/usr/lib/perl5/PDL/GSLSF/HYPERG.pm is in pdl 1:2.007-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::GSLSF::HYPERG;
@EXPORT_OK = qw( PDL::PP gsl_sf_hyperg_0F1 PDL::PP gsl_sf_hyperg_1F1 PDL::PP gsl_sf_hyperg_U PDL::PP gsl_sf_hyperg_2F1 PDL::PP gsl_sf_hyperg_2F1_conj PDL::PP gsl_sf_hyperg_2F1_renorm PDL::PP gsl_sf_hyperg_2F1_conj_renorm PDL::PP gsl_sf_hyperg_2F0 );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::GSLSF::HYPERG ;
=head1 NAME
PDL::GSLSF::HYPERG - PDL interface to GSL Special Functions
=head1 DESCRIPTION
This is an interface to the Special Function package present in the GNU Scientific Library.
=head1 SYNOPSIS
=cut
=head1 FUNCTIONS
=cut
=head2 gsl_sf_hyperg_0F1
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double c)
=for ref
/* Hypergeometric function related to Bessel functions 0F1[c,x] = Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x]) Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x])
=for bad
gsl_sf_hyperg_0F1 does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_0F1 = \&PDL::gsl_sf_hyperg_0F1;
=head2 gsl_sf_hyperg_1F1
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double a; double b)
=for ref
Confluent hypergeometric function for integer parameters. 1F1[a,b,x] = M(a,b,x)
=for bad
gsl_sf_hyperg_1F1 does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_1F1 = \&PDL::gsl_sf_hyperg_1F1;
=head2 gsl_sf_hyperg_U
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double a; double b)
=for ref
Confluent hypergeometric function for integer parameters. U(a,b,x)
=for bad
gsl_sf_hyperg_U does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_U = \&PDL::gsl_sf_hyperg_U;
=head2 gsl_sf_hyperg_2F1
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double a; double b; double c)
=for ref
Confluent hypergeometric function for integer parameters. 2F1[a,b,c,x]
=for bad
gsl_sf_hyperg_2F1 does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_2F1 = \&PDL::gsl_sf_hyperg_2F1;
=head2 gsl_sf_hyperg_2F1_conj
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double a; double b; double c)
=for ref
Gauss hypergeometric function 2F1[aR + I aI, aR - I aI, c, x]
=for bad
gsl_sf_hyperg_2F1_conj does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_2F1_conj = \&PDL::gsl_sf_hyperg_2F1_conj;
=head2 gsl_sf_hyperg_2F1_renorm
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double a; double b; double c)
=for ref
Renormalized Gauss hypergeometric function 2F1[a,b,c,x] / Gamma[c]
=for bad
gsl_sf_hyperg_2F1_renorm does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_2F1_renorm = \&PDL::gsl_sf_hyperg_2F1_renorm;
=head2 gsl_sf_hyperg_2F1_conj_renorm
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double a; double b; double c)
=for ref
Renormalized Gauss hypergeometric function 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c]
=for bad
gsl_sf_hyperg_2F1_conj_renorm does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_2F1_conj_renorm = \&PDL::gsl_sf_hyperg_2F1_conj_renorm;
=head2 gsl_sf_hyperg_2F0
=for sig
Signature: (double x(); double [o]y(); double [o]e(); double a; double b)
=for ref
Mysterious hypergeometric function. The series representation is a divergent hypergeometric series. However, for x < 0 we have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)
=for bad
gsl_sf_hyperg_2F0 does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*gsl_sf_hyperg_2F0 = \&PDL::gsl_sf_hyperg_2F0;
;
=head1 AUTHOR
This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.trieste.it>
All rights reserved. There
is no warranty. You are allowed to redistribute this software /
documentation under certain conditions. For details, see the file
COPYING in the PDL distribution. If this file is separated from the
PDL distribution, the copyright notice should be included in the file.
The GSL SF modules were written by G. Jungman.
=cut
# Exit with OK status
1;
|