/usr/lib/perl5/PDL/IO/FITS.pm is in pdl 1:2.007-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 | =head1 NAME
PDL::IO::FITS -- Simple FITS support for PDL
=head1 SYNOPSIS
use PDL;
use PDL::IO::FITS;
$a = rfits('foo.fits'); # read a FITS file
$a->wfits('bar.fits'); # write a FITS file
=head1 DESCRIPTION
This module provides basic FITS support for PDL, in the sense of
reading and writing whole FITS files. (For more complex operations,
such as prefiltering rows out of tables or performing operations on
the FITS file in-place on disk), you can use the Astro::FITS::CFITSIO
module that is available on CPAN.
Basic FITS image files are supported, along with BINTABLE and IMAGE extensions.
ASCII Table support is planned, as are the HEASARC bintable extensions that
are recommended in the 1999 FITS standard.
Table support is based on hashes and named columns, rather than the
less convenient (but slightly more congruent) technique of perl lists
of numbered columns.
The principle interface routines are C<rfits> and C<wfits>, for
reading and writing respectively. FITS headers are returned as perl
hashes or (if the module is present) Astro::FITS::Header objects that
are tied to perl hashes. Astro::FITS::Header objects provide
convenient access through the tied hash interface, but also allow you
to control the card structure in more detail using a separate method
interface; see the L<Astro::FITS::Header|Astro::FITS::Header>
documentation for details.
=head1 AUTHOR
Copyright (C) Karl Glazebrook, Craig DeForest, and Doug Burke, 1997-2010.
There is no warranty. You are allowed to redistribute and/or modify
this software under certain conditions. For details, see the file
COPYING in the PDL distribution. If this file is separated from the
PDL distribution, the copyright notice should be pasted into in this file.
=head1 FUNCTIONS
=cut
use strict;
BEGIN {
package PDL::IO::FITS;
$PDL::IO::FITS::VERSION = 0.92; # Will be 1.0 when ascii table read/write works.
our @EXPORT_OK = qw( rfits rfitshdr wfits );
our %EXPORT_TAGS = (Func=>[@EXPORT_OK]);
our @ISA = ('PDL::Exporter');
use PDL::Core;
use PDL::Config;
use PDL::IO::Misc;
use PDL::Exporter;
use PDL::Primitive;
use PDL::Types;
use PDL::Options;
use PDL::Bad;
# use PDL::NiceSlice;
use Carp;
use strict;
##############################
#
# Check if there's Astro::FITS::Header support, and set flag.
# Kludgy but it only has to run once, on first load. --CED
#
eval "use Astro::FITS::Header;";
$PDL::Astro_FITS_Header = (defined $Astro::FITS::Header::VERSION);
if($PDL::Astro_FITS_Header) {
my($a) = $Astro::FITS::Header::VERSION;
$a =~ s/[^0-9\.].*//;
$PDL::Astro_FITS_Header = 0 if($a < 1.12);
}
unless($PDL::Astro_FITS_Header) {
unless($ENV{"PDL_FITS_LEGACY"} || $PDL::Config{FITS_LEGACY}) {
print(STDERR "\n\nWARNING: Can't find the Astro::FITS::Header module, limiting FITS support.\n\n PDL will use the deprecated legacy perl hash handling code but will not\n properly support tables, FITS extensions, or COMMENT cards. You really\n ought to install the Astro::FITS::Header module, available from\n 'http://www.cpan.org'. (You can also get rid of this message by setting\n the environment variable 'PDL_FITS_LEGACY' or the global PDL config value (in perldl.conf)\n \$PDL::Config{FITS_LEGACY} to 1.\n\n");
}
}
}
package PDL::IO::FITS;
## declare subroutines
sub _wfits_nullhdu ($);
sub _wfits_table ($$$);
=head2 rfits()
=for ref
Simple piddle FITS reader.
=for example
$pdl = rfits('file.fits'); # Read a simple FITS image
Suffix magic:
$pdl = rfits('file.fits.gz'); # Read a file with gunzip(1)
$pdl = rfits('file.fits.Z'); # Read a file with uncompress(1)
$pdl = rfits('file.fits[2]'); # Read 2nd extension
$pdl = rfits('file.fits.gz[3]'); # Read 3rd extension
@pdls = rfits('file.fits'); # Read primary data and extensions
$hdr = rfits('file.fits',{data=>0}); # Options hash changes behavior
In list context, C<rfits> reads the primary image and all possible
extensions, returning them in the same order that they occurred in the
file -- except that, by default, the primary HDU is skipped if it
contains no data. In scalar context, the default is to read the first
HDU that contains data. One can read other HDU's by using the [n]
syntax. Using the [0] syntax forces a read of the first HDU,
regardless of whether it contains data or no. Currently recognized
extensions are IMAGE and BINTABLE. (See the addendum on EXTENSIONS
for details).
C<rfits> accepts several options that may be passed in as a hash ref
if desired:
=over 3
=item bscale (default=1)
Determines whether the data are linearly scaled using the BSCALE/BZERO keywords
in the FITS header. To read in the exact data values in the file, set this
to 0.
=item data (default=1)
Determines whether to read the data, or just the header. If you set this to
0, you will get back the FITS header rather than the data themselves. (Note
that the header is normally returned as the C<hdr> field of the returned PDL;
this causes it to be returned as a hash ref directly.)
=item hdrcpy (default=0)
Determines whether the L<hdrcpy|PDL::Core/hdrcpy> flag is set in the returned
PDL. Setting the flag will cause an explicit deep copy of the header whenever
you use the returned PDL in an arithmetic or slicing operation. That is useful
in many circumstances but also causes a hit in speed. When two or more PDLs
with hdrcpy set are used in an expression, the result gets the header of the
first PDL in the expression. See L<hdrcpy|PDL::Core/hdrcpy> for an example.
=item expand (default=1)
Determines whether auto-expansion of tile-compressed images should happen.
Tile-compressed images are transmitted as binary tables with particular
fields ("ZIMAGE") set. Leaving this alone does what you want most of the
time, unpacking such images transparently and returning the data and header
as if they were part of a normal IMAGE extension. Setting "expand" to 0
delivers the binary table, rather than unpacking it into an image.
=item afh (default=1)
By default rfits uses Astro::FITS::Header tied-hash objects to contain
the FITS header information. This permits explicit control over FITS
card information, and conforms well with the FITS specification. But
Astro::FITS::Header objects are about 40-60x more memory intensive
than comparable perl hashes, and also use ~10x more CPU to manage.
For jobs where header processing performance is important (e.g. reading
just the headers of 1,000 FITS files), set afh to 0 to use the legacy parser
and get a large boost in speed.
=back
FITS image headers are stored in the output PDL and can be retrieved
with L<hdr|PDL::Core/hdr> or L<gethdr|PDL::Core/gethdr>. The
L<hdrcpy|PDL::Core/hdrcpy> flag of the PDL is set so that the header
is copied to derived piddles by default. (This is inefficient if you
are planning to do lots of small operations on the data; clear
the flag with "->hcpy(0)" or via the options hash if that's the case.)
The header is a hash whose keys are the keywords in the FITS header.
If you have the "Astro::FITS::Header" module installed, the header is
actually a tied hash to a FITS header object, which can give you
more control over card order, comment fields, and variable types.
(see L<Astro::FITS::Header> for details).
The header keywords are converted to I<uppercase> per the FITS
standard. Access is case-insensitive on the perl side, provided that
Astro::FITS::Header is installed.
If Astro::FITS::Header is not installed, then a built-in legacy parser
is used to generate the header hash. Keyword-associated comments in
the headers are stored under the hash key
C<< <keyword>_COMMENT> >>. All HISTORY cards in the header are
collected into a single multiline string stored in the C<HISTORY> key.
All COMMENT cards are similarly collected under the C<COMMENT> key.
=head3 BSCALE/BZERO
If the BSCALE and/or BZERO keywords are set, they are applied to the
image before it is returned. The returned PDL is promoted as
necessary to contain the multiplied values, and the BSCALE and BZERO
keywords are deleted from the header for clarity. If you don't want
this type of processing, set 'bscale=>0' in the options hash.
=head3 EXTENSIONS
Sometimes a FITS file contains only extensions and a stub header in
the first header/data unit ("primary HDU"). In scalar context, you
normally only get back the primary HDU -- but in this special case,
you get back the first extension HDU. You can force a read of the
primary HDU by adding a '[0]' suffix to the file name.
=head3 BINTABLE EXTENSIONS
Binary tables are handled. Currently only the following PDL
datatypes are supported: byte, short, ushort, long, float, and
double. At present ushort() data is written as a long rather than
as a short with TSCAL/ZERO; this may change.
The return value for a binary table is a hash ref containing the names
of the columns in the table (in UPPER CASE as per the FITS standard).
Each element of the hash contains a PDL (for numerical values) or a
perl list (for string values). The PDL's 0th dimension runs across
rows; the 1st dimension runs across the repeat index within the row
(for rows with more than one value). (Note that this is different from
standard threading order - but it allows Least Surprise to work when
adding more complicated objects such as collections of numbers (via
the repeat count) or variable length arrays.)
Thus, if your table contains a column named C<FOO> with type C<5D>,
the expression
$a->{FOO}->((2))
returns a 5-element double-precision PDL containing the values of FOO
from the third row of the table.
The header of the table itself is parsed as with a normal FITS HDU,
and is returned in the element 'hdr' of the returned hash. You can
use that to preserve the original column order or access the table at a low
level, if you like.
Scaling and zero-point adjustment are performed as with BSCALE/BZERO:
the appropriate keywords are deleted from the as-returned header. To avoid
this behavior, set 'bscale=>0' in the options hash.
As appropriate, TSCAL/ZERO and TUNIT are copied into each column-PDL's
header as BSCALE/BZERO and BUNIT.
The main hash also contains the element 'tbl', which is set
to 'binary' to distinguish it from an ASCII table.
Because different columns in the table might have identical names in a
FITS file, the binary table reader practices collision avoidance. If
you have multiple columns named "FOO", then the first one encountered
(numerically) gets the name "FOO", the next one gets "FOO_1", and the
next "FOO_2", etc. The appropriate TTYPEn fields in the header are
changed to match the renamed column fields.
Columns with no name are assigned the name "COL_<n>", where <n> starts
at 1 and increments for each no-name column found.
Variable-length arrays are supported for reading. They are unpacked
into PDLs that appear exactly the same as the output for fixed-length
rows, except that each row is padded to the maximum length given
in the extra characters -- e.g. a row with TFORM of 1PB(300) will
yield an NAXIS2x300 output field in the final hash. The padding
uses the TNULL<n> keyword for the column, or 0 if TNULL<n> is not
present. The output hash also gets an additional field, "len_<name>",
that contains the number of elements in each table row.
=head3 TILE-COMPRESSED IMAGES
CFITSIO and several large projects (including NASA's Solar Dynamics
Observatory) now support an unofficial extension to FITS that stores
images as a collection of individually compressed tiles within a
BINTABLE extension. These images are automagically uncompressed by
default, and delivered as if they were normal image files. You can
override this behavior by supplying the "expand" key in the options hash.
Currently, only Rice compression is supported, though there is a framework
in place for adding other compression schemes.
=for bad
=head3 BAD VALUE HANDLING
If a FITS file contains the C<BLANK> keyword (and has C<BITPIX E<gt> 0>),
the piddle will have its bad flag set, and those elements which equal the
C<BLANK> value will be set bad. For C<BITPIX E<lt> 0>, any NaN's are
converted to bad (if necessary).
=head2 rfitshdr()
=for ref
Read only the header of a FITS file or an extension within it.
This is syntactic sugar for the C<data=E<gt>0> option to L<rfits|/rfits()>.
See L<rfits|/rfits()> for details on header handling. rfitshdr() runs
the same code to read the header, but returns it rather than
reading in a data structure as well.
