/usr/lib/perl5/PDL/Primitive.pm is in pdl 1:2.007-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::Primitive;
@EXPORT_OK = qw( PDL::PP inner PDL::PP outer matmult PDL::PP matmult PDL::PP innerwt PDL::PP inner2 PDL::PP inner2d PDL::PP inner2t PDL::PP crossp PDL::PP norm PDL::PP indadd PDL::PP conv1d PDL::PP in uniq uniqind uniqvec PDL::PP hclip PDL::PP lclip clip PDL::PP wtstat PDL::PP statsover stats PDL::PP histogram PDL::PP whistogram PDL::PP histogram2d PDL::PP whistogram2d PDL::PP fibonacci PDL::PP append PDL::PP axisvalues PDL::PP random PDL::PP randsym grandom PDL::PP vsearch PDL::PP interpolate interpol interpND one2nd PDL::PP which PDL::PP which_both where whereND whichND setops intersect );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::Primitive ;
use PDL::Slices;
use Carp;
=head1 NAME
PDL::Primitive - primitive operations for pdl
=head1 DESCRIPTION
This module provides some primitive and useful functions defined
using PDL::PP and able to use the new indexing tricks.
See L<PDL::Indexing|PDL::Indexing> for how to use indices creatively.
For explanation of the signature format, see L<PDL::PP|PDL::PP>.
=head1 SYNOPSIS
# Pulls in PDL::Primitive, among other modules.
use PDL;
# Only pull in PDL::Primitive:
use PDL::Primitive;
=cut
=head1 FUNCTIONS
=cut
=head2 inner
=for sig
Signature: (a(n); b(n); [o]c())
=for ref
Inner product over one dimension
c = sum_i a_i * b_i
=for bad
=for bad
If C<a() * b()> contains only bad data,
C<c()> is set bad. Otherwise C<c()> will have its bad flag cleared,
as it will not contain any bad values.
=cut
*inner = \&PDL::inner;
=head2 outer
=for sig
Signature: (a(n); b(m); [o]c(n,m))
=for ref
outer product over one dimension
Naturally, it is possible to achieve the effects of outer
product simply by threading over the "C<*>"
operator but this function is provided for convenience.
=for bad
outer processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*outer = \&PDL::outer;
=head2 x
=for sig
Signature: (a(i,z), b(x,i),[o]c(x,z))
=for ref
Matrix multiplication
PDL overloads the C<x> operator (normally the repeat operator) for
matrix multiplication. The number of columns (size of the 0
dimension) in the left-hand argument must normally equal the number of
rows (size of the 1 dimension) in the right-hand argument.
Row vectors are represented as (N x 1) two-dimensional PDLs, or you
may be sloppy and use a one-dimensional PDL. Column vectors are
represented as (1 x N) two-dimensional PDLs.
Threading occurs in the usual way, but as both the 0 and 1 dimension
(if present) are included in the operation, you must be sure that
you don't try to thread over either of those dims.
EXAMPLES
Here are some simple ways to define vectors and matrices:
pdl> $r = pdl(1,2); # A row vector
pdl> $c = pdl([[3],[4]]); # A column vector
pdl> $c = pdl(3,4)->(*1); # A column vector, using NiceSlice
pdl> $m = pdl([[1,2],[3,4]]); # A 2x2 matrix
Now that we have a few objects prepared, here is how to
matrix-multiply them:
pdl> print $r x $m # row x matrix = row
[
[ 7 10]
]
pdl> print $m x $r # matrix x row = ERROR
PDL: Dim mismatch in matmult of [2x2] x [2x1]: 2 != 1
pdl> print $m x $c # matrix x column = column
[
[ 5]
[11]
]
pdl> print $m x 2 # Trivial case: scalar mult.
[
[2 4]
[6 8]
]
pdl> print $r x $c # row x column = scalar
[
[11]
]
pdl> print $c x $r # column x row = matrix
[
[3 6]
[4 8]
]
INTERNALS
The mechanics of the multiplication are carried out by the
L<matmult|/matmult> method.
=cut
=head2 matmult
=for sig
Signature: (a(t,h); b(w,t); [o]c(w,h))
=for ref
Matrix multiplication
Notionally, matrix multiplication $a x $b is equivalent to the
threading expression
$a->dummy(1)->inner($b->xchg(0,1)->dummy(2),$c);
but for large matrices that breaks CPU cache and is slow. Instead,
matmult calculates its result in 32x32x32 tiles, to keep the memory
footprint within cache as long as possible on most modern CPUs.
