/usr/lib/perl5/PDL/MatrixOps.pm is in pdl 1:2.007-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::MatrixOps;
@EXPORT_OK = qw( identity stretcher inv det determinant PDL::PP eigens_sym PDL::PP eigens PDL::PP svd lu_decomp lu_decomp2 lu_backsub PDL::PP simq PDL::PP squaretotri );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::MatrixOps ;
=head1 NAME
PDL::MatrixOps -- Some Useful Matrix Operations
=head1 SYNOPSIS
$inv = $a->inv;
$det = $a->det;
($lu,$perm,$par) = $a->lu_decomp;
$x = lu_backsub($lu,$perm,$b); # solve $a x $x = $b
=head1 DESCRIPTION
PDL::MatrixOps is PDL's built-in matrix manipulation code. It
contains utilities for many common matrix operations: inversion,
determinant finding, eigenvalue/vector finding, singular value
decomposition, etc. PDL::MatrixOps routines are written in a mixture
of Perl and C, so that they are reliably present even when there is no
FORTRAN compiler or external library available (e.g.
L<PDL::Slatec|PDL::Slatec> or any of the PDL::GSL family of modules).
Matrix manipulation, particularly with large matrices, is a
challenging field and no one algorithm is suitable in all cases. The
utilities here use general-purpose algorithms that work acceptably for
many cases but might not scale well to very large or pathological
(near-singular) matrices.
Except as noted, the matrices are PDLs whose 0th dimension ranges over
column and whose 1st dimension ranges over row. The matrices appear
correctly when printed.
These routines should work OK with L<PDL::Matrix|PDL::Matrix> objects
as well as with normal PDLs.
=head1 TIPS ON MATRIX OPERATIONS
Like most computer languages, PDL addresses matrices in (column,row)
order in most cases; this corresponds to (X,Y) coordinates in the
matrix itself, counting rightwards and downwards from the upper left
corner. This means that if you print a PDL that contains a matrix,
the matrix appears correctly on the screen, but if you index a matrix
element, you use the indices in the reverse order that you would in a
math textbook. If you prefer your matrices indexed in (row, column)
order, you can try using the L<PDL::Matrix|PDL::Matrix> object, which
includes an implicit exchange of the first two dimensions but should
be compatible with most of these matrix operations. TIMTOWDTI.)
Matrices, row vectors, and column vectors can be multiplied with the 'x'
operator (which is, of course, threadable):
$m3 = $m1 x $m2;
$col_vec2 = $m1 x $col_vec1;
$row_vec2 = $row_vec1 x $m1;
$scalar = $row_vec x $col_vec;
Because of the (column,row) addressing order, 1-D PDLs are treated as
_row_ vectors; if you want a _column_ vector you must add a dummy dimension:
$rowvec = pdl(1,2); # row vector
$colvec = $rowvec->(*1); # 1x2 column vector
$matrix = pdl([[3,4],[6,2]]); # 2x2 matrix
$rowvec2 = $rowvec x $matrix; # right-multiplication by matrix
$colvec = $matrix x $colvec; # left-multiplication by matrix
$m2 = $matrix x $rowvec; # Throws an error
Implicit threading works correctly with most matrix operations, but
you must be extra careful that you understand the dimensionality. In
particular, matrix multiplication and other matrix ops need nx1 PDLs
as row vectors and 1xn PDLs as column vectors. In most cases you must
explicitly include the trailing 'x1' dimension in order to get the expected
results when you thread over multiple row vectors.
When threading over matrices, it's very easy to get confused about
which dimension goes where. It is useful to include comments with
every expression, explaining what you think each dimension means:
$a = xvals(360)*3.14159/180; # (angle)
$rot = cat(cat(cos($a),sin($a)), # rotmat: (col,row,angle)
cat(-sin($a),cos($a)));
=head1 ACKNOWLEDGEMENTS
MatrixOps includes algorithms and pre-existing code from several
origins. In particular, C<eigens_sym> is the work of Stephen Moshier,
C<svd> uses an SVD subroutine written by Bryant Marks, and C<eigens>
uses a subset of the Small Scientific Library by Kenneth Geisshirt.
They are free software, distributable under same terms as PDL itself.
=head1 NOTES
This is intended as a general-purpose linear algebra package for
small-to-mid sized matrices. The algorithms may not scale well to
large matrices (hundreds by hundreds) or to near singular matrices.
If there is something you want that is not here, please add and
document it!
=cut
use Carp;
use PDL::NiceSlice;
use strict;
=head1 FUNCTIONS
=cut
=head2 identity
=for sig
Signature: (n; [o]a(n,n))
=for ref
Return an identity matrix of the specified size. If you hand in a
scalar, its value is the size of the identity matrix; if you hand in a
dimensioned PDL, the 0th dimension is the size of the matrix.