=cut
our $rfits_options = new PDL::Options( { bscale=>1, data=>1, hdrcpy=>0, expand=>1, afh=>1 } );
sub PDL::rfitshdr {
my $class = shift;
my $file = shift;
my $u_opt = ifhref(shift);
$u_opt->{data} = 0;
PDL::rfits($class,$file,$u_opt);
}
sub PDL::rfits {
my $class = shift;
barf 'Usage: $a = rfits($file) -or- $a = PDL->rfits($file)' if (@_ < 1 || @_ > 2);
my $file = shift;
my $u_opt = ifhref(shift);
my $opt = $rfits_options->options($u_opt);
my($nbytes, $line, $name, $rest, $size, $i, $bscale, $bzero, $extnum);
$nbytes = 0;
# Modification 02/04/2005 - JB. Earlier version stripped the extension
# indicator which cancelled the check for empty primary data array at the end.
my $explicit_extension = ($file =~ m/\[\d+\]$/ ? 1 : 0);
$extnum = ( ($file =~ s/\[(\d+)\]$//) ? $1 : 0 );
$file = "gunzip -c $file |" if $file =~ /\.gz$/; # Handle compression
$file = "uncompress -c $file |" if $file =~ /\.Z$/;
my $fh = IO::File->new( $file )
or barf "FITS file $file not found";
binmode $fh;
my @extensions; # This accumulates the list in list context...
my $currentext=0;
my $pdl;
hdu:{do { # Runs over extensions, in list context
my $ext_type = 'IMAGE'; # Gets the type of XTENSION if one is detected.
my $foo={}; # To go in pdl
my @history=();
my @cards = ();
$pdl = $class->new;
# If $opt->{data} is false, then the reading routines leave the
# file alone, so the file pointer is left at the end of the last
# header. Skip over the unread data to the next extension...
if( wantarray and !$opt->{data} and @extensions) {
while( $fh->read($line,80) && ($line !~ /^XTENSION=/) && !$fh->eof() ) {
$fh->read($line,2880-80);
};
return @extensions
if($fh->eof());
} else {
my $ct = $fh->read($line,80);
barf "file $file is not in FITS-format:\n$line\n"
if( $nbytes==0 && ($line !~ /^SIMPLE = +T/));
last hdu if($fh->eof() || !$ct);
}
$nbytes = 80; # Number of bytes read from this extension (1 line so far)
if($line =~ /^XTENSION= \'(\w+)\s*\'/) {
$ext_type = $1;
} elsif( @extensions ) {
print "Warning: expected XTENSION, found '$line'. Exiting.\n"
if($PDL::verbose);
last hdu;
}
push(@cards,$line) if($PDL::Astro_FITS_Header);
#
# If we are in scalar context, skip to the desired extension
# number. [This implementation is really slow since we have
# to read the whole file. Someone Really Ought To rework it to
# read individual headers and skip forward an extension at a
# a time with seek() calls. ]
# --CD
#
if(!wantarray and $currentext != $extnum) {
skipper: while(1) {
# Move to next record
$nbytes += $fh->read($line,2880-80);
barf "Unexpected end of FITS file\n" if $fh->eof();
# Read start of next record
$nbytes += $fh->read($line,80);
barf "Unexpected end of FITS file\n" if $fh->eof();
# Check if we have found the new extension
# if not move on
$currentext++ if $line =~ /^XTENSION\= \'(\w+)\s*\'/;
if ($currentext == $extnum) {
$ext_type = $1;
last skipper;
}
}
} # End of skipping to desired extension
#
# Snarf up the found header, and parse it if Astro::FITS::Header
# does not exist.
#
if($PDL::Astro_FITS_Header and $opt->{afh}) {
## Astro::FITS::Header parsing. Snarf lines to the END card,
## and pass them to Astro::FITS::Header.
do {
$nbytes += $fh->read($line, 80);
push(@cards,$line);
} while(!$fh->eof() && $line !~ m/^END(\s|\000)/);
$nbytes += $fh->read(my $dummy, 2879 - ($nbytes-1)%2880);
my($hdr) = Astro::FITS::Header->new(Cards => \@cards);
my(%hdrhash);
tie %hdrhash,"Astro::FITS::Header",$hdr;
$foo = \%hdrhash;
} else {
## Legacy (straight header-to-hash-ref) parsing.
## Cheesy but fast.
hdr_legacy: { do {
no strict 'refs';
# skip if the first eight characters are ' '
# - as seen in headers from the DSS at STScI
if (substr($line,0,8) ne " " x 8) { # If non-blank
$name = (split(' ',substr($line,0,8)))[0];
$rest = substr($line,8);
if ($name =~ m/^HISTORY/) {
push @history, $rest;
} else {
$$foo{$name} = "";
$$foo{$name}=$1 if $rest =~ m|^= +([^\/\' ][^\/ ]*) *( +/(.*))?$| ;
$$foo{$name}=$1 if $rest =~ m|^= \'(.*)\' *( +/(.*))?$| ;
$$foo{COMMENT}{$name} = $3 if defined($3);
}
} # non-blank
last hdr_legacy if ((defined $name) && $name eq "END");
$nbytes += $fh->read($line, 80);
} while(!$fh->eof()); }
# Clean up HISTORY card
$$foo{"HISTORY"} = \@history if $#history >= 0;
# Step to end of header block in file
my $skip = 2879 - ($nbytes-1)%2880;
$fh->read(my $dummy, $skip) if $skip;
$nbytes += $skip;
} # End of legacy header parsing
##############################
# Special case: if the file only contains
# extensions then read the first extension in scalar context,
# instead of the null zeroth extension.
#
if( !(defined $foo->{XTENSION}) # Primary header
and $foo->{NAXIS} == 0 # No data
and !wantarray # Scalar context
and !$explicit_extension # No HDU specifier
) {
print "rfits: Skipping null primary HDU (use [0] to force read of primary)...\n"
if($PDL::verbose);
return PDL::rfits($class,$file.'[1]',$opt);
}
##########
# If we don't want data, return the header from the HDU. Likewise,
# if NAXIS is 0 then there are no data, so return the header instead.
if( ! $opt->{data} || $foo->{NAXIS}==0 ) {
# If we're NOT reading data, then return the header instead of the
# image.
$pdl = $foo;
} else {
##########
# Switch based on extension type to do the dirty work of reading
# the data. Handlers are listed in the _Extension patch-panel.
if (ref $PDL::IO::FITS::_Extension->{$ext_type} ) {
# Pass $pdl into the extension reader for easier use -- but
# it just gets overwritten (and disappears) if ignored.
$pdl = &{$PDL::IO::FITS::_Extension->{$ext_type}}($fh,$foo,$opt,$pdl);
} else {
print STDERR "rfits: Ignoring unknown extension '$ext_type'...\n"
if($PDL::verbose || $PDL::debug);
$pdl = undef;
}
}
#
# Note -- $pdl isn't necessarily a PDL. It's only a $pdl if
# the extension was an IMAGE.
#
push(@extensions,$pdl) if(wantarray);
$currentext++;
} while( wantarray && !$fh->eof() );} # Repeat if we are in list context
$fh->close;
if(wantarray) {
## By default, ditch primary HDU placeholder
if( ref($extensions[0]) eq 'HASH' and
$extensions[0]->{SIMPLE} and
exists($extensions[0]->{NAXIS}) and
$extensions[0]->{NAXIS} == 0
) {
shift @extensions;
}
# Return all the extensions
return @extensions;
}
return $pdl;
}
sub rfits { PDL->rfits(@_); }
sub rfitshdr {
my($file,$opt) = shift;
$opt->{data} =0;
PDL->rfitshdr($file,$opt);
}
##############################
#
# FITS extensions patch-table links extension name to the supported reader.
# IMAGE extensions are a special case that gets read just like a normal
# FITS file.
#
$PDL::IO::FITS::_Extension = {
IMAGE => \&_rfits_image
, BINTABLE => \&_rfits_bintable
};
##############################
#
# IMAGE extension -- this is also the default reader.
our $type_table = {
8=>$PDL_B,
16=>$PDL_S,
32=>$PDL_L,
-32=>$PDL_F,
-64=>$PDL_D
};
our $type_table_2 = {
8=>byte,
16=>short,
32=>long,
-32=>float,
-64=>double
};
sub _rfits_image($$$$) {
print "Reading IMAGE data...\n" if($PDL::verbose);
my $fh = shift; # file handle to read from
my $foo = shift; # $foo contains the pre-read header
my $opt = shift; # $opt contains the option hash
my $pdl = shift; # $pdl contains a pre-blessed virgin PDL
# Setup piddle structure
if( defined($type_table->{0 + $foo->{"BITPIX"}}) ) {
$pdl->set_datatype( $type_table->{$foo->{"BITPIX"}} );
} else {
die("rfits: strange BITPIX value ".$foo->{"BITPIX"}." in header - I give up!\n");
}
my @dims; # Store the dimenions 1..N, compute total number of pixels
my $i = 1;
my $size = 1;
##second part of the conditional guards against a poorly-written hdr.
while(defined( $$foo{"NAXIS$i"} ) && $i <= $$foo{"NAXIS"}) {
$size *= $$foo{"NAXIS$i"};
push @dims, $$foo{"NAXIS$i"} ; $i++;
}
$pdl->setdims([@dims]);
my $dref = $pdl->get_dataref();
print "BITPIX = ",$$foo{"BITPIX"}," size = $size pixels \n"
if $PDL::verbose;
# Slurp the FITS binary data
print "Reading ",$size*PDL::Core::howbig($pdl->get_datatype) , " bytes\n"
if $PDL::verbose;
# Read the data and pad to the next HDU
my $rdct = $size * PDL::Core::howbig($pdl->get_datatype);
$fh->read( $$dref, $rdct );
$fh->read( my $dummy, 2880 - (($rdct-1) % 2880) - 1 );
$pdl->upd_data();
if (!isbigendian() ) {
# Need to byte swap on little endian machines
bswap2($pdl) if $pdl->get_datatype == $PDL_S;
bswap4($pdl) if $pdl->get_datatype == $PDL_L ||
$pdl->get_datatype == $PDL_F;
bswap8($pdl) if $pdl->get_datatype == $PDL_D;
}
if(exists $opt->{bscale}) {
$pdl = treat_bscale($pdl, $foo);
}
# Header
$pdl->sethdr($foo);
$pdl->hdrcpy($opt->{hdrcpy});
return $pdl;
}
sub treat_bscale($$){
my $pdl = shift;
my $foo = shift;
print "treating bscale...\n" if($PDL::debug);
if ( $PDL::Bad::Status ) {
# do we have bad values? - needs to be done before BSCALE/BZERO
# (at least for integers)
#
if ( $$foo{BITPIX} > 0 and exists $$foo{BLANK} ) {
# integer, so bad value == BLANK keyword
my $blank = $foo->{BLANK};
# do we have to do any conversion?
if ( $blank == $pdl->badvalue() ) {
$pdl->badflag(1);
} else {
# we change all BLANK values to the current bad value
# (would not be needed with a per-piddle bad value)
$pdl->inplace->setvaltobad( $blank );
}
} elsif ( $foo->{BITPIX} < 0 ) {
# bad values are stored as NaN's in FITS
# let setnanbad decide if we need to change anything
$pdl->inplace->setnantobad();
}
print "FITS file may contain bad values.\n"
if $pdl->badflag() and $PDL::verbose;
} # if: PDL::Bad::Status
my ($bscale, $bzero);
$bscale = $$foo{"BSCALE"}; $bzero = $$foo{"BZERO"};
print "BSCALE = $bscale && BZERO = $bzero\n" if $PDL::verbose;
$bscale = 1 if (!defined($bscale) || $bscale eq "");
$bzero = 0 if (!defined($bzero) || $bzero eq "");
# Be clever and work out the final datatype before eating
# memory
#
# ensure we pick an element that is not equal to the bad value
# (is this OTT?)
my $tmp;
if ( $pdl->badflag() == 0 ) {
$tmp = $pdl->flat()->slice("0:0");
} elsif ( $pdl->ngood > 0 ) {
my $index = which( $pdl->flat()->isbad() == 0 )->at(0);
$tmp = $pdl->flat()->slice("${index}:${index}");
} else {
# all bad, so ignore the type conversion and return
# -- too lazy to include this check in the code below,
# so just copy the header clean up stuff
print "All elements are bad.\n" if $PDL::verbose;
delete $$foo{"BSCALE"}; delete $$foo{"BZERO"};
$tmp = $pdl;
} #end of BSCALE section (whew!)