For usage, see L<x|/x>, a description of the overloaded 'x' operator
=for bad
matmult ignores the bad-value flag of the input piddles.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::matmult {
my ($a,$b,$c) = @_;
$b = pdl($b) unless eval { $b->isa('PDL') };
$c = PDL->null unless eval { $c->isa('PDL') };
while($a->getndims < 2) {$a = $a->dummy(-1)}
while($b->getndims < 2) {$b = $b->dummy(-1)}
return ($c .= $a * $b) if( ($a->dim(0)==1 && $a->dim(1)==1) ||
($b->dim(0)==1 && $b->dim(1)==1) );
if($b->dim(1) != $a->dim(0)) {
barf(sprintf("Dim mismatch in matmult of [%dx%d] x [%dx%d]: %d != %d",$a->dim(0),$a->dim(1),$b->dim(0),$b->dim(1),$a->dim(0),$b->dim(1)));
}
PDL::_matmult_int($a,$b,$c);
$c;
}
*matmult = \&PDL::matmult;
=head2 innerwt
=for sig
Signature: (a(n); b(n); c(n); [o]d())
=for ref
Weighted (i.e. triple) inner product
d = sum_i a(i) b(i) c(i)
=for bad
innerwt processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*innerwt = \&PDL::innerwt;
=head2 inner2
=for sig
Signature: (a(n); b(n,m); c(m); [o]d())
=for ref
Inner product of two vectors and a matrix
d = sum_ij a(i) b(i,j) c(j)
Note that you should probably not thread over C<a> and C<c> since that would be
very wasteful. Instead, you should use a temporary for C<b*c>.
=for bad
inner2 processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*inner2 = \&PDL::inner2;
=head2 inner2d
=for sig
Signature: (a(n,m); b(n,m); [o]c())
=for ref
Inner product over 2 dimensions.
Equivalent to
$c = inner($a->clump(2), $b->clump(2))
=for bad
inner2d processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*inner2d = \&PDL::inner2d;
=head2 inner2t
=for sig
Signature: (a(j,n); b(n,m); c(m,k); [t]tmp(n,k); [o]d(j,k)))
=for ref
Efficient Triple matrix product C<a*b*c>
Efficiency comes from by using the temporary C<tmp>. This operation only
scales as C<N**3> whereas threading using L<inner2|/inner2> would scale
as C<N**4>.
The reason for having this routine is that you do not need to
have the same thread-dimensions for C<tmp> as for the other arguments,
which in case of large numbers of matrices makes this much more
memory-efficient.
It is hoped that things like this could be taken care of as a kind of
closures at some point.
=for bad
inner2t processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*inner2t = \&PDL::inner2t;
=head2 crossp
=for sig
Signature: (a(tri=3); b(tri); [o] c(tri))
=for ref
Cross product of two 3D vectors
After
=for example
$c = crossp $a, $b
the inner product C<$c*$a> and C<$c*$b> will be zero, i.e. C<$c> is
orthogonal to C<$a> and C<$b>
=for bad
crossp does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*crossp = \&PDL::crossp;
=head2 norm
=for sig
Signature: (vec(n); [o] norm(n))
=for ref
Normalises a vector to unit Euclidean length
=for bad
norm processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*norm = \&PDL::norm;
=head2 indadd
=for sig
Signature: (a(); indx ind(); [o] sum(m))
=for ref
Threaded Index Add: Add C<a> to the C<ind> element of C<sum>, i.e:
sum(ind) += a
=for example
Simple Example:
$a = 2;
$ind = 3;
$sum = zeroes(10);
indadd($a,$ind, $sum);
print $sum
#Result: ( 2 added to element 3 of $sum)
# [0 0 0 2 0 0 0 0 0 0]
Threaded Example:
$a = pdl( 1,2,3);
$ind = pdl( 1,4,6);
$sum = zeroes(10);
indadd($a,$ind, $sum);
print $sum."\n";
#Result: ( 1, 2, and 3 added to elements 1,4,6 $sum)
# [0 1 0 0 2 0 3 0 0 0]
=for bad
=for bad
The routine barfs if any of the indices are bad.