=cut
sub identity {
my $n = shift;
my $out = ((UNIVERSAL::isa($n,'PDL')) ?
( ($n->getndims > 0) ?
zeroes($n->dim(0),$n->dim(0)) :
zeroes($n->at(0),$n->at(0))
) :
zeroes($n,$n)
);
my $tmp; # work around perl -d "feature"
($tmp = $out->diagonal(0,1))++;
$out;
}
=head2 stretcher
=for sig
Signature: (a(n); [o]b(n,n))
=for usage
$mat = stretcher($eigenvalues);
=for ref
Return a diagonal matrix with the specified diagonal elements
=cut
sub stretcher {
my $in = shift;
my $out = zeroes($in->dim(0),$in->dims);
my $tmp; # work around for perl -d "feature"
($tmp = $out->diagonal(0,1)) += $in;
$out;
}
=head2 inv
=for sig
Signature: (a(m,m); sv opt )
=for usage
$a1 = inv($a, {$opt});
=for ref
Invert a square matrix.
You feed in an NxN matrix in $a, and get back its inverse (if it
exists). The code is inplace-aware, so you can get back the inverse
in $a itself if you want -- though temporary storage is used either
way. You can cache the LU decomposition in an output option variable.
C<inv> uses C<lu_decomp> by default; that is a numerically stable
(pivoting) LU decomposition method.
OPTIONS:
=over 3
=item * s
Boolean value indicating whether to complain if the matrix is singular. If
this is false, singular matrices cause inverse to barf. If it is true, then
singular matrices cause inverse to return undef.
=item * lu (I/O)
This value contains a list ref with the LU decomposition, permutation,
and parity values for C<$a>. If you do not mention the key, or if the
value is undef, then inverse calls C<lu_decomp>. If the key exists with
an undef value, then the output of C<lu_decomp> is stashed here (unless
the matrix is singular). If the value exists, then it is assumed to
hold the LU decomposition.
=item * det (Output)
If this key exists, then the determinant of C<$a> get stored here,
whether or not the matrix is singular.
=back
=cut
*PDL::inv = \&inv;
sub inv {
my $a = shift;
my $opt = shift;
$opt = {} unless defined($opt);
barf "inverse needs a square PDL as a matrix\n"
unless(UNIVERSAL::isa($a,'PDL') &&
$a->dims >= 2 &&
$a->dim(0) == $a->dim(1)
);
my ($lu,$perm,$par);
if(exists($opt->{lu}) &&
ref $opt->{lu} eq 'ARRAY' &&
ref $opt->{lu}->[0] eq 'PDL') {
($lu,$perm,$par) = @{$opt->{lu}};
} else {
($lu,$perm,$par) = lu_decomp($a);
@{$opt->{lu}} = ($lu,$perm,$par)
if(ref $opt->{lu} eq 'ARRAY');
}
my $det = (defined $lu) ? $lu->diagonal(0,1)->prodover * $par : pdl(0);
$opt->{det} = $det
if exists($opt->{det});
unless($det->nelem > 1 || $det) {
return undef
if $opt->{s};
barf("PDL::inv: got a singular matrix or LU decomposition\n");
}
my $out = lu_backsub($lu,$perm,$par,identity($a))->xchg(0,1)->sever;
return $out
unless($a->is_inplace);
$a .= $out;
$a;
}
=head2 det
=for sig
Signature: (a(m,m); sv opt)
=for usage
$det = det($a,{opt});
=for ref
Determinant of a square matrix using LU decomposition (for large matrices)
You feed in a square matrix, you get back the determinant. Some
options exist that allow you to cache the LU decomposition of the
matrix (note that the LU decomposition is invalid if the determinant
is zero!). The LU decomposition is cacheable, in case you want to
re-use it. This method of determinant finding is more rapid than
recursive-descent on large matrices, and if you reuse the LU
decomposition it's essentially free.
OPTIONS:
=over 3
=item * lu (I/O)
Provides a cache for the LU decomposition of the matrix. If you
provide the key but leave the value undefined, then the LU decomposition
goes in here; if you put an LU decomposition here, it will be used and
the matrix will not be decomposed again.
=back
=cut
*PDL::det = \&det;
sub det {
my($a) = shift;
my($opt) = shift;
$opt = {} unless defined($opt);
my($lu,$perm,$par);
if(exists ($opt->{u}) and (ref $opt->{lu} eq 'ARRAY')) {
($lu,$perm,$par) = @{$opt->{lu}};
} else {
($lu,$perm,$par) = lu_decomp($a);
$opt->{lu} = [$lu,$perm,$par]
if(exists($opt->{lu}));
}
( (defined $lu) ? $lu->diagonal(0,1)->prodover * $par : 0 );
}
=head2 determinant
=for sig
Signature: (a(m,m))
=for usage
$det = determinant($a);
=for ref
Determinant of a square matrix, using recursive descent (threadable).