$tmp = $tmp*$bscale if $bscale != 1; # Dummy run on one element
$tmp = $tmp+$bzero if $bzero != 0;
$pdl = $pdl->convert($tmp->type) if $tmp->get_datatype != $pdl->get_datatype;
$pdl *= $bscale if $bscale != 1;
$pdl += $bzero if $bzero != 0;
delete $$foo{"BSCALE"}; delete $$foo{"BZERO"};
return $pdl;
}
##########
#
# bintable_handlers -- helper table for bintable_row, below.
#
# Each element of the table is named by the appropriate type letter
# from the FITS specification. The value is a list containing the
# reading and writing methods.
#
# This probably ought to be a separate class, but instead it's a tawdry
# imitation. Too bad -- except that the ersatz really does run faster than
# genuine.
#
# 0: either a data type or a constructor.
# 1: either a length per element or a read method.
# 2: either a length per element or a write method.
# 3: 'finish' contains finishing-up code or a byte-count to swap.
#
# Main bintable type handler table.
# Elements: (constructor or type, reader or nbytes, writer or nbytes,
# finisher or nbytes). The finisher should convert the internal reading
# format into the final output format, e.g. by swapping (which is done
# automatically in the basic case). Output has row in the 0th dim.
#
# If present, the constructor should
# accept ($rowlen $extra, $nrows, $$size), where $rowlen is the repeat
# specifier in the TFORM field, $extra is the extra characters if any
# (for added flavor later, if desired), and $nrows is the number of rows in
# the table. $$size points to a scalar value that should be incremented by the
# size (in bytes) of a single row of the data, for accounting purposes.
#
# If a read method is specified, it should accept:
# ($thing, $rownum, $strptr, $rpt, $extra)
# where $rpt is the repeat count and $extra is the extra characters in the
# specifier; and it should cut the used characters off the front of the string.
#
# If a writer is specified it should accept:
# ($thing, $row, $rpt, $extra)
# and return the generated binary string.
#
# The finisher just takes the data itself. It should:
# * Byteswap
# * Condition the data to final dimensional form (if necessary)
# * Apply TSCAL/TZERO keywords (as necessary)
#
# The magic numbers in the table (1,2,4,8, etc.) are kludgey -- they break
# the isolation of PDL size and local code -- but they are a part of the FITS
# standard. The code will break anyway (damn) on machines that have other
# sizes for these datatypes.
#
$PDL::IO::FITS_bintable_handlers = {
'X' => [ byte # Packed bit field
, sub {
my( $pdl, $row, $strptr ) = @_; # (ignore repeat and extra)
my $n = $pdl->dim(0);
my $s = unpack( "B".$n, substr(${$strptr}, 0, int(($n+7)/8),''));
$s =~ tr/[01]/[\000\001]/;
substr( ${$pdl->get_dataref}, $n * $row, length($s)) = $s;
}
, sub {
my( $pdl, $row ) = @_; # Ignore extra and rpt
my $n = $pdl->dim(0);
my $p2 = byte(($pdl->slice("($row)") != 0));
my $s = ${$p2->get_dataref};
$s =~ tr/[\000\001]/[01]/;
pack( "B".$pdl->dim(0), $s );
}
, 1
]
,'A' => [ sub { # constructor # String - handle as perl list
my($rowlen, $extra, $nrows, $szptr) = @_;
my($i,@a);
$$szptr += $rowlen;
for $i(1..$nrows) { push(@a,' 'x$rowlen); }
\@a;
}
, sub { # reader
my( $list, $row, $strptr, $rpt ) = @_;
$list->[$row] = substr(${$strptr},0,$rpt,'');
}
, sub { # writer
my($strs, $row, $rpt ) = @_;
my $s = substr($strs->[$row],0,$rpt);
$s . ' 'x($rpt - length $s);
}
, undef # no finisher needed
]
,'B' => [ byte, 1, 1, 1 ] # byte
,'L' => [ byte, 1, 1, 1 ] # logical - treat as byte
,'I' => [ short, 2, 2, 2 ] # short (no unsigned shorts?)
,'J' => [ long, 4, 4, 4 ] # long
,'E' => [ float, 4, 4, 4 ] # single-precision
,'D' => [ double, 8, 8, 8 ] # double-precision
,'C' => [ sub { _nucomplx(float, eval '@_') }, sub { _rdcomplx(float, eval '@_') },
sub { _wrcomplx(float, eval '@_') }, sub { _fncomplx(float, eval '@_') }
]
,'M' => [ sub { _nucomplx(double, eval '@_') }, sub { _rdcomplx(double, eval '@_') },
sub { _wrcomplx(double, eval '@_') }, sub { _fncomplx(double, eval '@_') }
]
,'PB' => [ sub { _nuP(byte, eval '@_') }, sub { _rdP(byte, eval '@_') },
sub { _wrP(byte, eval '@_') }, sub { _fnP(byte, eval '@_') }
]
,'PL' => [ sub { _nuP(byte, eval '@_') }, sub { _rdP(byte, eval '@_') },
sub { _wrP(byte, eval '@_') }, sub { _fnP(byte, eval '@_') }
]
,'PI' => [ sub { _nuP(short, eval '@_') }, sub { _rdP(short, eval '@_') },
sub { _wrP(short, eval '@_') }, sub { _fnP(short, eval '@_') }
]
,'PJ' => [ sub { _nuP(long, eval '@_') }, sub { _rdP(long, eval '@_') },
sub { _wrP(long, eval '@_') }, sub { _fnP(long, eval '@_') }
]
,'PE' => [ sub { _nuP(float, eval '@_') }, sub { _rdP(float, eval '@_') },
sub { _wrP(float, eval '@_') }, sub { _fnP(float, eval '@_') }
]
,'PD' => [ sub { _nuP(double, eval '@_') }, sub { _rdP(double, eval '@_') },
sub { _wrP(double, eval '@_') }, sub { _fnP(double, eval '@_') }
]
};
##############################
# Helpers for complex numbers (construct/read/write/finish)
sub _nucomplx { # complex-number constructor
my($type, $rowlen, $extra, $nrows, $szptr) = @_;
$szptr += PDL::Core::howbig($type) * $nrows * 2;
return PDL->new_from_specification($type,2,$rowlen,$nrows);
}
sub _rdcomplx { # complex-number reader
my( $type, $pdl, $row, $strptr, $rpt ) = @_; # ignore extra
my $s = $pdl->get_dataref;
my $rlen = 2 * PDL::Core::howbig($type) * $rpt;
substr($$s, $row*$rlen, $rlen) = substr($strptr, 0, $rlen, '');
}
sub _wrcomplx { # complex-number writer
my( $type, $pdl, $row, $rpt ) = @_; # ignore extra
my $rlen = 2 * PDL::Core::howbig($type) * $rpt;
substr( ${$pdl->get_dataref}, $rlen * $row, $rlen );
}
sub _fncomplx { # complex-number finisher-upper
my( $type, $pdl, $n, $hdr, $opt) = shift;
eval 'bswap'.(PDL::Core::howbig($type)).'($pdl)';
print STDERR "Ignoring poorly-defined TSCAL/TZERO for complex data in col. $n (".$hdr->{"TTYPE$n"}.").\n"
if( length($hdr->{"TSCAL$n"}) or length($hdr->{"TZERO$n"}) );
return $pdl->reorder(2,1,0);
}
##############################
# Helpers for variable-length array types (construct/read/write/finish)
# These look just like the complex-number case, except that they use $extra to determine the
# size of the 0 dimension.
sub _nuP {
my( $type, $rowlen, $extra, $nrows, $szptr, $hdr, $i, $tbl ) = @_;
$extra =~ s/\((.*)\)/$1/; # strip parens from $extra in-place
$$szptr += 8;
if($rowlen != 1) {
die("rfits: variable-length record has a repeat count that isn't unity! (got $rowlen); I give up.");
}
# declare the PDL. Fill it with the blank value or (failing that) 0.
# Since P repeat count is required to be 0 or 1, we don't need an additional dimension for the
# repeat count -- the variable-length rows take that role.
my $pdl = PDL->new_from_specification($type, $extra, $nrows);
$pdl .= ($hdr->{"TNULL$i"} || 0);
my $lenpdl = zeroes(long, $nrows);
$tbl->{"len_".$hdr->{"TTYPE$i"}} = $lenpdl;
return $pdl;
}
sub _rdP {
my( $type, $pdl, $row, $strptr, $rpt, $extra, $heap_ptr, $tbl, $i ) = @_;
$extra =~ s/\((.*)\)/$1/;
my $s = $pdl->get_dataref;
# Read current offset and length
my $oflen = pdl(long,0,0);
my $ofs = $oflen->get_dataref;
substr($$ofs,0,8) = substr($$strptr, 0, 8, '');
$oflen->upd_data;
bswap4($oflen);
# Now get 'em
my $rlen = $extra * PDL::Core::howbig($type); # rpt should be unity, otherwise we'd have to multiply it in.
my $readlen = $oflen->at(0) * PDL::Core::howbig($type);
# Store the length of this row in the header field.
$tbl->{"len_".$tbl->{hdr}->{"TTYPE$i"}}->dice_axis(0,$row) .= $oflen->at(0);
print "_rdP: pdl is ",join("x",$pdl->dims),"; reading row $row - readlen is $readlen\n"
if($PDL::debug);
# Copy the data into the output PDL.
my $of = $oflen->at(1);
substr($$s, $row*$rlen, $readlen) = substr($$heap_ptr, $of, $readlen);
$pdl->upd_data;
}
sub _wrP {
die "This code path should never execute - you are trying to write a variable-length array via direct handler, which is wrong. Check the code path in PDL::wfits.\n";
}
sub _fnP {
my( $type, $pdl, $n, $hdr, $opt ) = @_;
my $post = PDL::Core::howbig($type);
unless( isbigendian() ) {
if( $post == 2 ) { bswap2($pdl); }
elsif( $post == 4 ) { bswap4($pdl); }
elsif( $post == 8 ) { bswap8($pdl); }
elsif( $post != 1 ) {
print STDERR "Unknown swapsize $post! This is a bug. You (may) lose..\n";
}
}
my $tzero = defined($hdr->{"TZERO$n"}) ? $hdr->{"TZERO$n"} : 0.0;
my $tscal = defined($hdr->{"TSCAL$n"}) ? $hdr->{"TSCAL$n"} : 1.0;
my $valid_tzero = ($tzero != 0.0);
my $valid_tscal = ($tscal != 1.0);
if( length($hdr->{"TZERO$n"}) or length($hdr->{"TSCAL$n"})) {
print STDERR "Ignoring TSCAL/TZERO keywords for binary table array column - sorry, my mind is blown!\n";
}
return $pdl->mv(-1,0);
}
##############################
#
# _rfits_bintable -- snarf up a binary table, returning the named columns
# in a hash ref, each element of which is a PDL or list ref according to the
# header.
#
sub _rfits_bintable ($$$$) {
my $fh = shift;
my $hdr = shift;
my $opt = shift;
##shift; ### (ignore $pdl argument)
print STDERR "Warning: BINTABLE extension should have BITPIX=8, found ".$hdr->{BITPIX}.". Winging it...\n" unless($hdr->{BITPIX} == 8);
### Allocate the main table hash
my $tbl = {}; # Table is indexed by name
$tbl->{hdr} = $hdr;
$tbl->{tbl} = 'binary';
my $tmp = []; # Temporary space is indexed by col. no.
### Allocate all the columns of the table, checking for consistency
### and name duplication.
barf "Binary extension has no fields (TFIELDS=0)" unless($hdr->{TFIELDS});
my $rowlen = 0;
for my $i(1..$hdr->{TFIELDS}) {
my $iter;
my $name = $tmp->[$i]->{name} = $hdr->{"TTYPE$i"} || "COL";
### Allocate some temp space for dealing with this column
my $tmpcol = $tmp->[$i] = {};
### Check for duplicate name and change accordingly...
while( defined( $tbl->{ $name } ) || ($name eq "COL") ) {
$iter++;
$name = ($hdr->{"TTYPE$i"} )."_$iter";
}
# (Check avoids scrozzling comment fields unnecessarily)
$hdr->{"TTYPE$i"} = $name unless($hdr->{"TTYPE$i"} eq $name);
$tmpcol->{name} = $name;
if( ($hdr->{"TFORM$i"}) =~ m/(\d*)(P?.)(.*)/ ) {
($tmpcol->{rpt}, $tmpcol->{type}, $tmpcol->{extra}) = ($1,$2,$3);
# added by DJB 03.18/04 - works for my data file but is it correct?
$tmpcol->{rpt} ||= 1;
} else {
barf "Couldn't parse BINTABLE form '"
. $hdr->{"TFORM$i"}
. "' for column $i ("
. $hdr->{"TTYPE$i"}
. ")\n" if($hdr->{"TFORM$i"});
barf "BINTABLE header is missing a crucial field, TFORM$i. I give up.\n";
}
# "A bit array consists of an integral number of bytes with trailing bits zero"
$tmpcol->{rpt} = PDL::ceil($tmpcol->{rpt}/8) if ($tmpcol->{type} eq 'X');
$tmpcol->{handler} = # sic - assignment
$PDL::IO::FITS_bintable_handlers->{ $tmpcol->{type} }
or
barf "Unknown type ".$hdr->{"TFORM$i"}." in BINTABLE column $i "."("
. $hdr->{"TTYPE$i"}
. ")\n That invalidates the byte count, so I give up.\n" ;
### Allocate the actual data space and increment the row length
my $foo = $tmpcol->{handler}->[0];
if( ref ($foo) eq 'CODE' ) {
$tmpcol->{data} = $tbl->{$name} =
&{$foo}( $tmpcol->{rpt}
, $tmpcol->{extra}
, $hdr->{NAXIS2}
, \$rowlen
, $hdr # hdr and column number are passed in, in case extra info needs to be gleaned.