=cut
*indadd = \&PDL::indadd;
=head2 conv1d
=for sig
Signature: (a(m); kern(p); [o]b(m); int reflect)
=for ref
1D convolution along first dimension
The m-th element of the discrete convolution of an input piddle
C<$a> of size C<$M>, and a kernel piddle C<$kern> of size C<$P>, is
calculated as
n = ($P-1)/2
====
\
($a conv1d $kern)[m] = > $a_ext[m - n] * $kern[n]
/
====
n = -($P-1)/2
where C<$a_ext> is either the periodic (or reflected) extension of
C<$a> so it is equal to C<$a> on C< 0..$M-1 > and equal to the
corresponding periodic/reflected image of C<$a> outside that range.
=for example
$con = conv1d sequence(10), pdl(-1,0,1);
$con = conv1d sequence(10), pdl(-1,0,1), {Boundary => 'reflect'};
By default, periodic boundary conditions are assumed (i.e. wrap around).
Alternatively, you can request reflective boundary conditions using
the C<Boundary> option:
{Boundary => 'reflect'} # case in 'reflect' doesn't matter
The convolution is performed along the first dimension. To apply it across
another dimension use the slicing routines, e.g.
$b = $a->mv(2,0)->conv1d($kernel)->mv(0,2); # along third dim
This function is useful for threaded filtering of 1D signals.
Compare also L<conv2d|PDL::Image2D/conv2d>, L<convolve|PDL::ImageND/convolve>,
L<fftconvolve|PDL::FFT/fftconvolve()>, L<fftwconv|PDL::FFTW/fftwconv>,
L<rfftwconv|PDL::FFTW/rfftwconv>
=for bad
WARNING: C<conv1d> processes bad values in its inputs as
the numeric value of C<< $pdl->badvalue >> so it is not
recommended for processing pdls with bad values in them
unless special care is taken.
=for bad
conv1d ignores the bad-value flag of the input piddles.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::conv1d {
my $opt = pop @_ if ref($_[$#_]) eq 'HASH';
die 'Usage: conv1d( a(m), kern(p), [o]b(m), {Options} )'
if $#_<1 || $#_>2;
my($a,$kern) = @_;
my $c = $#_ == 2 ? $_[2] : PDL->null;
&PDL::_conv1d_int($a,$kern,$c,
!(defined $opt && exists $$opt{Boundary}) ? 0 :
lc $$opt{Boundary} eq "reflect");
return $c;
}
*conv1d = \&PDL::conv1d;
=head2 in
=for sig
Signature: (a(); b(n); [o] c())
=for ref
test if a is in the set of values b
=for example
$goodmsk = $labels->in($goodlabels);
print pdl(3,1,4,6,2)->in(pdl(2,3,3));
[1 0 0 0 1]
C<in> is akin to the I<is an element of> of set theory. In priciple,
PDL threading could be used to achieve its functionality by using a
construct like
$msk = ($labels->dummy(0) == $goodlabels)->orover;
However, C<in> doesn't create a (potentially large) intermediate
and is generally faster.
=for bad
in does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*in = \&PDL::in;
=head2 uniq
=for ref
return all unique elements of a piddle
The unique elements are returned in ascending order.
=for example
PDL> p pdl(2,2,2,4,0,-1,6,6)->uniq
[-1 0 2 4 6] # 0 is returned 2nd (sorted order)
PDL> p pdl(2,2,2,4,nan,-1,6,6)->uniq
[-1 2 4 6 nan] # NaN value is returned at end
Note: The returned pdl is 1D; any structure of the input
piddle is lost. C<NaN> values are never compare equal to
any other values, even themselves. As a result, they are
always unique. C<uniq> returns the NaN values at the end
of the result piddle. This follows the Matlab usage.
See L<uniqind|uniqind> if you need the indices of the unique
elements rather than the values.
=cut
=for bad
Bad values are not considered unique by uniq and are ignored.