This is the traditional, robust recursive determinant method taught in
most linear algebra courses. It scales like C<O(n!)> (and hence is
pitifully slow for large matrices) but is very robust because no
division is involved (hence no division-by-zero errors for singular
matrices). It's also threadable, so you can find the determinants of
a large collection of matrices all at once if you want.
Matrices up to 3x3 are handled by direct multiplication; larger matrices
are handled by recursive descent to the 3x3 case.
The LU-decomposition method L<det|det> is faster in isolation for
single matrices larger than about 4x4, and is much faster if you end up
reusing the LU decomposition of C<$a> (NOTE: check performance and
threading benchmarks with new code).
=cut
*PDL::determinant = \&determinant;
sub determinant {
my($a) = shift;
my($n);
return undef unless(
UNIVERSAL::isa($a,'PDL') &&
$a->getndims >= 2 &&
($n = $a->dim(0)) == $a->dim(1)
);
return $a->clump(2) if($n==1);
if($n==2) {
my($b) = $a->clump(2);
return $b->index(0)*$b->index(3) - $b->index(1)*$b->index(2);
}
if($n==3) {
my($b) = $a->clump(2);
my $b3 = $b->index(3);
my $b4 = $b->index(4);
my $b5 = $b->index(5);
my $b6 = $b->index(6);
my $b7 = $b->index(7);
my $b8 = $b->index(8);
return (
$b->index(0) * ( $b4 * $b8 - $b5 * $b7 )
+ $b->index(1) * ( $b5 * $b6 - $b3 * $b8 )
+ $b->index(2) * ( $b3 * $b7 - $b4 * $b6 )
);
}
my($i);
my($sum) = zeroes($a->((0),(0)));
# Do middle submatrices
for $i(1..$n-2) {
my $el = $a->(($i),(0));
next if( ($el==0)->all ); # Optimize away unnecessary recursion
$sum += $el * (1-2*($i%2)) *
determinant( $a->(0:$i-1,1:-1)->
append($a->($i+1:-1,1:-1)));
}
# Do beginning and end submatrices
$sum += $a->((0),(0)) * determinant($a->(1:-1,1:-1));
$sum -= $a->((-1),(0)) * determinant($a->(0:-2,1:-1)) * (1 - 2*($n % 2));
return $sum;
}
=head2 eigens_sym
=for sig
Signature: ([phys]a(m); [o,phys]ev(n,n); [o,phys]e(n))
=for ref
Eigenvalues and -vectors of a symmetric square matrix. If passed
an asymmetric matrix, the routine will warn and symmetrize it, by taking
the average value. That is, it will solve for 0.5*($a+$a->mv(0,1)).
It's threadable, so if C<$a> is 3x3x100, it's treated as 100 separate 3x3
matrices, and both C<$ev> and C<$e> get extra dimensions accordingly.
If called in scalar context it hands back only the eigenvalues. Ultimately,
it should switch to a faster algorithm in this case (as discarding the
eigenvectors is wasteful).
The algorithm used is due to J. vonNeumann, which was a rediscovery of
L<Jacobi's Method|http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm> .
The eigenvectors are returned in COLUMNS of the returned PDL. That
makes it slightly easier to access individual eigenvectors, since the
0th dim of the output PDL runs across the eigenvectors and the 1st dim
runs across their components.
($ev,$e) = eigens_sym $a; # Make eigenvector matrix
$vector = $ev->($n); # Select nth eigenvector as a column-vector
$vector = $ev->(($n)); # Select nth eigenvector as a row-vector
=for usage
($ev, $e) = eigens_sym($a); # e-vects & e-values
$e = eigens_sym($a); # just eigenvalues
=for bad
eigens_sym ignores the bad-value flag of the input piddles.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::eigens_sym {
my ($a) = @_;
my (@d) = $a->dims;
barf "Need real square matrix for eigens_sym"
if $#d < 1 or $d[0] != $d[1];
my ($n) = $d[0];
my ($sym) = 0.5*($a + $a->mv(0,1));
my ($err) = PDL::max(abs($sym));
barf "Need symmetric component non-zero for eigens_sym"
if $err == 0;
$err = PDL::max(abs($a-$sym))/$err;
warn "Using symmetrized version of the matrix in eigens_sym"
if $err > 1e-5 && $PDL::debug;
## Get lower diagonal form
## Use whichND/indexND because whereND doesn't exist (yet?) and
## the combo is threadable (unlike where). Note that for historical
## reasons whichND needs a scalar() around it to give back a
## nice 2xn PDL index.
my $lt = PDL::indexND($sym,
scalar(PDL::whichND(PDL->xvals($n,$n) <=
PDL->yvals($n,$n)))
)->copy;
my $ev = PDL->zeroes($sym->dims);
my $e = PDL->zeroes($sym->index(0)->dims);
&PDL::_eigens_sym_int($lt, $ev, $e);
return $ev->xchg(0,1), $e
if(wantarray);
$e; #just eigenvalues
}
*eigens_sym = \&PDL::eigens_sym;
=head2 eigens
=for sig
Signature: ([phys]a(m); [o,phys]ev(l,n,n); [o,phys]e(l,n))
=for ref
Real eigenvalues and -vectors of a real square matrix.