, $i
, $tbl
);
} else {
$tmpcol->{data} = $tbl->{$name} =
PDL->new_from_specification(
$foo
, $tmpcol->{rpt},
, $hdr->{NAXIS2} || 1
);
$rowlen += PDL::Core::howbig($foo) * $tmpcol->{rpt};
}
print "Prefrobnicated col. $i "."(".$hdr->{"TTYPE$i"}.")\ttype is ".$hdr->{"TFORM$i"}."\t length is now $rowlen\n" if($PDL::debug);
} ### End of prefrobnication loop...
barf "Calculated row length is $rowlen, hdr claims ".$hdr->{NAXIS1}
. ". Giving up. (Set \$PDL::debug for more detailed info)\n"
if($rowlen != $hdr->{NAXIS1});
### Snarf up the whole extension, and pad to 2880 bytes...
my ($rawtable, $heap, $n1, $n2);
# n1 gets number of bytes in table plus gap
$n1 = $hdr->{NAXIS1} * $hdr->{NAXIS2};
if($hdr->{THEAP}) {
if($hdr->{THEAP} < $n1) {
die("Inconsistent THEAP keyword in binary table\n");
} else {
$n1 = $hdr->{THEAP};
}
}
# n2 gets number of bytes in heap (PCOUNT - gap).
$n2 = $hdr->{PCOUNT} + ($hdr->{THEAP} ? ($hdr->{NAXIS1}*$hdr->{NAXIS2} - $hdr->{THEAP}) : 0);
$n2 = ($n1+$n2-1)+2880 - (($n1+$n2-1) % 2880) - $n1;
print "Reading $n1 bytes of table data and $n2 bytes of heap data....\n"
if($PDL::verbose);
$fh->read($rawtable, $n1);
if($n2) {
$fh->read($heap, $n2)
} else {
$heap = which(pdl(0)); # empty PDL
}
### Frobnicate the rows, one at a time.
for my $row(0..$hdr->{NAXIS2}-1) {
my $prelen = length($rawtable);
for my $i(1..$hdr->{TFIELDS}) {
my $tmpcol = $tmp->[$i];
my $reader = $tmpcol->{handler}->[1];
if(ref $reader eq 'CODE') {
&{$reader}( $tmpcol->{data}
, $row
, \$rawtable
, $tmpcol->{rpt}
, $tmpcol->{extra}
, \$heap
, $tbl
, $i
);
} elsif(ref $tmpcol->{data} eq 'PDL') {
my $rlen = $reader * $tmpcol->{rpt};
substr( ${$tmpcol->{data}->get_dataref()}, $rlen * $row, $rlen ) =
substr( $rawtable, 0, $rlen, '');
$tmpcol->{data}->upd_data;
} else {
die ("rfits: Bug detected: inconsistent types in BINTABLE reader\n");
}
} # End of TFIELDS loop
if(length($rawtable) ne $prelen - $hdr->{NAXIS1}) {
die "rfits BINTABLE: Something got screwed up -- expected a length of $prelen - $hdr->{NAXIS1}, got ".length($rawtable).". Giving up.\n";
}
} # End of NAXIS2 loop
#
# Note: the above code tickles a bug in most versions of the emacs
# prettyprinter. The following "for my $i..." should be indented
# two spaces.
#
### Postfrobnicate the columns.
for my $i(1..$hdr->{TFIELDS}) { # Postfrobnication loop
my $tmpcol = $tmp->[$i];
my $post = $tmpcol->{handler}->[3];
if(ref $post eq 'CODE') {
# Do postprocessing on all special types
$tbl->{$tmpcol->{name}} = &$post($tmpcol->{data}, $i, $hdr, $opt);
} elsif( (ref ($tmpcol->{data})) eq 'PDL' ) {
# Do standard PDL-type postprocessing
## Is this call to upd_data necessary?
## I think not. (reinstate if there are bugs)
# $tmpcol->{data}->upd_data;
# Do swapping as necessary
unless( isbigendian() ) {
if( $post == 2 ) { bswap2($tmpcol->{data}); }
elsif( $post == 4 ) { bswap4($tmpcol->{data}); }
elsif( $post == 8 ) { bswap8($tmpcol->{data}); }
elsif( $post != 1 ) {
print STDERR "Unknown swapsize $post for column $i ("
. $tmpcol->{name} . ")! This is a bug. Winging it.\n";
}
}
# Apply scaling and badval keys, which are illegal for A, L, and X
# types but legal for anyone else. (A shouldn't be here, L and X
# might be)
if($opt->{bscale}) {
my $tzero = defined($hdr->{"TZERO$i"}) ? $hdr->{"TZERO$i"} : 0.0;
my $tscal = defined($hdr->{"TSCAL$i"}) ? $hdr->{"TSCAL$i"} : 1.0;
# The $valid_<foo> flags let us avoid unnecessary arithmetic.
my $valid_tzero = ($tzero != 0.0);
my $valid_tscal = ($tscal != 1.0);
if ( $valid_tzero or $valid_tscal ) {
if ( $tmpcol->{type} =~ m/[ALX]/i ) {
print STDERR "Ignoring illegal TSCAL/TZERO keywords for col $i (" .
$tmpcol->{name} . "); type is $tmpcol->{type})\n";
} else { # Not an illegal type -- do the scaling
# (Normal execution path)
# Use PDL's cleverness to work out the final datatype...
my $tmp;
my $pdl = $tmpcol->{data};
if($pdl->badflag() == 0) {
$tmp = $pdl->flat()->slice("0:0");
} elsif($pdl->ngood > 0) {
my $index = which( $pdl->flat()->isbad()==0 )->at(0);
$tmp = $pdl->flat()->slice("${index}:${index}");
} else { # Do nothing if it's all bad....
$tmp = $pdl;
}
# Figure out the type by scaling the single element.
$tmp = ($tmp - $tzero) * $tscal;
# Convert the whole PDL as necessary for the scaling.
$tmpcol->{data} = $pdl->convert($tmp->type)
if($tmp->get_datatype != $pdl->get_datatype);
# Do the scaling.
$tmpcol->{data} -= $tzero;
$tmpcol->{data} *= $tscal;
} # End of legal-type conditional
} # End of valid_<foo> conditional
delete $hdr->{"TZERO$i"};
delete $hdr->{"TSCAL$i"};
} else { # $opt->{bscale} is zero; don't scale.
# Instead, copy factors into individual column headers.
my %foo = ("TZERO$i"=>"BZERO",
"TSCAL$i"=>"BSCALE",
"TUNIT$i"=>"BUNIT");
for my $a(keys %foo) {
$tmpcol->{data}->hdr->{$foo{$a}} = $hdr->{$a}
if( defined($hdr->{$a}) );
}
} # End of bscale checking...
# Try to grab a TDIM dimension list...
my @tdims = ();
$tmpcol->{data}->hdrcpy(1);
if(exists($hdr->{"TDIM$i"})) {
if($hdr->{"TDIM$i"} =~ m/\((\s*\d+(\s*\,\s*\d+)*\s*)\)/) {
my $a = $1;
@tdims = map { $_+0 } split(/\,/,$a);
my $tdims = pdl(@tdims);
my $tds = $tdims->prodover;
if($tds > $tmpcol->{data}->dim(0)) {
die("rfits: TDIM$i is too big in binary table. I give up.\n");
} elsif($tds < $tmpcol->{data}->dim(0)) {
print STDERR "rfits: WARNING: TDIM$i is too small in binary table. Carrying on...\n";
}
$tmpcol->{data}->hdrcpy(1);
my $td = $tmpcol->{data}->xchg(0,1);
$tbl->{$tmpcol->{name}} = $td->reshape($td->dim(0),@tdims);
} else {
print STDERR "rfits: WARNING: invalid TDIM$i field in binary table. Ignoring.\n";
}
} else {
# Copy the PDL out to the table itself.
if($hdr->{NAXIS2} > 0 && $tmpcol->{rpt}>0) {
$tbl->{$tmpcol->{name}} =
( ( $tmpcol->{data}->dim(0) == 1 )
? $tmpcol->{data}->slice("(0)")
: $tmpcol->{data}->xchg(0,1)
);
}
}
# End of PDL postfrobnication case
} elsif(defined $post) {
print STDERR "Postfrobnication bug detected in column $i ("
. $tmpcol->{name}. "). Winging it.\n";
}
} # End of postfrobnication loop over columns
### Check whether this is actually a compressed image, in which case we hand it off to the image decompressor
if($hdr->{ZIMAGE} && $hdr->{ZCMPTYPE} && $opt->{expand}) {
eval 'use PDL::Compression;';
if($@) {
die "rfits: error while loading PDL::Compression to unpack tile-compressed image.\n\t$@\n\tUse option expand=>0 to get the binary table.\n";
}
return _rfits_unpack_zimage($tbl,$opt);
}
### Done!
return $tbl;
}
##############################
##############################
#
# _rfits_unpack_zimage - unpack a binary table that actually contains a compressed image
#
# This is implemented to support the partial spec by White, Greenfield, Pence, & Tody dated Oct 21, 1999,
# with reverse-engineered bits from the CFITSIO3240 library where the spec comes up short.
#
## keyword is a compression algorithm name; value is an array ref containing tile compressor/uncompressor.
## The compressor/uncompressor takes (nx, ny, data) and returns the compressed/uncompressed data.
## The four currently (2010) supported-by-CFITSIO compressors are listed. Not all have been ported, hence
## the "undef"s in the table. --CED.
## Master jump table for compressors/uncompressors.
## 0 element of each array ref is the compressor; 1 element is the uncompressor.
## Uncompressed tiles are reshaped to rows of a tile table handed in (to the compressor)
## or out (of the uncompressor); actual tile shape is fed in as $params->{tiledims}, so
## higher-than-1D compression algorithms can be used.
our $tile_compressors = {
'GZIP_1' => undef
, 'RICE_1' => [ ### RICE_1 compressor
sub { my ($tiles, $tbl, $params) = @_;
my ($compressed,$len) = $tiles->rice_compress($params->{BLOCKSIZE} || 32);
$tbl->{ZNAME1} = "BLOCKSIZE";
$tbl->{ZVAL1} = $params->{BLOCKSIZE};
$tbl->{ZNAME2} = "BYTEPIX";
$tbl->{ZVAL2} = PDL::howbig($tiles->get_datatype);
# Convert the compressed data to a byte array...
if($tbl->{ZVAL2} != 1) {
my @dims = $compressed->dims;
$dims[0] *= $tbl->{ZVAL2};
my $cd2 = zeroes( byte, @dims );
my $cdr = $compressed->get_dataref;
my $cd2r = $cd2->get_dataref;
$$cd2r = $$cdr;
$cd2->upd_data;
$compressed = $cd2;
}
$tbl->{COMPRESSED_DATA} = $compressed->mv(0,-1);
$tbl->{len_COMPRESSED_DATA} = $len;
},
### RICE_1 expander
sub { my ($tilesize, $tbl, $params) = @_;
my $compressed = $tbl->{COMPRESSED_DATA} -> mv(-1,0);
my $bytepix = $params->{BYTEPIX} || 4;