$a=sequence(10);
$a=$a->setbadif($a%3);
print $a->uniq;
[0 3 6 9]
=cut
*uniq = \&PDL::uniq;
# return unique elements of array
# find as jumps in the sorted array
# flattens in the process
sub PDL::uniq {
use PDL::Core 'barf';
my ($arr) = @_;
return $arr if($arr->nelem == 0); # The null list is unique (CED)
my $srt = $arr->clump(-1)->where($arr==$arr)->qsort; # no NaNs or BADs for qsort
my $nans = $arr->clump(-1)->where($arr!=$arr);
my $uniq = ($srt->nelem > 0) ? $srt->where($srt != $srt->rotate(-1)) : $srt;
# make sure we return something if there is only one value
my $answ = $nans; # NaN values always uniq
if ( $uniq->nelem > 0 ) {
$answ = $uniq->append($answ);
} else {
$answ = ( ($srt->nelem == 0) ? $srt : PDL::pdl( ref($srt), [$srt->index(0)] ) )->append($answ);
}
return $answ;
}
=head2 uniqind
=for ref
Return the indices of all unique elements of a piddle
The order is in the order of the values to be consistent
with uniq. C<NaN> values never compare equal with any
other value and so are always unique. This follows the
Matlab usage.
=for example
PDL> p pdl(2,2,2,4,0,-1,6,6)->uniqind
[5 4 1 3 6] # the 0 at index 4 is returned 2nd, but...
PDL> p pdl(2,2,2,4,nan,-1,6,6)->uniqind
[5 1 3 6 4] # ...the NaN at index 4 is returned at end
Note: The returned pdl is 1D; any structure of the input
piddle is lost.
See L<uniq|uniq> if you want the unique values instead of the
indices.
=cut
=for bad
Bad values are not considered unique by uniqind and are ignored.
=cut
*uniqind = \&PDL::uniqind;
# return unique elements of array
# find as jumps in the sorted array
# flattens in the process
sub PDL::uniqind {
use PDL::Core 'barf';
my ($arr) = @_;
return $arr if($arr->nelem == 0); # The null list is unique (CED)
# Different from uniq we sort and store the result in an intermediary
my $aflat = $arr->flat;
my $nanind = which($aflat!=$aflat); # NaN indexes
my $good = $aflat->sequence->long->where($aflat==$aflat); # good indexes
my $i_srt = $aflat->where($aflat==$aflat)->qsorti; # no BAD or NaN values for qsorti
my $srt = $aflat->where($aflat==$aflat)->index($i_srt);
my $uniqind;
if ($srt->nelem > 0) {
$uniqind = which($srt != $srt->rotate(-1));
$uniqind = $i_srt->slice('0') if $uniqind->isempty;
} else {
$uniqind = which($srt);
}
# Now map back to the original space
my $ansind = $nanind;
if ( $uniqind->nelem > 0 ) {
$ansind = ($good->index($i_srt->index($uniqind)))->append($ansind);
} else {
$ansind = $uniqind->append($ansind);
}
return $ansind;
}
=head2 uniqvec
=for ref
Return all unique vectors out of a collection
NOTE: If any vectors in the input piddle have NaN values
they are returned at the end of the non-NaN ones. This is
because, by definition, NaN values never compare equal with
any other value.
NOTE: The current implementation does not sort the vectors
containing NaN values.
The unique vectors are returned in lexicographically sorted
ascending order. The 0th dimension of the input PDL is treated
as a dimensional index within each vector, and the 1st and any
higher dimensions are taken to run across vectors. The return
value is always 2D; any structure of the input PDL (beyond using
the 0th dimension for vector index) is lost.
See also L<uniq|uniq> for a uniqe list of scalars; and
L<qsortvec|PDL::Ufunc/qsortvec> for sorting a list of vectors
lexicographcally.
=cut
=for bad
If a vector contains all bad values, it is ignored as in L<uniq|uniq>.
If some of the values are good, it is treated as a normal vector. For
example, [1 2 BAD] and [BAD 2 3] could be returned, but [BAD BAD BAD]
could not. Vectors containing BAD values will be returned after any
non-NaN and non-BAD containing vectors, followed by the NaN vectors.