(See also L<"eigens_sym"|/eigens_sym>, for eigenvalues and -vectors
of a real, symmetric, square matrix).
The eigens function will attempt to compute the eigenvalues and
eigenvectors of a square matrix with real components. If the matrix
is symmetric, the same underlying code as L<"eigens_sym"|/eigens_sym>
is used. If asymmetric, the eigenvalues and eigenvectors are computed
with algorithms from the sslib library. If any imaginary components
exist in the eigenvalues, the results are currently considered to be
invalid, and such eigenvalues are returned as "NaN"s. This is true
for eigenvectors also. That is if there are imaginary components to
any of the values in the eigenvector, the eigenvalue and corresponding
eigenvectors are all set to "NaN". Finally, if there are any repeated
eigenvectors, they are replaced with all "NaN"s.
Use of the eigens function on asymmetric matrices should be considered
experimental! For asymmetric matrices, nearly all observed matrices
with real eigenvalues produce incorrect results, due to errors of the
sslib algorithm. If your assymmetric matrix returns all NaNs, do not
assume that the values are complex. Also, problems with memory access
is known in this library.
Not all square matrices are diagonalizable. If you feed in a
non-diagonalizable matrix, then one or more of the eigenvectors will
be set to NaN, along with the corresponding eigenvalues.
C<eigens> is threadable, so you can solve 100 eigenproblems by
feeding in a 3x3x100 array. Both C<$ev> and C<$e> get extra dimensions accordingly.
If called in scalar context C<eigens> hands back only the eigenvalues. This
is somewhat wasteful, as it calculates the eigenvectors anyway.
The eigenvectors are returned in COLUMNS of the returned PDL (ie the
the 0 dimension). That makes it slightly easier to access individual
eigenvectors, since the 0th dim of the output PDL runs across the
eigenvectors and the 1st dim runs across their components.
($ev,$e) = eigens $a; # Make eigenvector matrix
$vector = $ev->($n); # Select nth eigenvector as a column-vector
$vector = $ev->(($n)); # Select nth eigenvector as a row-vector
DEVEL NOTES:
For now, there is no distinction between a complex eigenvalue and an
invalid eigenvalue, although the underlying code generates complex
numbers. It might be useful to be able to return complex eigenvalues.
=for usage
($ev, $e) = eigens($a); # e'vects & e'vals
$e = eigens($a); # just eigenvalues
=for bad
eigens ignores the bad-value flag of the input piddles.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::eigens {
my ($a) = @_;
my (@d) = $a->dims;
my $n = $d[0];
barf "Need real square matrix for eigens"
if $#d < 1 or $d[0] != $d[1];
my $deviation = PDL::max(abs($a - $a->mv(0,1)))/PDL::max(abs($a));
if ( $deviation <= 1e-5 ) {
#taken from eigens_sym code
my $lt = PDL::indexND($a,
scalar(PDL::whichND(PDL->xvals($n,$n) <=
PDL->yvals($n,$n)))
)->copy;
my $ev = PDL->zeroes($a->dims);
my $e = PDL->zeroes($a->index(0)->dims);
&PDL::_eigens_sym_int($lt, $ev, $e);
return $ev->xchg(0,1), $e if wantarray;
return $e; #just eigenvalues
}
else {
if($PDL::verbose || $PDL::debug) {
print "eigens: using the asymmetric case from SSL\n";
}
if( !$PDL::eigens_bug_ack && !$ENV{PDL_EIGENS_ACK} ) {
print STDERR "WARNING: using sketchy algorithm for PDL::eigens asymmetric case -- you might\n".
" miss an eigenvector or two\nThis should be fixed in PDL v2.5 (due 2009), \n".
" or you might fix it yourself (hint hint). You can shut off this warning\n".
" by setting the variable $PDL::eigens_bug_ack, or the environment variable\n".
" PDL_EIGENS_HACK prior to calling eigens() with a non-symmetric matrix.\n";
$PDL::eigens_bug_ack = 1;
}
my $ev = PDL->zeroes(2, $a->dims);
my $e = PDL->zeroes(2, $a->index(0)->dims);
&PDL::_eigens_int($a->clump(0,1), $ev, $e);
return $ev->index(0)->xchg(0,1)->sever, $e->index(0)->sever
if(wantarray);
return $e->index(0)->sever; #just eigenvalues
}
}
*eigens = \&PDL::eigens;
=head2 svd
=for sig
Signature: (a(n,m); [o]u(n,m); [o,phys]z(n); [o]v(n,n))
=for usage
($r1, $s, $r2) = svd($a);
=for ref
Singular value decomposition of a matrix.