# Put the compressed tile bitstream into a variable of appropriate type.
# This works by direct copying of the PDL data, which sidesteps local
# byteswap issues in the usual case that the compressed stream is type
# byte. But it does add the extra complication that we have to pad the
# compressed array out to a factor-of-n elements in certain cases.
if( PDL::howbig($compressed->get_datatype) != $bytepix ) {
my @dims = $compressed->dims;
my $newdim0;
my $scaledim0;
$scaledim0 = $dims[0] * PDL::howbig($compressed->get_datatype) / $bytepix;
$newdim0 = pdl($scaledim0)->ceil;
if($scaledim0 != $newdim0) {
my $padding = zeroes($compressed->type,
($newdim0-$scaledim0) * $bytepix / PDL::howbig($compressed->get_datatype),
@dims[1..$#dims]
);
$compressed = $compressed->append($padding);
}
my $c2 = zeroes( $type_table_2->{$bytepix * 8}, $newdim0, @dims[1..$#dims] );
my $c2dr = $c2->get_dataref;
my $cdr = $compressed->get_dataref;
substr($$c2dr,0,length($$cdr)) = $$cdr;
$c2->upd_data;
$compressed = $c2;
}
return $compressed->rice_expand( $tilesize, $params->{BLOCKSIZE} || 32);
}
]
, 'PLIO_1' => undef
, 'HCOMPRESS_1' => undef
};
## List of the eight mandatory keywords and their ZIMAGE preservation pigeonholes, for copying after we
## expand an image.
our $hdrconv = {
"ZSIMPLE" => "SIMPLE",
"ZTENSION" => "XTENSION",
"ZEXTEND" => "EXTEND",
"ZBLOCKED" => "BLOCKED",
"ZPCOUNT" => "PCOUNT",
"ZGCOUNT" => "GCOUNT",
"ZHECKSUM" => "CHECKSUM",
"ZDATASUM" => "DATASUM"
};
sub _rfits_unpack_zimage($$$) {
my $tbl = shift;
my $opt = shift;
my $hdr = $tbl->{hdr};
my $tc = $tile_compressors->{$hdr->{ZCMPTYPE}};
unless(defined $tc) {
print STDERR "WARNING: rfits: Compressed image has unsupported comp. type ('$hdr->{ZCMPTYPE}').\n";
return $tbl;
}
#############
# Declare the output image
my $type;
unless($type_table->{$hdr->{ZBITPIX}}) {
print STDERR "WARNING: rfits: unrecognized ZBITPIX value $hdr->{ZBITPIX} in compressed image. Assuming -64.\n";
$type = $type_table_2->{-64};
} else {
$type = $type_table_2->{$hdr->{ZBITPIX}};
}
my @dims;
for my $i(1..$hdr->{ZNAXIS}) {
push(@dims,$hdr->{"ZNAXIS$i"});
}
my $pdl = PDL->new_from_specification( $type, @dims );
############
# Calculate tile size and allocate a working tile.
my @tiledims;
for my $i(1..$hdr->{ZNAXIS}) {
if($hdr->{"ZTILE$i"}) {
push(@tiledims, $hdr->{"ZTILE$i"});
} else {
push(@tiledims, (($i==1) ? $hdr->{ZNAXIS1} : 1) );
}
}
# my $tile = PDL->new_from_specification( $type, @tiledims );
my $tiledims = pdl(@tiledims);
my $tilesize = $tiledims->prodover;
###########
# Calculate tile counts and compare to the number of stored tiles
my $ntiles = ( pdl(@dims) / pdl(@tiledims) )->ceil;
my $tilecount = $ntiles->prodover;
if($tilecount != $tbl->{COMPRESSED_DATA}->dim(0)) {
printf STDERR "WARNING: rfits: compressed data has $hdr->{NAXIS2} rows; we expected $tilecount (",join("x",list $ntiles),"). Winging it...\n";
}
##########
# Quantization - ignore for now
if($hdr->{ZQUANTIZ}) {
printf STDERR "WARNING: rfits: ignoring quantization/dithering (ZQUANTIZ=$hdr->{ZQUANTIZ})\n";
}
##########
# Snarf up compression parameters
my $params = {};
my $i = 1;
while( $hdr->{"ZNAME$i"} ) {
$params->{ $hdr->{"ZNAME$i"} } = $hdr->{"ZVAL$i"};
$i++;
}
##########
# Enumerate tile coordinates for looping, and the corresponding row number
my ($step, @steps, $steps);
$step = 1;
for my $i(0..$ntiles->nelem-1) {
push(@steps, $step);
$step *= $ntiles->at($i);
}
$step = pdl(@steps);
# $tiledex is 2-D (coordinate-index, list-index) and enumerates all tiles by image
# location; $tilerow is 1-D (list-index) and enumerates all tiles by row in the bintable
my $tiledex = PDL::ndcoords($ntiles->list)->mv(0,-1)->clump($ntiles->dim(0))->mv(-1,0);
$TMP::tiledex = $tiledex;
my $tilerow = ($tiledex * $step)->sumover;
##########
# Restore all the tiles at once
my $tiles = &{$tc->[1]}( $tilesize, $tbl, $params ); # gets a (tilesize x ntiles) output
my $patchup = which($tbl->{len_COMPRESSED_DATA} <= 0);
if($patchup->nelem) {
unless(defined $tbl->{UNCOMPRESSED_DATA}) {
die "rfits: need some uncompressed data for missing compressed rows, but none were found!\n";
}
if($tbl->{UNCOMPRESSED_DATA}->dim(1) != $tilesize) {
die "rfits: tile size is $tilesize, but uncompressed data rows have size ".$tbl->{UNCOMPRESSED_DATA}->dim(1)."\n";
}
$tiles->dice_axis(1,$patchup) .= $tbl->{UNCOMPRESSED_DATA}->dice_axis(0,$patchup)->xchg(0,1);
}
##########
# Slice up the output image plane into tiles, and use the threading engine
# to assign everything to them.
my $cutup = $pdl->range( $tiledex, [@tiledims], 't') # < ntiles, tilesize0..tilesizen >
->mv(0,-1) # < tilesize0..tilesizen, ntiles >
->clump($tiledims->nelem); # < tilesize, ntiles >
$cutup .= $tiles; # dump all the tiles at once into the image - they flow back to $pdl.
undef $cutup; # sever connection to prevent expensive future dataflow.
##########
# Perform scaling if necessary ( Just the ZIMAGE quantization step )
# bscaling is handled farther down with treat_bscale.
$pdl *= $hdr->{ZSCALE} if defined($hdr->{ZSCALE});
$pdl += $hdr->{ZZERO} if defined($hdr->{ZZERO});
##########
# Put the FITS header into the newly reconstructed image.
delete $hdr->{PCOUNT};
delete $hdr->{GCOUNT};
# Copy the mandated name-conversions
for my $k(keys %$hdrconv) {
if($hdr->{$k}) {
$hdr->{$hdrconv->{$k}} = $hdr->{$k};
delete $hdr->{$k};
}
}
# Clean up the ZFOO extensions and table cruft
for my $k(keys %{$pdl->hdr}) {
delete $pdl->hdr->{$k} if(
$k=~ m/^Z/ ||
$k eq "TFIELDS" ||
$k =~ m/^TTYPE/ ||
$k =~ m/^TFORM/
);
}
if(exists $hdr->{BSCALE}) {
$pdl = treat_bscale($pdl, $hdr);
}
$pdl->sethdr($hdr);
$pdl->hdrcpy($opt->{hdrcpy});
return $pdl;
}
=head2 wfits()
=for ref
Simple PDL FITS writer
=for example
wfits $pdl, 'filename.fits', [$BITPIX], [$COMPRESSION_OPTIONS];
wfits $hash, 'filename.fits', [$OPTIONS];
$pdl->wfits('foo.fits',-32);
Suffix magic:
# Automatically compress through pipe to gzip
wfits $pdl, 'filename.fits.gz';
# Automatically compress through pipe to compress
wfits $pdl, 'filename.fits.Z';
=over 3
=item * Ordinary (PDL) data handling:
If the first argument is a PDL, then the PDL is written out as an
ordinary FITS file with a single Header/Data Unit of data.
$BITPIX is then optional and coerces the output data type according to
the standard FITS convention for the BITPIX field (with positive
values representing integer types and negative values representing
floating-point types).
If C<$pdl> has a FITS header attached to it (actually, any hash that
contains a C<< SIMPLE=>T >> keyword), then that FITS header is written
out to the file. The image dimension tags are adjusted to the actual
dataset. If there's a mismatch between the dimensions of the data and
the dimensions in the FITS header, then the header gets corrected and
a warning is printed.
If C<$pdl> is a slice of another PDL with a FITS header already
present (and header copying enabled), then you must be careful.
C<wfits> will remove any extraneous C<NAXISn> keywords (per the FITS
standard), and also remove the other keywords associated with that
axis: C<CTYPEn>, C<CRPIXn>, C<CRVALn>, C<CDELTn>, and C<CROTAn>. This
may cause confusion if the slice is NOT out of the last dimension:
C<wfits($a(:,(0),:),'file.fits');> and you would be best off adjusting
the header yourself before calling C<wfits>.
You can tile-compress images according to the CFITSIO extension to the
FITS standard, by adding an option hash to the arguments:
=over 3
=item compress
This can be either unity, in which case Rice compression is used,
or a (case-insensitive) string matching the CFITSIO compression
type names. Currently supported compression algorithms are:
=over 3
=item * RICE_1 - linear Rice compression
This uses limited-symbol-length Rice compression, which works well on
low entropy image data (where most pixels differ from their neighbors
by much less than the dynamic range of the image).
=back
=item tilesize (default C<[-1,1]>)
This specifies the dimension of the compression tiles, in pixels. You
can hand in a PDL, a scalar, or an array ref. If you specify fewer
dimensions than exist in the image, the last dim is repeated - so "32"
yields 32x32 pixel tiles in a 2-D image. A dim of -1 in any dimension
duplicates the image size, so the default C<[-1,1]> causes compression
along individual rows.
=item tilesize (RICE_1 only; default C<32>)
For RICE_1, BLOCKSIZE indicates the number of pixel samples to use
for each compression block within the compression algorithm. The
blocksize is independent of the tile dimensions. For RICE
compression the pixels from each tile are arranged in normal pixel
order (early dims fastest) and compressed as a linear stream.
=back
=item * Table handling:
If you feed in a hash ref instead of a PDL, then the hash ref is
written out as a binary table extension. The hash ref keys are
treated as column names, and their values are treated as the data to
be put in each column.
For numeric information, the hash values should contain PDLs. The 0th
dim of the PDL runs across rows, and higher dims are written as
multi-value entries in the table (e.g. a 7x5 PDL will yield a single
named column with 7 rows and 5 numerical entries per row, in a binary
table). Note that this is slightly different from the usual concept
of threading, in which dimension 1 runs across rows.
ASCII tables only allow one entry per column in each row, so
if you plan to write an ASCII table then all of the values of C<$hash>
should have at most one dim.
All of the columns' 0 dims must agree in the threading sense. That is to
say, the 0th dimension of all of the values of C<$hash> should be the
same (indicating that all columns have the same number of rows). As
an exception, if the 0th dim of any of the values is 1, or if that
value is a PDL scalar (with 0 dims), then that value is "threaded"
over -- copied into all rows.
Data dimensions higher than 2 are preserved in binary tables,
via the TDIMn field (e.g. a 7x5x3 PDL is stored internally as
seven rows with 15 numerical entries per row, and reconstituted
as a 7x5x3 PDL on read).
Non-PDL Perl scalars are treated as strings, even if they contain
numerical values. For example, a list ref containing 7 values is
treated as 7 rows containing one string each. There is no such thing
as a multi-string column in FITS tables, so any nonscalar values in
the list are stringified before being written. For example, if you
pass in a perl list of 7 PDLs, each PDL will be stringified before
being written, just as if you printed it to the screen. This is
probably not what you want -- you should use L<glue|glue> to connect
the separate PDLs into a single one. (e.g. C<$a-E<gt>glue(1,$b,$c)-E<gt>mv(1,0)>)
The column names are case-insensitive, but by convention the keys of
C<$hash> should normally be ALL CAPS, containing only digits, capital
letters, hyphens, and underscores. If you include other characters,
then case is smashed to ALL CAPS, whitespace is converted to
underscores, and unrecognized characters are ignored -- so if you
include the key "Au Purity (%)", it will be written to the file as a
column that is named "AU_PURITY". Since this is not guaranteed to
produce unique column names, subsequent columns by the same name are
disambiguated by the addition of numbers.
You can specify the use of variable-length rows in the output, saving
space in the file. To specify variable length rows for a column named
"FOO", you can include a separate key "len_FOO" in the hash to be
written. The key's value should be a PDL containing the number of
actual samples in each row. The result is a FITS P-type variable
length column that, upon read with C<rfits()>, will restore to a field
named FOO and a corresponding field named "len_FOO". Invalid data in
the final PDL consist of a padding value (which defaults to 0 but
which you may set by including a TNULL field in the hdr specificaion).
Variable length arrays must be 2-D PDLs, with the variable length in
the 1 dimension.
Two further special keys, 'hdr' and 'tbl', can contain
meta-information about the type of table you want to write. You may
override them by including an C<$OPTIONS> hash with a 'hdr' and/or
'tbl' key.
The 'tbl' key, if it exists, must contain either 'ASCII' or 'binary'
(case-insensitive), indicating whether to write an ascii or binary
table. The default is binary. [ASCII table writing is planned but
does not yet exist].