=cut
sub PDL::uniqvec {
my($pdl) = shift;
return $pdl if ( $pdl->nelem == 0 || $pdl->ndims < 2 );
return $pdl if ( $pdl->slice("(0)")->nelem < 2 ); # slice isn't cheap but uniqvec isn't either
my $pdl2d = null;
$pdl2d = $pdl->mv(0,-1)->clump($pdl->ndims-1)->mv(-1,0); # clump all but dim(0)
my $ngood = null;
$ngood = $pdl2d->ones->sumover;
$ngood = $pdl2d->ngoodover if ($PDL::Bad::Status && $pdl->badflag); # number of good values each vector
my $ngood2 = null;
$ngood2 = $ngood->where($ngood); # number of good values with no all-BADs
$pdl2d = $pdl2d->mv(0,-1)->dice($ngood->which)->mv(-1,0); # remove all-BAD vectors
my $numnan = null;
$numnan = ($pdl2d!=$pdl2d)->sumover; # works since no all-BADs to confuse
my $presrt = null;
$presrt = $pdl2d->mv(0,-1)->dice($numnan->not->which)->mv(0,-1); # remove vectors with any NaN values
my $nanvec = null;
$nanvec = $pdl2d->mv(0,-1)->dice($numnan->which)->mv(0,-1); # the vectors with any NaN values
# use dice instead of nslice since qsortvec might be packing
# the badvals to the front of the array instead of the end like
# the docs say. If that is the case and it gets fixed, it won't
# bust uniqvec. DAL 14-March 2006
my $srt = null;
$srt = $presrt->qsortvec->mv(0,-1); # BADs are sorted by qsortvec
my $srtdice = $srt;
my $somebad = null;
if ($PDL::Bad::Status && $srt->badflag) {
$srtdice = $srt->dice($srt->mv(0,-1)->nbadover->not->which);
$somebad = $srt->dice($srt->mv(0,-1)->nbadover->which);
}
my $uniq = null;
if ($srtdice->nelem > 0) {
$uniq = ($srtdice != $srtdice->rotate(-1))->mv(0,-1)->orover->which;
} else {
$uniq = $srtdice->orover->which;
}
my $ans = null;
if ( $uniq->nelem > 0 ) {
$ans = $srtdice->dice($uniq);
} else {
$ans = ($srtdice->nelem > 0) ? $srtdice->slice("0,:") : $srtdice;
}
return $ans->append($somebad)->append($nanvec->mv(0,-1))->mv(0,-1);
}
=head2 hclip
=for sig
Signature: (a(); b(); [o] c())
=for ref
clip (threshold) C<$a> by C<$b> (C<$b> is upper bound)
=for bad
hclip processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::hclip {
my ($a,$b) = @_;
my $c;
if ($a->is_inplace) {
$a->set_inplace(0); $c = $a;
} elsif ($#_ > 1) {$c=$_[2]} else {$c=PDL->nullcreate($a)}
&PDL::_hclip_int($a,$b,$c);
return $c;
}
*hclip = \&PDL::hclip;
=head2 lclip
=for sig
Signature: (a(); b(); [o] c())
=for ref
clip (threshold) C<$a> by C<$b> (C<$b> is lower bound)
=for bad
lclip processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::lclip {
my ($a,$b) = @_;
my $c;
if ($a->is_inplace) {
$a->set_inplace(0); $c = $a;
} elsif ($#_ > 1) {$c=$_[2]} else {$c=PDL->nullcreate($a)}
&PDL::_lclip_int($a,$b,$c);
return $c;
}
*lclip = \&PDL::lclip;
=head2 clip
=for ref
Clip (threshold) a piddle by (optional) upper or lower bounds.
=for usage
$b = $a->clip(0,3);
$c = $a->clip(undef, $x);
=cut
=for bad
clip handles bad values since it is just a
wrapper around L<hclip|/hclip> and
L<lclip|/lclip>.
=cut
*clip = \&PDL::clip;
sub PDL::clip {
my($a, $b, $c) = @_;
my $d; if($a->is_inplace) {$a->set_inplace(0); $d = $a}
elsif($#_ > 2) {$d=$_[3]} else {$d = PDL->nullcreate($a)}
if(defined $b) {
&PDL::_lclip_int($a,$b,$d);
if(defined $c) {
&PDL::_hclip_int($d,$c,$d);
}
} elsif(defined $c) {
&PDL::_hclip_int($a,$c,$d);
}
return $d;
}
=head2 wtstat
=for sig
Signature: (a(n); wt(n); avg(); [o]b(); int deg)
=for ref
Weighted statistical moment of given degree
This calculates a weighted statistic over the vector C<a>.