C<svd> is threadable.
C<$r1> and C<$r2> are rotation matrices that convert from the original
matrix's singular coordinates to final coordinates, and from original
coordinates to singular coordinates, respectively. C<$s> is the
diagonal of the singular value matrix, so that, if C<$a> is square,
then you can make an expensive copy of C<$a> by saying:
$ess = zeroes($r1); $ess->diagonal(0,1) .= $s;
$a_copy .= $r2 x $ess x $r1;
EXAMPLE
The computing literature has loads of examples of how to use SVD.
Here's a trivial example (used in L<PDL::Transform::map|PDL::Transform/map>)
of how to make a matrix less, er, singular, without changing the
orientation of the ellipsoid of transformation:
{ my($r1,$s,$r2) = svd $a;
$s++; # fatten all singular values
$r2 *= $s; # implicit threading for cheap mult.
$a .= $r2 x $r1; # a gets r2 x ess x r1
}
=for bad
svd ignores the bad-value flag of the input piddles.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*svd = \&PDL::svd;
=head2 lu_decomp
=for sig
Signature: (a(m,m); [o]lu(m,m); [o]perm(m); [o]parity)
=for ref
LU decompose a matrix, with row permutation
=for usage
($lu, $perm, $parity) = lu_decomp($a);
$lu = lu_decomp($a, $perm, $par); # $perm and $par are outputs!
lu_decomp($a->inplace,$perm,$par); # Everything in place.
=for description
C<lu_decomp> returns an LU decomposition of a square matrix,
using Crout's method with partial pivoting. It's ported
from I<Numerical Recipes>. The partial pivoting keeps it
numerically stable but means a little more overhead from
threading.
C<lu_decomp> decomposes the input matrix into matrices L and
U such that LU = A, L is a subdiagonal matrix, and U is a
superdiagonal matrix. By convention, the diagonal of L is
all 1's.
The single output matrix contains all the variable elements
of both the L and U matrices, stacked together. Because the
method uses pivoting (rearranging the lower part of the
matrix for better numerical stability), you have to permute
input vectors before applying the L and U matrices. The
permutation is returned either in the second argument or, in
list context, as the second element of the list. You need
the permutation for the output to make any sense, so be sure
to get it one way or the other.
LU decomposition is the answer to a lot of matrix questions,
including inversion and determinant-finding, and C<lu_decomp>
is used by L<inv|/inv>.
If you pass in C<$perm> and C<$parity>, they either must be
predeclared PDLs of the correct size ($perm is an n-vector,
C<$parity> is a scalar) or scalars.
If the matrix is singular, then the LU decomposition might
not be defined; in those cases, C<lu_decomp> silently returns
undef. Some singular matrices LU-decompose just fine, and
those are handled OK but give a zero determinant (and hence
can't be inverted).
C<lu_decomp> uses pivoting, which rearranges the values in the
matrix for more numerical stability. This makes it really
good for large and even near-singular matrices. There is
a non-pivoting version C<lu_decomp2> available which is
from 5 to 60 percent faster for typical problems at
the expense of failing to compute a result in some cases.
Now that the C<lu_decomp> is threaded, it is the recommended
LU decomposition routine. It no longer falls back to C<lu_decomp2>.
C<lu_decomp> is ported from I<Numerical Recipes> to PDL. It
should probably be implemented in C.
=cut
*PDL::lu_decomp = \&lu_decomp;
sub lu_decomp {
my($in) = shift;
my($permute) = shift;
my($parity) = shift;
my($sing_ok) = shift;
my $TINY = 1e-30;
barf("lu_decomp requires a square (2D) PDL\n")
if(!UNIVERSAL::isa($in,'PDL') ||
$in->ndims < 2 ||
$in->dim(0) != $in->dim(1));
my($n) = $in->dim(0);
my($n1) = $n; $n1--;
my($inplace) = $in->is_inplace;
my($out) = ($inplace) ? $in : $in->copy;
if(defined $permute) {
barf('lu_decomp: permutation vector must match the matrix')
if(!UNIVERSAL::isa($permute,'PDL') ||
$permute->ndims != 1 ||
$permute->dim(0) != $out->dim(0));
$permute .= PDL->xvals($in->dim(0));
} else {
$permute = $in->((0))->xvals;
}
if(defined $parity) {
barf('lu_decomp: parity must be a scalar PDL')
if(!UNIVERSAL::isa($parity,'PDL') ||
$parity->dim(0) != 1);
$parity .= 1.0;
} else {
$parity = $in->((0),(0))->ones;
}
my($scales) = $in->abs->maximum; # elementwise by rows
if(($scales==0)->sum) {
return undef;
}
# Some holding tanks
my($tmprow) = $out->((0))->double->zeroes;
my($tmpval) = $tmprow->((0))->sever;
my($col,$row);
for $col(0..$n1) {
for $row(1..$n1) {
my($klim) = $row<$col ? $row : $col;
if($klim > 0) {
$klim--;
my($el) = $out->index2d($col,$row);
$el -= ( $out->(($col),0:$klim) *
$out->(0:$klim,($row)) )->sumover;
}
}
# Figure a_ij, with pivoting
if($col < $n1) {
# Find the maximum value in the rest of the row
my $sl = $out->(($col),$col:$n1);
my $wh = $sl->abs->maximum_ind;
my $big = $sl->index($wh)->sever;
# Permute if necessary to make the diagonal the maximum
# if($wh != 0)
{ # Permute rows to place maximum element on diagonal.