You can specify the format of the table quite specifically with the
'hdr' key or option field. If it exists, then the 'hdr' key should
contain fields appropriate to the table extension being used. Any
field information that you don't specify will be filled in
automatically, so (for example) you can specify that a particular
column name goes in a particular position, but allow C<wfits> to
arrange the other columns in the usual alphabetical order into any
unused slots that you leave behind. The C<TFORMn>, C<TFIELDS>,
C<PCOUNT>, C<GCOUNT>, C<NAXIS>, and C<NAXISn> keywords are ignored:
their values are calculated based on the hash that you supply. Any
other fields are passed into the final FITS header verbatim.
As an example, the following
$a = long(1,2,4);
$b = double(1,2,4);
wfits { 'COLA'=>$a, 'COLB'=>$b }, "table1.fits";
will create a binary FITS table called F<table1.fits> which
contains two columns called C<COLA> and C<COLB>. The order
of the columns is controlled by setting the C<TTYPEn>
keywords in the header array, so
$h = { 'TTYPE1'=>'Y', 'TTYPE2'=>'X' };
wfits { 'X'=>$a, 'Y'=>$b, hdr=>$h }, "table2.fits";
creates F<table2.fits> where the first column is
called C<Y> and the second column is C<X>.
=item * multi-value handling
If you feed in a perl list rather than a PDL or a hash, then
each element is written out as a separate HDU in the FITS file.
Each element of the list must be a PDL or a hash. [This is not implemented
yet but should be soon!]
=item * DEVEL NOTES
ASCII tables are not yet handled but should be.
Binary tables currently only handle one vector (up to 1-D array)
per table entry; the standard allows more, and should be fully implemented.
This means that PDL::Complex piddles currently can not be written to
disk.
Handling multidim arrays implies that perl multidim lists should also be
handled.
=back
=for bad
For integer types (ie C<BITPIX E<gt> 0>), the C<BLANK> keyword is set
to the bad value. For floating-point types, the bad value is
converted to NaN (if necessary) before writing.
=cut
*wfits = \&PDL::wfits;
BEGIN {
@PDL::IO::FITS::wfits_keyword_order =
('SIMPLE','BITPIX','NAXIS','NAXIS1','BUNIT','BSCALE','BZERO');
@PDL::IO::FITS::wfits_numbered_keywords =
('CTYPE','CRPIX','CRVAL','CDELT','CROTA');
}
# Until we do a rewrite these have to be file global since they
# are used by the wheader routine
my (%hdr, $nbytes);
# Local utility routine of wfits()
sub wheader ($$) {
my $fh = shift;
my $k = shift;
if ($k =~ m/(HISTORY|COMMENT)/) {
my $hc = $1;
return unless ref($hdr{$k}) eq 'ARRAY';
foreach my $line (@{$hdr{$k}}) {
$fh->printf( "$hc %-72s", substr($line,0,72) );
$nbytes += 80;
}
delete $hdr{$k};
} else {
# Check that we are dealing with a scalar value in the header
# Need to make sure that the header does not include PDLs or
# other structures. Return unless $hdr{$k} is a scalar.
my($hdrk) = $hdr{$k};
if(ref $hdrk eq 'ARRAY') {
$hdrk = join("\n",@$hdrk);
}
return unless not ref($hdrk);
if ($hdrk eq "") {
$fh->printf( "%-80s", substr($k,0,8) );
} else {
$fh->printf( "%-8s= ", substr($k,0,8) );
my $com = ( ref $hdr{COMMENT} eq 'HASH' ) ?
$hdr{COMMENT}{$k} : undef;
if ($hdrk =~ /^ *([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))? *$/) { # Number?
my $cl=60-($com ? 2 : 0);
my $end=' ' x $cl;
$end =' /'. $com if($com);
$fh->printf( "%20s%-50s", substr($hdrk,0,20),
substr($end, 0, 50) );
} elsif ($hdrk eq 'F' or $hdrk eq 'T') {
# Logical flags ?
$fh->printf( "%20s", $hdrk );
my $end=' ' x 50;
$end =' /'.$com if($com);
$fh->printf( "%-50s", $end );
} else {
# Handle strings, truncating as necessary
# (doesn't do multicard strings like Astro::FITS::Header does)
# Convert single quotes to doubled single quotes
# (per FITS standard)
my($st) = $hdrk;
$st =~ s/\'/\'\'/g;
my $sl=length($st)+2;
my $cl=70-$sl-($com ? 2 : 0);
$fh->print( "'$st'" );
if (defined $com) {
$fh->printf( " /%-$ {cl}s", substr($com, 0, $cl) );
} else {
$fh->printf( "%-$ {cl}s", ' ' x $cl );
}
}
}
$nbytes += 80; delete $hdr{$k};
}
delete $hdr{COMMENT}{$k} if ref $hdr{COMMENT} eq 'HASH';
1;
}
# Write a PDL to a FITS format file
#
sub PDL::wfits {
barf 'Usage: wfits($pdl,$file,[$BITPIX],[{options}])' if $#_<1 || $#_>3;
my ($pdl,$file,$a,$b) = @_;
my ($opt, $BITPIX);
local $\ = undef; # fix sf.net bug #3394327
if(ref $a eq 'HASH') {
$a = $opt;
$BITPIX = $b;
} elsif(ref $b eq 'HASH') {
$BITPIX = $a;
$opt = $b;
}
my ($k, $buff, $off, $ndims, $sz);
local $SIG{PIPE};
if ($file =~ /\.gz$/) { # Handle suffix-style compression
$SIG{PIPE}= sub {}; # Prevent crashing if gzip dies
$file = "|gzip -9 > $file";
}
elsif ($file =~ /\.Z$/) {
$SIG{PIPE}= sub {}; # Prevent crashing if compress dies
$file = "|compress > $file";
}
else{
$file = ">$file";
}
#### Figure output type
# unless( UNIVERSAL::isa($pdl,'PDL') ) {
# my $ref = ref($pdl) || "";
# if($ref eq 'HASH') {
# my $fh = IO::File->new( $file )
# or barf "Could not open $file\n";
# _wfits_nullhdu($fh);
# # default to binary table if none specified
# my $table_type = exists $pdl->{tbl} ?
# ($pdl->{tbl} =~ m/^a/i ? 'ascii' : 'binary') :
# "binary";
# _wfits_table($fh,$pdl,$table_type);
# $fh->close;
# return;
# } else {
# barf('wfits: multiple output xtensions not supported\n')
# }
# }
my @outputs = ();
my $issue_nullhdu;
if( UNIVERSAL::isa($pdl,'PDL') ) {
$issue_nullhdu = 0;
push(@outputs, $pdl);
} elsif( ref($pdl) eq 'HASH' ) {
$issue_nullhdu = 1;
push(@outputs, $pdl);
} elsif( ref($pdl) eq 'ARRAY' ) {
$issue_nullhdu = 1;
@outputs = @$pdl;
} elsif( length(ref($pdl))==0 ) {
barf "wfits: needs a HASH or PDL argument to write out\n";
} else {
barf "wfits: unknown ref type ".ref($pdl)."\n";
}
## Open file & prepare to write binary info
my $fh = IO::File->new( $file )
or barf "Unable to create FITS file $file\n";
binmode $fh;
if($issue_nullhdu) {
_wfits_nullhdu($fh);
}
for $pdl(@outputs) {
if(ref($pdl) eq 'HASH') {
my $table_type = ( exists($pdl->{tbl}) ?
($pdl->{tbl} =~ m/^a/i ? 'ascii' : 'binary') :
"binary"
);
_wfits_table($fh,$pdl,$table_type);
} elsif( UNIVERSAL::isa($pdl,'PDL') ) {
### Regular image writing.
$BITPIX = "" unless defined $BITPIX;
if ($BITPIX eq "") {
$BITPIX = 8 if $pdl->get_datatype == $PDL_B;
$BITPIX = 16 if $pdl->get_datatype == $PDL_S || $pdl->get_datatype == $PDL_US;
$BITPIX = 32 if $pdl->get_datatype == $PDL_L;
$BITPIX = -32 if $pdl->get_datatype == $PDL_F;
$BITPIX = -64 if $pdl->get_datatype == $PDL_D;
}
my $convert = sub { return $_[0] }; # Default - do nothing
$convert = sub {byte($_[0])} if $BITPIX == 8;
$convert = sub {short($_[0])} if $BITPIX == 16;
$convert = sub {long($_[0])} if $BITPIX == 32;
$convert = sub {float($_[0])} if $BITPIX == -32;
$convert = sub {double($_[0])} if $BITPIX == -64;
# Automatically figure output scaling
my $bzero = 0; my $bscale = 1;
if ($BITPIX>0) {
my $min = $pdl->min;
my $max = $pdl->max;
my ($dmin,$dmax) = (0, 2**8-1) if $BITPIX == 8;
($dmin,$dmax) = (-2**15, 2**15-1) if $BITPIX == 16;
($dmin,$dmax) = (-2**31, 2**31-1) if $BITPIX == 32;
if ($min<$dmin || $max>$dmax) {
$bzero = $min - $dmin;
$max -= $bzero;
$bscale = $max/$dmax if $max>$dmax;
}
print "BSCALE = $bscale && BZERO = $bzero\n" if $PDL::verbose;
}
# Check for tile-compression format for the image, and handle it.
# We add the image-compression format tags and reprocess the whole
# shebang as a binary table.
if($opt->{compress}) {
croak "Placeholder -- tile compression not yet supported\n";
}
##############################
## Check header and prepare to write it out
my($h) = $pdl->gethdr();
# Extra logic: if we got handed a vanilla hash that that is *not* an Astro::FITS::Header, but
# looks like it's a FITS header encoded in a hash, then attempt to process it with
# Astro::FITS::Header before writing it out -- this helps with cleanup of tags.
if($PDL::Astro_FITS_Header and
defined($h) and
ref($h) eq 'HASH' and
!defined( tied %$h )
) {
my $all_valid_fits = 1;
for my $k(keys %$h) {
if(length($k) > 8 or
$k !~ m/^[A-Z_][A-Z\d\_]*$/i
) {
$all_valid_fits = 0;
last;
}
}
if($all_valid_fits) {
# All the keys look like valid FITS header keywords -- so
# create a tied FITS header object and use that instead.
my $afh = new Astro::FITS::Header( );
my %hh;
tie %hh, "Astro::FITS::Header", $afh;
for (keys %$h) {
$hh{$_} = $h->{$_};
}
$h = \%hh;
}
}
# Now decide whether to emit a hash or an AFH object
if(defined($h) &&
( (defined (tied %$h)) &&
(UNIVERSAL::isa(tied %$h,"Astro::FITS::Header")))
){
my $k;
##n############################
## Tied-hash code -- I'm too lazy to incorporate this into KGB's
## direct hash handler below, so I've more or less just copied and
## pasted with some translation. --CED
##
my $hdr = tied %$h;
#
# Put advertising comment in the SIMPLE field
#n
if($issue_nullhdu) {
$h->{XTENSION} = "IMAGE";
} else {
$h->{SIMPLE} = 'T';
my(@a) = $hdr->itembyname('SIMPLE');
$a[0]->comment('Created with PDL (http://pdl.perl.org)');
# and register it as a LOGICAL rather than a string
$a[0]->type('LOGICAL');