The formula is
b() = (sum_i wt_i * (a_i ** degree - avg)) / (sum_i wt_i)
=for bad
=for bad
Bad values are ignored in any calculation; C<$b> will only
have its bad flag set if the output contains any bad data.
=cut
*wtstat = \&PDL::wtstat;
=head2 statsover
=for sig
Signature: (a(n); w(n); float+ [o]avg(); float+ [o]prms(); int+ [o]median(); int+ [o]min(); int+ [o]max(); float+ [o]adev(); float+ [o]rms())
=for ref
Calculate useful statistics over a dimension of a piddle
=for usage
($mean,$prms,$median,$min,$max,$adev,$rms) = statsover($piddle, $weights);
This utility function calculates various useful
quantities of a piddle. These are:
=over 3
=item * the mean:
MEAN = sum (x)/ N
with C<N> being the number of elements in x
=item * the population RMS deviation from the mean:
PRMS = sqrt( sum( (x-mean(x))^2 )/(N-1)
The population deviation is the best-estimate of the deviation
of the population from which a sample is drawn.
=item * the median
The median is the 50th percentile data value. Median is found by
L<medover|PDL::Ufunc/medover>, so WEIGHTING IS IGNORED FOR THE MEDIAN CALCULATION.
=item * the minimum
=item * the maximum
=item * the average absolute deviation:
AADEV = sum( abs(x-mean(x)) )/N
=item * RMS deviation from the mean:
RMS = sqrt(sum( (x-mean(x))^2 )/N)
(also known as the root-mean-square deviation, or the square root of the
variance)
=back
This operator is a projection operator so the calculation
will take place over the final dimension. Thus if the input
is N-dimensional each returned value will be N-1 dimensional,
to calculate the statistics for the entire piddle either
use C<clump(-1)> directly on the piddle or call C<stats>.
=for bad
=for bad
Bad values are simply ignored in the calculation, effectively reducing
the sample size. If all data are bad then the output data are marked bad.
=cut
sub PDL::statsover {
barf('Usage: ($mean,[$prms, $median, $min, $max, $adev, $rms]) = statsover($data,[$weights])') if $#_>1;
my ($data, $weights) = @_;
$weights = $data->ones() if !defined($weights);
my $median = $data->medover();
my $mean = PDL->nullcreate($data);
my $rms = PDL->nullcreate($data);
my $min = PDL->nullcreate($data);
my $max = PDL->nullcreate($data);
my $adev = PDL->nullcreate($data);
my $prms = PDL->nullcreate($data);
&PDL::_statsover_int($data, $weights, $mean, $prms, $median, $min, $max, $adev, $rms);
return $mean unless wantarray;
return ($mean, $prms, $median, $min, $max, $adev, $rms);
}
*statsover = \&PDL::statsover;
=head2 stats
=for ref
Calculates useful statistics on a piddle
=for usage
($mean,$prms,$median,$min,$max,$adev,$rms) = stats($piddle,[$weights]);
This utility calculates all the most useful quantities in one call.
It works the same way as L</statsover>, except that the quantities are
calculated considering the entire input PDL as a single sample, rather
than as a collection of rows. See L</statsover> for definitions of the
returned quantities.
=cut
=for bad
Bad values are handled; if all input values are bad, then all of the output
values are flagged bad.
=cut
*stats = \&PDL::stats;
sub PDL::stats {
barf('Usage: ($mean,[$rms]) = stats($data,[$weights])') if $#_>1;
my ($data,$weights) = @_;
# Ensure that $weights is properly threaded over; this could be
# done rather more efficiently...
if(defined $weights) {
$weights = pdl($weights) unless UNIVERSAL::isa($weights,'PDL');
if( ($weights->ndims != $data->ndims) or
(pdl($weights->dims) != pdl($data->dims))->or
) {
$weights = $weights + zeroes($data)
}
$weights = $weights->flat;
}
return PDL::statsover($data->flat,$weights);
}
=head2 histogram
=for sig
Signature: (in(n); int+[o] hist(m); double step; double min; int msize => m)
=for ref
Calculates a histogram for given stepsize and minimum.
=for usage
$h = histogram($data, $step, $min, $numbins);
$hist = zeroes $numbins; # Put histogram in existing piddle.
histogram($data, $hist, $step, $min, $numbins);
The histogram will contain C<$numbins> bins starting from C<$min>, each
C<$step> wide. The value in each bin is the number of
values in C<$data> that lie within the bin limits.
