
my ($res,$abserr,$ierr) = qawc_meat($a,$b,$c,$epsabs,$epsrel,$limit,$limit,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qawc_meat
=for sig
Signature: (double a(); double b(); double c(); double epsabs();double epsrel();int limit();
double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qawc_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qawc_meat = \&PDL::qawc_meat;
sub gslinteg_qaws{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$alpha,$beta,$mu,$nu,$a,$b,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qaws($function_ref,$alpha,$beta,$mu,$nu,$a,$b,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 9);
my ($res,$abserr,$ierr) = qaws_meat($a,$b,$epsabs,$epsrel,$limit,$limit,$alpha,$beta,$mu,$nu,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qaws_meat
=for sig
Signature: (double a(); double b();double epsabs();double epsrel();int limit();
double [o] result(); double [o] abserr();int n();
double alpha(); double beta(); int mu(); int nu();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qaws_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qaws_meat = \&PDL::qaws_meat;
sub gslinteg_qawo{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$omega,$sincosopt,$a,$b,$epsabs,$epsrel,$limit) = @_;
barf 'Usage: gslinteg_qawo($function_ref,$omega,$sin_or_cos,$a,$b,$epsabs,$epsrel,$limit,[opt]) '
unless ($#_ == 7);
my $OPTION_SIN_COS;
if($sincosopt=~/cos/i){ $OPTION_SIN_COS = 0;}
elsif($sincosopt=~/sin/i){ $OPTION_SIN_COS = 1;}
else { barf("Error in argument 3 of function gslinteg_qawo: specify 'cos' or 'sin'\n");}
my $L = $b - $a;
my $nlevels = $limit;
my ($res,$abserr,$ierr) = qawo_meat($a,$b,$epsabs,$epsrel,$limit,$limit,$OPTION_SIN_COS,$omega,$L,$nlevels,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qawo_meat
=for sig
Signature: (double a(); double b();double epsabs();double epsrel();int limit();
double [o] result(); double [o] abserr();int n();
int sincosopt(); double omega(); double L(); int nlevels();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qawo_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qawo_meat = \&PDL::qawo_meat;
sub gslinteg_qawf{
my ($opt,$warn);
if (ref($_[$#_]) eq 'HASH'){ $opt = pop @_; }
else{ $opt = {Warn => 'n'}; }
if($$opt{Warn}=~/y/i) { $warn = 1;}
else {$warn = 0;}
my ($f,$omega,$sincosopt,$a,$epsabs,$limit) = @_;
barf 'Usage: gslinteg_qawf($function_ref,$omega,$sin_or_cos,$a,$epsabs,$limit,[opt]) '
unless ($#_ == 5);
my $OPTION_SIN_COS;
if($sincosopt=~/cos/i){ $OPTION_SIN_COS = 0;}
elsif($sincosopt=~/sin/i){ $OPTION_SIN_COS = 1;}
else { barf("Error in argument 3 of function gslinteg_qawf: specify 'cos' or 'sin'\n");}
my $nlevels = $limit;
my ($res,$abserr,$ierr) = qawf_meat($a,$epsabs,$limit,$limit,$OPTION_SIN_COS,$omega,$nlevels,$warn,$f);
return ($res,$abserr,$ierr);
}
=head2 qawf_meat
=for sig
Signature: (double a(); double epsabs();int limit();
double [o] result(); double [o] abserr();int n();
int sincosopt(); double omega(); int nlevels();int [o] ierr();int warn();; SV* funcion)
=for ref
info not available
=for bad
qawf_meat does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*qawf_meat = \&PDL::qawf_meat;
;
# Exit with OK status
1;
|