}
#
# Use tied interface to set all the keywords. Note that this
# preserves existing per-line comments, only changing the values.
#
$h->{BITPIX} = $BITPIX;
$h->{NAXIS} = $pdl->getndims;
my $correction = 0;
for $k(1..$h->{NAXIS}) {
$correction |= (exists $h->{"NAXIS$k"} and
$h->{"NAXIS$k"} != $pdl->dim($k-1)
);
$h->{"NAXIS$k"} = $pdl->getdim($k-1);
}
carp("Warning: wfits corrected dimensions of FITS header")
if($correction);
$h->{BUNIT} = "Data Value" unless exists $h->{BUNIT};
$h->{BSCALE} = $bscale if($bscale != 1);
$h->{BZERO} = $bzero if($bzero != 0);
if ( $pdl->badflag() ) {
if ( $BITPIX > 0 ) { my $a = &$convert(pdl(0.0));
$h->{BLANK} = $a->badvalue(); }
else { delete $h->{BLANK}; }
}
# Use object interface to sort the lines. This is complicated by
# the need for an arbitrary number of NAXIS<n> lines in the middle
# of the sorting. Keywords with a trailing '1' in the sorted-order
# list get looped over.
my($kk) = 0;
my(@removed_naxis) = ();
for $k(0..$#PDL::IO::FITS::wfits_keyword_order) {
my($kn) = 0;
my @index;
do { # Loop over numericised keywords (e.g. NAXIS1)
my $kw = $PDL::IO::FITS::wfits_keyword_order[$k]; # $kw get keyword
$kw .= (++$kn) if( $kw =~ s/\d$//); # NAXIS1 -> NAXIS<n>
@index = $hdr->index($kw);
if(defined $index[0]) {
if($kn <= $pdl->getndims){
$hdr->insert($kk, $hdr->remove($index[0]))
unless ($index[0] == $kk) ;
$kk++;
}
else{ #remove e.g. NAXIS3 from hdr if NAXIS==2
$hdr->removebyname($kw);
push(@removed_naxis,$kw);
}
}
} while((defined $index[0]) && $kn);
}
foreach my $naxis(@removed_naxis){
$naxis =~ m/(\d)$/;
my $n = $1;
foreach my $kw(@PDL::IO::FITS::wfits_numbered_keywords){
$hdr->removebyname($kw . $n);
}
}
#
# Delete the END card if necessary (for later addition at the end)
#
$hdr->removebyname('END');
#
# Make sure that the HISTORY lines all come at the end
#
my @hindex = $hdr->index('HISTORY');
for $k(0..$#hindex) {
$hdr->insert(-1-$k, $hdr->remove($hindex[-1-$k]));
}
#
# Make sure the last card is an END
#
$hdr->insert(scalar($hdr->cards),
Astro::FITS::Header::Item->new(Keyword=>'END'));
#
# Write out all the cards, and note how many bytes for later padding.
#
my $s = join("",$hdr->cards);
$fh->print( $s );
$nbytes = length $s;
} else {
##
## Legacy emitter (note different advertisement in the SIMPLE
## comment, for debugging!)
##
if($issue_nullhdu) {
$fh->printf( "%-80s", "XTENSION= 'IMAGE'" );
} else {
$fh->printf( "%-80s", "SIMPLE = T / PDL::IO::FITS::wfits (http://pdl.perl.org)" );
}
$nbytes = 80; # Number of bytes written so far
# Write FITS header
%hdr = ();
if (defined($h)) {
for (keys %$h) { $hdr{uc $_} = $$h{$_} } # Copy (ensuring keynames are uppercase)
}
delete $hdr{SIMPLE}; delete $hdr{'END'};
$hdr{BITPIX} = $BITPIX;
$hdr{BUNIT} = "Data Value" unless exists $hdr{BUNIT};
wheader($fh, 'BITPIX');
$ndims = $pdl->getndims; # Dimensions of data array
$hdr{NAXIS} = $ndims;
wheader($fh, 'NAXIS');
for $k (1..$ndims) { $hdr{"NAXIS$k"} = $pdl->getdim($k-1) }
for $k (1..$ndims) { wheader($fh,"NAXIS$k") }
if ($bscale != 1 || $bzero != 0) {
$hdr{BSCALE} = $bscale;
$hdr{BZERO} = $bzero;
wheader($fh,'BSCALE');
wheader($fh,'BZERO');
}
wheader($fh,'BUNIT');
# IF badflag is set
# and BITPIX > 0 - ensure the header contains the BLANK keyword
# (make sure it's for the correct type)
# otherwise - make sure the BLANK keyword is removed
if ( $pdl->badflag() ) {
if ( $BITPIX > 0 ) { my $a = &$convert(pdl(0.0)); $hdr{BLANK} = $a->badvalue(); }
else { delete $hdr{BLANK}; }
}
for $k (sort fits_field_cmp keys %hdr) {
wheader($fh,$k) unless $k =~ m/HISTORY/;
}
wheader($fh, 'HISTORY'); # Make sure that HISTORY entries come last.
$fh->printf( "%-80s", "END" );
$nbytes += 80;
}
#
# Pad the header to a legal value and write the rest of the FITS file.
#
$nbytes %= 2880;
$fh->print( " "x(2880-$nbytes) )
if $nbytes != 0; # Fill up HDU
# Decide how to byte swap - note does not quite work yet. Needs hack
# to IO.xs
my $bswap = sub {}; # Null routine
if ( !isbigendian() ) { # Need to set a byte swap routine
$bswap = \&bswap2 if $BITPIX==16;
$bswap = \&bswap4 if $BITPIX==32 || $BITPIX==-32;
$bswap = \&bswap8 if $BITPIX==-64;
}
# Write FITS data
my $p1d = $pdl->copy->reshape($pdl->nelem); # Data as 1D stream;
$off = 0;
$sz = PDL::Core::howbig(&$convert($p1d->slice('0:0'))->get_datatype);
$nbytes = $p1d->getdim(0) * $sz;
# Transfer data in blocks (because might need to byte swap)
# Buffer is also type converted on the fly
my $BUFFSZ = 360*2880; # = ~1Mb - must be multiple of 2880
my $tmp;
if ( $pdl->badflag() and $BITPIX < 0 and $PDL::Bad::UseNaN == 0 ) {
# just print up a message - conversion is actually done in the loop
print "Converting PDL bad value to NaN\n" if $PDL::verbose;
}
while ($nbytes - $off > $BUFFSZ) {
# Data to be transferred
$buff = &$convert( ($p1d->slice( ($off/$sz).":". (($off+$BUFFSZ)/$sz-1))
-$bzero)/$bscale );
# if there are bad values present, and output type is floating-point,
# convert the bad values to NaN's. We can ignore integer types, since
# we have set the BLANK keyword
#
if ( $pdl->badflag() and $BITPIX < 0 and $PDL::Bad::UseNaN == 0 ) {
$buff->inplace->setbadtonan();
}
&$bswap($buff);
$fh->print( ${$buff->get_dataref} );
$off += $BUFFSZ;
}
$buff = &$convert( ($p1d->slice($off/$sz.":-1") - $bzero)/$bscale );
if ( $pdl->badflag() and $BITPIX < 0 and $PDL::Bad::UseNaN == 0 ) {
$buff->inplace->setbadtonan();
}
&$bswap($buff);
$fh->print( ${$buff->get_dataref} );
# Fill HDU and close
# note that for the data space the fill character is \0 not " "
#
$fh->print( "\0"x(($BUFFSZ - $buff->getdim(0) * $sz)%2880) );
} # end of image writing block
else {
# Not a PDL and not a hash ref
barf("wfits: unknown data type - quitting");
}
} # end of output loop
$fh->close();
1;
}
######################################################################
######################################################################
# Compare FITS headers in a sensible manner.
=head2 fits_field_cmp
=for ref
fits_field_cmp
Sorting comparison routine that makes proper sense of the digits at the end
of some FITS header fields. Sort your hash keys using "fits_field_cmp" and
you will get (e.g.) your "TTYPE" fields in the correct order even if there
are 140 of them.
This is a standard kludgey perl comparison sub -- it uses the magical
$a and $b variables, rather than normal argument passing.
=cut
sub fits_field_cmp {
if( $a=~m/^(.*[^\d])(\d+)$/ ) {
my ($an,$ad) = ($1,$2);
if( $b=~m/^(.*[^\d])(\d+)$/ ) {
my($bn,$bd) = ($1,$2);
if($an eq $bn) {
return $ad<=>$bd;
}
}
}
$a cmp $b;
}
=head2 _rows()
=for ref
Return the number of rows in a variable for table entry
You feed in a PDL or a list ref, and you get back the 0th dimension.
=cut
sub _rows {
my $var = shift;
return $var->dim(0) if( UNIVERSAL::isa($var,'PDL') );
return 1+$#$var if(ref $var eq 'ARRAY');
return 1 unless(ref $var);
print STDERR "Warning: _rows found an unacceptable ref. ".ref $var.". Ignoring...\n"
if($PDL::verbose);
return undef;
}
=head2 _prep_table()
=for ref
Accept a hash ref containing a table, and return a header describing the table
and a string to be written out as the table, or barf.
You can indicate whether the table should be binary or ascii. The default
is binary; it can be overridden by the "tbl" field of the hash (if present)
or by parameter.
=cut
our %bintable_types = (
'byte'=>['B',1],
'short'=>['I',2],
'ushort'=>['J',4, sub {return long shift;}],
'long'=>['J',4],
'longlong'=>['D', 8, sub {return double shift;}],
'float'=>['E',4],
'double'=>['D',8],
# 'complex'=>['M',8] # Complex doubles are supported (actually, they aren't at the moment)
);
sub _prep_table {
my ($hash,$tbl,$nosquish) = @_;
my $ohash;
my $hdr = $hash->{hdr};
my $heap = "";
# Make a local copy of the header.
my $h = {};
if(defined $hdr) {
local $_;
for (keys %$hdr) {$h->{$_} = $hdr->{$_}};
}
$hdr = $h;
$tbl = $hash->{tbl} unless defined($tbl);
barf "_prep_table called without a HASH reference as the first argument"
unless ref $hash eq 'HASH';
#####
# Figure out how many columns are in the table
my @colkeys = grep( ( !m/^(hdr|tbl)$/ and !m/^len_/ and defined $hash->{$_}),
sort fits_field_cmp keys %$hash
);
my $cols = @colkeys;
print "Table seems to have $cols columns...\n"
if($PDL::verbose);
#####
# Figure out how many rows are in the table, and store counts...
#
my $rows;
my $rkey;
for my $key(@colkeys) {
my $r = _rows($hash->{$key});
($rows,$rkey) = ($r,$key) unless(defined($rows) && $rows != 1);
if($r != $rows && $r != 1) {
barf "_prep_table: inconsistent number of rows ($rkey: $rows vs. $key: $r)\n";
}
}
print "Table seems to have $rows rows...\n"
if($PDL::verbose);
#####
# Squish and disambiguate column names
#
my %keysbyname;
my %namesbykey;
print "Renaming hash keys...\n"
if($PDL::debug);
for my $key(@colkeys) {
my $name = $key;
$name =~ tr/[a-z]/[A-Z]/; # Uppercaseify (required by FITS standard)
$name =~ s/\s+/_/g; # Remove whitespace (required by FITS standard)
unless($nosquish) {
$name =~ s/[^A-Z0-9_-]//g; # Squish (recommended by FITS standard)
}
### Disambiguate...
if(defined $ohash->{$name}) {
my $iter = 1;
my $name2;
do { $name2 = $name."_".($iter++); }
while(defined $ohash->{$name2});
$name = $name2;
}
$ohash->{$name} = $hash->{$key};
$keysbyname{$name} = $key;
$namesbykey{$key} = $name;
print "\tkey '$key'\t-->\tname '$name'\n"
if($PDL::debug || (($name ne $key) and $PDL::verbose));
}
# The first element of colnames is ignored (since FITS starts the
# count at 1)
#
my @colnames; # Names by number
my %colnums; # Numbers by name
### Allocate any table columns that are already in the header...
local $_;
map { for my $a(1) { # [Shenanigans to make next work right]
next unless m/^TTYPE(\d*)$/;
my $num = $1;
if($num > $cols || $num < 1) {
print "Ignoring illegal column number $num ( should be in range 1..$cols )\n"
if($PDL::verbose);
delete $hdr->{$_};
next;
}
my $key = $hdr->{$_};
my $name;
unless( $name = $namesbykey{$key}) { # assignment
$name = $key;
unless( $key = $keysbyname{$key}) {
print "Ignoring column $num in existing header (unknown name '$key')\n"
if($PDL::verbose);
next;
}
}
$colnames[$num] = $name;
$colnums{$name} = $num;
} } sort fits_field_cmp keys %$hdr;
### Allocate all other table columns in alphabetical order...
my $i = 0;
for my $k (@colkeys) {
my $name = $namesbykey{$k};
unless($colnums{$name}) {
while($colnames[++$i]) { }
$colnames[$i] = $name;
$colnums{$name} = $i;
} else { $i++; }
}
print "Assertion failed: i ($i) != colnums ($cols)\n"
if($PDL::debug && $i != $cols);
print "colnames: " .
join(",", map { $colnames[$_]; } (1..$cols) ) ."\n"
if($PDL::debug);
########
# OK, now the columns are allocated -- spew out a header.
my @converters = (); # Will fill up with conversion routines for each column
my @field_len = (); # Will fill up with field lengths for each column
my @internaltype = (); # Gets flag for PDLhood
my @fieldvars = (); # Gets refs to all the fields of the hash.
if($tbl eq 'binary') {
$hdr->{XTENSION} = 'BINTABLE';
$hdr->{BITPIX} = 8;
$hdr->{NAXIS} = 2;
#$hdr->{NAXIS1} = undef; # Calculated below; inserted here as placeholder.