my $whc = $wh+$col;
# my $sl1 = $out->(:,($whc));
my $sl1 = $out->mv(1,0)->index($whc(*$n));
my $sl2 = $out->(:,($col));
$tmprow .= $sl1; $sl1 .= $sl2; $sl2 .= $tmprow;
$sl1 = $permute->index($whc);
$sl2 = $permute->index($col);
$tmpval .= $sl1; $sl1 .= $sl2; $sl2 .= $tmpval;
{ my $tmp;
($tmp = $parity->where($wh>0)) *= -1.0;
}
}
# Sidestep near-singularity (NR does this; not sure if it is helpful)
my $notbig = $big->where(abs($big) < $TINY);
$notbig .= $TINY * (1.0 - 2.0*($notbig < 0));
# Divide by the diagonal element (which is now the largest element)
my $tout;
($tout = $out->(($col),$col+1:$n1)) /= $big->(*1);
} # end of pivoting part
} # end of column loop
if(wantarray) {
return ($out,$permute,$parity);
}
$out;
}
=head2 lu_decomp2
=for sig
Signature: (a(m,m); [o]lu(m,m))
=for ref
LU decompose a matrix, with no row permutation
=for usage
($lu, $perm, $parity) = lu_decomp2($a);
$lu = lu_decomp2($a,$perm,$parity); # or
$lu = lu_decomp2($a); # $perm and $parity are optional
lu_decomp($a->inplace,$perm,$parity); # or
lu_decomp($a->inplace); # $perm and $parity are optional
=for description
C<lu_decomp2> works just like L<lu_decomp|lu_decomp>, but it does B<no>
pivoting at all. For compatibility with L<lu_decomp|lu_decomp>, it
will give you a permutation list and a parity scalar if you ask
for them -- but they are always trivial.
Because C<lu_decomp2> does not pivot, it is numerically B<unstable> --
that means it is less precise than L<lu_decomp>, particularly for
large or near-singular matrices. There are also specific types of
non-singular matrices that confuse it (e.g. ([0,-1,0],[1,0,0],[0,0,1]),
which is a 90 degree rotation matrix but which confuses C<lu_decomp2>).
On the other hand, if you want to invert rapidly a few hundred thousand
small matrices and don't mind missing one or two, it could be the ticket.
It can be up to 60% faster at the expense of possible failure of the
decomposition for some of the input matrices.
The output is a single matrix that contains the LU decomposition of C<$a>;
you can even do it in-place, thereby destroying C<$a>, if you want. See
L<lu_decomp> for more information about LU decomposition.
C<lu_decomp2> is ported from I<Numerical Recipes> into PDL.
=cut
*PDL::lu_decomp2 = \&lu_decomp2;
sub lu_decomp2 {
my($in) = shift;
my($perm) = shift;
my($par) = shift;
my($sing_ok) = shift;
my $TINY = 1e-30;
barf("lu_decomp2 requires a square (2D) PDL\n")
if(!UNIVERSAL::isa($in,'PDL') ||
$in->ndims < 2 ||
$in->dim(0) != $in->dim(1));
my($n) = $in->dim(0);
my($n1) = $n; $n1--;
my($inplace) = $in->is_inplace;
my($out) = ($inplace) ? $in : $in->copy;
if(defined $perm) {
barf('lu_decomp2: permutation vector must match the matrix')
if(!UNIVERSAL::isa($perm,'PDL') ||
$perm->ndims != 1 ||
$perm->dim(0) != $out->dim(0));
$perm .= PDL->xvals($in->dim(0));
} else {
$perm = PDL->xvals($in->dim(0));
}
if(defined $par) {
barf('lu_decomp: parity must be a scalar PDL')
if(!UNIVERSAL::isa($par,'PDL') ||
$par->nelem != 1);
$par .= 1.0;
} else {
$par = pdl(1.0);
}
my $diagonal = $out->diagonal(0,1);
my($col,$row);
for $col(0..$n1) {
for $row(1..$n1) {
my($klim) = $row<$col ? $row : $col;
if($klim > 0) {
$klim--;
my($el) = $out->index2d($col,$row);
$el -= ( $out->(($col),0:$klim) *
$out->(0:$klim,($row)) )->sumover;
}
}
# Figure a_ij, with no pivoting
if($col < $n1) {
# Divide the rest of the column by the diagonal element
my $tmp; # work around for perl -d "feature"
($tmp = $out->(($col),$col+1:$n1)) /= $diagonal->index($col)->dummy(0,$n1-$col);
}
} # end of column loop
if(wantarray) {
return ($out,$perm,$par);
}
$out;
}
=head2 lu_backsub
=for sig
Signature: (lu(m,m); perm(m); b(m))
=for ref
Solve a x = b for matrix a, by back substitution into a's LU decomposition.