$hdr->{NAXIS2} = $rows;
$hdr->{PCOUNT} = 0; # Change this is variable-arrays are adopted
$hdr->{GCOUNT} = 1;
$hdr->{TFIELDS} = $cols;
# Figure out data types, and accumulate a row length at the same time.
my $rowlen = 0;
# NOTE:
# the conversion from ushort to long below is a hack to work
# around the issue that otherwise perl treats it as a 2-byte
# NOT 4-byte string on writing out, which leads to data corruption
# Really ushort arrays should be written out using SCALE/ZERO
# so that it can be written as an Int2 rather than Int4
#
for my $i(1..$cols) {
$fieldvars[$i] = $hash->{$keysbyname{$colnames[$i]}};
my $var = $fieldvars[$i];
$hdr->{"TTYPE$i"} = $colnames[$i];
my $tform;
my $tstr;
my $rpt;
my $bytes;
if( UNIVERSAL::isa($var,'PDL') ) {
$internaltype[$i] = 'P';
my $t;
my $dims = pdl($var->dims);
($t = $dims->slice("(0)")) .= 1;
$rpt = $dims->prod;
=pod
=begin WHENCOMPLEXVALUESWORK
if( UNIVERSAL::isa($var,'PDL::Complex') ) {
$rpt = $var->dim(1);
$t = 'complex'
} else {
$t = type $var;
}
=end WHENCOMPLEXVALUESWORK
=cut
barf "Error: wfits() currently can not handle PDL::Complex arrays (column $colnames[$i])\n"
if UNIVERSAL::isa($var,'PDL::Complex');
$t = $var->type;
$t = $bintable_types{$t};
unless(defined($t)) {
print "Warning: converting unknown type $t (column $colnames[$i]) to double...\n"
if($PDL::verbose);
$t = $bintable_types{'double'};
}
($tstr, $bytes, $converters[$i]) = @$t;
} elsif( ref $var eq 'ARRAY' ) {
$internaltype[$i] = 'A';
$bytes = 1;
# Got an array (of strings) -- find the longest element
$rpt = 0;
for(@$var) {
my $l = length($_);
$rpt = $l if($l>$rpt);
}
($tstr, $bytes, $converters[$i]) = ('A',1,undef);
} elsif( ref $var ) {
barf "You seem to be writing out a ".(ref $var)." as a table column. I\ndon't know how to do that (yet).\n";
} else { # Scalar
$internaltype[$i] = 'A';
($tstr, $bytes, $converters[$i]) = ('A',1,undef);
$rpt = length($var);
}
# Now check if it's a variable-length array and, if so, insert an
# extra converter
my $lname = "len_".$keysbyname{$colnames[$i]};
if(exists $hash->{$lname}) {
my $lengths = $hash->{$lname};
# Variable length array - add extra handling logic.
# First, check we're legit
if( !UNIVERSAL::isa($var, 'PDL') ||
$var->ndims != 2 ||
!UNIVERSAL::isa($lengths,'PDL') ||
$lengths->ndims != 1 ||
$lengths->dim(0) != $var->dim(0)
) {
die <<'FOO';
wfits(): you specified a 'len_$keysbyname{$colnames[$i]}' field in
your binary table output hash, indicating a variable-length array for
each row of the output table, but I'm having trouble interpreting it.
Either your source column isn't a 2-D PDL, or your length column isn't
a 1-D PDL, or the two lengths don't match. I give up.
FOO
}
# The definition below wraps around the existing converter,
# dumping the variable to the heap and returning the length
# and index of the data for the current row as a PDL LONG.
# This does the Right Thing below in the write loop, with
# the side effect of putting the data into the heap.
#
# The main downside here is that the heap gets copied
# multiple times as we accumulate it, since we are using
# string concatenation to add onto it. It might be better
# to preallocate a large heap, but I'm too lazy to figure
# out how to do that.
my $csub = $converters[$i];
$converters[$i] = sub {
my $var = shift;
my $row = shift;
my $col = shift;
my $len = $hash->{"len_".$keysbyname{$colnames[$i]}};
my $l;
if(ref $len eq 'ARRAY') {
$l = $len->[$row];
} elsif( UNIVERSAL::isa($len,'PDL') ) {
$l = $len->dice_axis(0,$row);
} elsif( ref $len ) {
die "wfits: Couldn't understand length spec 'len_".$keysbyname{$colnames[$i]}."' in bintable output (length spec must be a PDL or array ref).\n";
} else {
$l = $len;
}
# The standard says we should give a zero-offset
# pointer if the current row is zero-length; hence
# the ternary operator.
my $ret = pdl( $l, $l ? length($heap) : 0)->long;
if($l) {
# This echoes the normal-table swap and accumulation
# stuff below, except we're accumulating into the heap.
my $tmp = $csub ? &$csub($var, $row, $col) : $var;
$tmp = $tmp->slice("0:".($l-1))->sever;
if(!isbigendian()) {
bswap2($tmp) if($tmp->get_datatype == $PDL_S);
bswap4($tmp) if($tmp->get_datatype == $PDL_L ||
$tmp->get_datatype == $PDL_F);
bswap8($tmp) if($tmp->get_datatype == $PDL_D);
}
my $t = $tmp->get_dataref;
$heap .= $$t;
}
return $ret;
};
# Having defined the conversion routine, now modify tstr to make this a heap-array
# reference.
$tstr = sprintf("P%s(%d)",$tstr, $hash->{"len_".$keysbyname{$colnames[$i]}}->max );
$rpt = 1;
$bytes = 8; # two longints per row in the main table.
}
$hdr->{"TFORM$i"} = "$rpt$tstr";
if(UNIVERSAL::isa($var, 'PDL') and $var->ndims > 1) {
$hdr->{"TDIM$i"} = "(".join(",",$var->slice("(0)")->dims).")";
}
$rowlen += ($field_len[$i] = $rpt * $bytes);
}
$hdr->{NAXIS1} = $rowlen;
## Now accumulate the binary table
my $table = "";
for my $r(0..$rows-1) {
my $row = "";
for my $c(1..$cols) {
my $tmp;
my $a = $fieldvars[$c];
if($internaltype[$c] eq 'P') { # PDL handling
$tmp = $converters[$c]
? &{$converters[$c]}($a->slice("$r")->flat->sever, $r, $c)
: $a->slice("$r")->flat->sever ;
## This would go faster if moved outside the loop but I'm too
## lazy to do it Right just now. Perhaps after it actually works.
##
if(!isbigendian()) {
bswap2($tmp) if($tmp->get_datatype == $PDL_S);
bswap4($tmp) if($tmp->get_datatype == $PDL_L ||
$tmp->get_datatype == $PDL_F);
bswap8($tmp) if($tmp->get_datatype == $PDL_D);
}
my $t = $tmp->get_dataref;
$tmp = $$t;
} else { # Only other case is ASCII just now...
$tmp = ( ref $a eq 'ARRAY' ) ? # Switch on array or string
( $#$a == 0 ? $a->[0] : $a->[$r] ) # Thread arrays as needed
: $a;
$tmp .= " " x ($field_len[$c] - length($tmp));
}
# Now $tmp contains the bytes to be written out...
#
$row .= substr($tmp,0,$field_len[$c]);
} # for: $c
$table .= $row;
} # for: $r
my $table_size = $rowlen * $rows;
if( (length $table) != $table_size ) {
print "Warning: Table length is ".(length $table)."; expected $table_size\n";
}
return ($hdr,$table, $heap);
} elsif($tbl eq 'ascii') {
barf "ASCII tables not yet supported...\n";
} else {
barf "unknown table type '$tbl' -- giving up.";
}
}
# the header fill value can be blanks, but the data fill value must
# be zeroes in non-ASCII tables
#
sub _print_to_fits ($$$) {
my $fh = shift;
my $data = shift;
my $blank = shift;
my $len = ((length $data) - 1) % 2880 + 1;
$fh->print( $data . ($blank x (2880-$len)) );
}
{
my $ctr = 0;
sub reset_hdr_ctr() { $ctr = 0; }
sub add_hdr_item ($$$$;$) {
my ( $hdr, $key, $value, $type, $comment ) = @_;
$type = uc($type) if defined $type;
my $item = Astro::FITS::Header::Item->new( Keyword=>$key,
Value=>$value,
Type=>$type );
$item->comment( $comment ) if defined $comment;
$hdr->replace( $ctr++, $item );
};
}
##############################
#
# _wfits_table -- given a hash ref, try to write it out as a
# table extension. The file FITS should be open when you call it.
# Most of the work of creating the extension header, and all of
# the work of creating the table, is handled by _prep_table().
#
# NOTE:
# can not think of a sensible name for the extension so calling
# it TABLE for now
#
sub _wfits_table ($$$) {
my $fh = shift;
my $hash = shift;
my $tbl = shift;
barf "FITS BINTABLES are not supported without the Astro::FITS::Header module.\nGet it from www.cpan.org.\n"
unless($PDL::Astro_FITS_Header);
my ($hdr,$table, $heap) = _prep_table($hash,$tbl,0);
$heap="" unless defined($heap);
# Copy the prepared fields into the extension header.
tie my %newhdr,'Astro::FITS::Header',my $h = Astro::FITS::Header->new;
reset_hdr_ctr();
add_hdr_item $h, "XTENSION", ($tbl eq 'ascii'?"TABLE":"BINTABLE"), 'string', "from perl hash";
add_hdr_item $h, "BITPIX", $hdr->{BITPIX}, 'int';
add_hdr_item $h, "NAXIS", 2, 'int';
add_hdr_item $h, "NAXIS1", $hdr->{NAXIS1}, 'int', 'Bytes per row';
add_hdr_item $h, "NAXIS2", $hdr->{NAXIS2}, 'int', 'Number of rows';
add_hdr_item $h, "PCOUNT", length($heap), 'int', ($tbl eq 'ascii' ? undef : "No heap") ;
add_hdr_item $h, "THEAP", "0", "(No gap before heap)" if(length($heap));
add_hdr_item $h, "GCOUNT", 1, 'int';
add_hdr_item $h, "TFIELDS", $hdr->{TFIELDS},'int';
add_hdr_item $h, "HDUNAME", "TABLE", 'string';
for my $field( sort fits_field_cmp keys %$hdr ) {
next if( defined $newhdr{$field} or $field =~ m/^end|simple|xtension$/i);
my $type = (UNIVERSAL::isa($hdr->{field},'PDL') ?
$hdr->{$field}->type :
((($hdr->{$field})=~ m/^[tf]$/i) ?
'logical' :
undef ## 'string' seems to have a bug - 'undef' works OK
));
add_hdr_item $h, $field, $hdr->{$field}, $type, $hdr->{"${field}_COMMENT"};
}
add_hdr_item $h, "END", undef, 'undef';
$hdr = join("",$h->cards);
_print_to_fits( $fh, $hdr, " " );
_print_to_fits( $fh, $table.$heap, "\0" ); # use " " if it is an ASCII table
# Add heap dump
}
sub _wfits_nullhdu ($) {
my $fh = shift;
if($Astro::FITS::Header) {
my $h = Astro::FITS::Header->new();
reset_hdr_ctr();
add_hdr_item $h, "SIMPLE", "T", 'logical', "Null HDU (no data, only extensions)";
add_hdr_item $h, "BITPIX", -32, 'int', "Needed to make fverify happy";
add_hdr_item $h, "NAXIS", 0, 'int';
add_hdr_item $h, "EXTEND", "T", 'logical', "File contains extensions";
add_hdr_item $h, "COMMENT", "", "comment",
" File written by perl (PDL::IO::FITS::wfits)";
#
# The following seems to cause a problem so removing for now (I don't
# believe it is required, but may be useful for people who aren't
# FITS connoisseurs). It could also be down to a version issue in
# Astro::FITS::Header since it worked on linux with a newer version
# than on Solaris with an older version of the header module)
#
## add_hdr_item $h, "COMMENT", "", "comment",
## " FITS (Flexible Image Transport System) format is defined in 'Astronomy";
## add_hdr_item $h, "COMMENT", "", "comment",
## " and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H";
add_hdr_item $h, "HDUNAME", "PRIMARY", 'string';
add_hdr_item $h, "END", undef, 'undef';
my $hdr = join("",$h->cards);
_print_to_fits( $fh, $hdr, " " );
} else {
_print_to_fits( $fh,
q+SIMPLE = T / Null HDU (no data, only extensions) BITPIX = -32 / Needed to make fverify happy NAXIS = 0 EXTEND = T / File contains extensions COMMENT Written by perl (PDL::IO::FITS::wfits) legacy code. COMMENT For best results, install Astro::FITS::Header. HDUNAME = 'PRIMARY ' END +,
" ");
}
}
1;
|