=for usage
($lu,$perm,$par) = lu_decomp($a);
$x = lu_backsub($lu,$perm,$par,$b); # or
$x = lu_backsub($lu,$perm,$b); # $par is not required for lu_backsub
lu_backsub($lu,$perm,$b->inplace); # modify $b in-place
$x = lu_backsub(lu_decomp($a),$b); # (ignores parity value from lu_decomp)
=for description
Given the LU decomposition of a square matrix (from L<lu_decomp|lu_decomp>),
C<lu_backsub> does back substitution into the matrix to solve
C<a x = b> for given vector C<b>. It is separated from the
C<lu_decomp> method so that you can call the cheap C<lu_backsub>
multiple times and not have to do the expensive LU decomposition
more than once.
C<lu_backsub> acts on single vectors and threads in the usual
way, which means that it treats C<$b> as the I<transpose>
of the input. If you want to process a matrix, you must
hand in the I<transpose> of the matrix, and then transpose
the output when you get it back. that is because pdls are
indexed by (col,row), and matrices are (row,column) by
convention, so a 1-D pdl corresponds to a row vector, not a
column vector.
If C<$lu> is dense and you have more than a few points to
solve for, it is probably cheaper to find C<a^-1> with
L<inv|/inv>, and just multiply C<x = a^-1 b>.) in fact,
L<inv|/inv> works by calling C<lu_backsub> with the identity
matrix.
C<lu_backsub> is ported from section 2.3 of I<Numerical Recipes>.
It is written in PDL but should probably be implemented in C.
=cut
*PDL::lu_backsub = \&lu_backsub;
sub lu_backsub {
my ($lu, $perm, $b, $par);
print STDERR "lu_backsub: entering debug version...\n" if $PDL::debug;
if(@_==3) {
($lu, $perm, $b) = @_;
} elsif(@_==4) {
($lu, $perm, $par, $b) = @_;
}
barf("lu_backsub: LU decomposition is undef -- probably from a singular matrix.\n")
unless defined($lu);
barf("Usage: \$x = lu_backsub(\$lu,\$perm,\$b); all must be PDLs\n")
unless(UNIVERSAL::isa($lu,'PDL') &&
UNIVERSAL::isa($perm,'PDL') &&
UNIVERSAL::isa($b,'PDL'));
my $n = $b->dim(0);
my $n1 = $n; $n1--;
# Make sure threading dimensions are compatible.
# There are two possible sources of thread dims:
#
# (1) over multiple LU (i.e., $lu,$perm) instances
# (2) over multiple B (i.e., $b) column instances
#
# The full dimensions of the function call looks like
#
# lu_backsub( lu(m,m,X), perm(m,X), b(m,Y) )
#
# where X is the list of extra LU dims and Y is
# the list of extra B dims. We have several possible
# cases:
#
# (1) Check that m dims are compatible
my $ludims = pdl($lu->dims);
my $permdims = pdl($perm->dims);
my $bdims = pdl($b->dims);
print STDERR "lu_backsub: called with args: \$lu$ludims, \$perm$permdims, \$b$bdims\n" if $PDL::debug;
my $m = $ludims((0)); # this is the sig dimension
unless ( ($ludims(0) == $m) and ($ludims(1) == $m) and
($permdims(0) == $m) and ($bdims(0) == $m)) {
barf "lu_backsub: mismatched sig dimensions";
}
my $lunumthr = $ludims->dim(0)-2;
my $permnumthr = $permdims->dim(0)-1;
my $bnumthr = $bdims->dim(0)-1;
unless ( ($lunumthr == $permnumthr) and ($ludims(1:-1) == $permdims)->all ) {
barf "lu_backsub: \$lu and \$perm thread dims not equal! \n";
}
# (2) If X == Y then default threading is ok
if ( ($bnumthr==$permnumthr) and ($bdims==$permdims)->all) {
print STDERR "lu_backsub: have explicit thread dims, goto THREAD_OK\n" if $PDL::debug;
goto THREAD_OK;
}
# (3) If X == (x,Y) then add x dummy to lu,perm
# (4) If ndims(X) > ndims(Y) then must have #3
# (5) If ndims(X) < ndims(Y) then foreach
# non-trivial leading dim in X (x0,x1,..)
# insert dummy (x0,x1) into lu and perm
# This means that threading occurs over all
# leading non-trivial (not length 1) dims of
# B unless all the thread dims are explicitly
# matched to the LU dims.
THREAD_OK:
# Permute the vector and make a copy if necessary.
my $out;
# my $nontrivial = ! (($perm==(PDL->xvals($perm->dims)))->all);
my $nontrivial = ! (($perm==$perm->xvals)->clump(-1)->andover);
if($nontrivial) {
if($b->is_inplace) {
$b .= $b->dummy(1,$b->dim(0))->index($perm->dummy(1,1))->sever; # TODO: check threading
$out = $b;
} else {
$out = $b->dummy(1,$b->dim(0))->index($perm->dummy(1,1))->sever; # TODO: check threading
}
} else {
# should check for more matrix dims to thread over
# but ignore the issue for now
$out = ($b->is_inplace ? $b : $b->copy);
}
print STDERR "lu_backsub: starting with \$out" . pdl($out->dims) . "\n" if $PDL::debug;
# Make sure threading over lu happens OK...
if($out->ndims < $lu->ndims-1) {
print STDERR "lu_backsub: adjusting dims for \$out" . pdl($out->dims) . "\n" if $PDL::debug;
do {
$out = $out->dummy(-1,$lu->dim($out->ndims+1));
} while($out->ndims < $lu->ndims-1);
$out = $out->sever;
}
## Do forward substitution into L
my $row; my $r1;
for $row(1..$n1) {
$r1 = $row-1;
my $tmp; # work around perl -d "feature
($tmp = $out->index($row)) -= ($lu->(0:$r1,$row) *
$out->(0:$r1)
)->sumover;
}
## Do backward substitution into U, and normalize by the diagonal
my $ludiag = $lu->diagonal(0,1);
{
my $tmp; # work around for perl -d "feature"
($tmp = $out->index($n1)) /= $ludiag->index($n1)->dummy(0,1); # TODO: check threading
}
for ($row=$n1; $row>0; $row--) {
$r1 = $row-1;
my $tmp; # work around for perl -d "feature"
($tmp = $out->index($r1)) -= ($lu->($row:$n1,$r1) * # TODO: check thread dims
$out->($row:$n1)
)->sumover;
($tmp = $out->index($r1)) /= $ludiag->index($r1)->dummy(0,1); # TODO: check thread dims
}
$out;
}
=head2 simq
=for sig
Signature: ([phys]a(n,n); [phys]b(n); [o,phys]x(n); int [o,phys]ips(n); int flag)
=for ref
Solution of simultaneous linear equations, C<a x = b>.
C<$a> is an C<n x n> matrix (i.e., a vector of length C<n*n>), stored row-wise:
that is, C<a(i,j) = a[ij]>, where C<ij = i*n + j>.
While this is the transpose of the normal column-wise storage, this
corresponds to normal PDL usage. The contents of matrix a may be
altered (but may be required for subsequent calls with flag = -1).
C<$b>, C<$x>, C<$ips> are vectors of length C<n>.
Set C<flag=0> to solve.
Set C<flag=-1> to do a new back substitution for
different C<$b> vector using the same a matrix previously reduced when
C<flag=0> (the C<$ips> vector generated in the previous solution is also
required).
See also L<lu_backsub|lu_backsub>, which does the same thing with a slightly
less opaque interface.
=for bad
simq ignores the bad-value flag of the input piddles.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*simq = \&PDL::simq;
=head2 squaretotri
=for sig
Signature: (a(n,n); b(m))
=for ref
Convert a symmetric square matrix to triangular vector storage.
=for bad
squaretotri does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*squaretotri = \&PDL::squaretotri;
;
sub eigen_c {
print STDERR "eigen_c is no longer part of PDL::MatrixOps or PDL::Math; use eigens instead.\n";
## my($mat) = @_;
## my $s = $mat->getdim(0);
## my $z = zeroes($s * ($s+1) / 2);
## my $ev = zeroes($s);
## squaretotri($mat,$z);
## my $k = 0 * $mat;
## PDL::eigens($z, $k, $ev);
## return ($ev, $k);
}
=head1 AUTHOR
Copyright (C) 2002 Craig DeForest (deforest@boulder.swri.edu),
R.J.R. Williams (rjrw@ast.leeds.ac.uk), Karl Glazebrook
(kgb@aaoepp.aao.gov.au). There is no warranty. You are allowed to
redistribute and/or modify this work under the same conditions as PDL
itself. If this file is separated from the PDL distribution, then the
PDL copyright notice should be included in this file.
=cut
# Exit with OK status
1;
|