Data below the lower limit is put in the first bin, and data above the
upper limit is put in the last bin.
The output is reset in a different threadloop so that you
can take a histogram of C<$a(10,12)> into C<$b(15)> and get the result
you want.
For a higher-level interface, see L<hist|PDL::Basic/hist>.
=for example
pdl> p histogram(pdl(1,1,2),1,0,3)
[0 2 1]
=for bad
histogram processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*histogram = \&PDL::histogram;
=head2 whistogram
=for sig
Signature: (in(n); float+ wt(n);float+[o] hist(m); double step; double min; int msize => m)
=for ref
Calculates a histogram from weighted data for given stepsize and minimum.
=for usage
$h = whistogram($data, $weights, $step, $min, $numbins);
$hist = zeroes $numbins; # Put histogram in existing piddle.
whistogram($data, $weights, $hist, $step, $min, $numbins);
The histogram will contain C<$numbins> bins starting from C<$min>, each
C<$step> wide. The value in each bin is the sum of the values in C<$weights>
that correspond to values in C<$data> that lie within the bin limits.
Data below the lower limit is put in the first bin, and data above the
upper limit is put in the last bin.
The output is reset in a different threadloop so that you
can take a histogram of C<$a(10,12)> into C<$b(15)> and get the result
you want.
=for example
pdl> p whistogram(pdl(1,1,2), pdl(0.1,0.1,0.5), 1, 0, 4)
[0 0.2 0.5 0]
=for bad
whistogram processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*whistogram = \&PDL::whistogram;
=head2 histogram2d
=for sig
Signature: (ina(n); inb(n); int+[o] hist(ma,mb); double stepa; double mina; int masize => ma;
double stepb; double minb; int mbsize => mb;)
=for ref
Calculates a 2d histogram.
=for usage
$h = histogram2d($datax, $datay, $stepx, $minx,
$nbinx, $stepy, $miny, $nbiny);
$hist = zeroes $nbinx, $nbiny; # Put histogram in existing piddle.
histogram2d($datax, $datay, $hist, $stepx, $minx,
$nbinx, $stepy, $miny, $nbiny);
The histogram will contain C<$nbinx> x C<$nbiny> bins, with the lower
limits of the first one at C<($minx, $miny)>, and with bin size
C<($stepx, $stepy)>.
The value in each bin is the number of
values in C<$datax> and C<$datay> that lie within the bin limits.
Data below the lower limit is put in the first bin, and data above the
upper limit is put in the last bin.
=for example
pdl> p histogram2d(pdl(1,1,1,2,2),pdl(2,1,1,1,1),1,0,3,1,0,3)
[
[0 0 0]
[0 2 2]
[0 1 0]
]
=for bad
histogram2d processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*histogram2d = \&PDL::histogram2d;
=head2 whistogram2d
=for sig
Signature: (ina(n); inb(n); float+ wt(n);float+[o] hist(ma,mb); double stepa; double mina; int masize => ma;
double stepb; double minb; int mbsize => mb;)
=for ref
Calculates a 2d histogram from weighted data.
=for usage
$h = whistogram2d($datax, $datay, $weights,
$stepx, $minx, $nbinx, $stepy, $miny, $nbiny);
$hist = zeroes $nbinx, $nbiny; # Put histogram in existing piddle.
whistogram2d($datax, $datay, $weights, $hist,
$stepx, $minx, $nbinx, $stepy, $miny, $nbiny);
The histogram will contain C<$nbinx> x C<$nbiny> bins, with the lower
limits of the first one at C<($minx, $miny)>, and with bin size
C<($stepx, $stepy)>.
The value in each bin is the sum of the values in
C<$weights> that correspond to values in C<$datax> and C<$datay> that lie within the bin limits.
Data below the lower limit is put in the first bin, and data above the
upper limit is put in the last bin.
=for example
pdl> p whistogram2d(pdl(1,1,1,2,2),pdl(2,1,1,1,1),pdl(0.1,0.2,0.3,0.4,0.5),1,0,3,1,0,3)
[
[ 0 0 0]
[ 0 0.5 0.9]
[ 0 0.1 0]
]
=for bad
whistogram2d processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*whistogram2d = \&PDL::whistogram2d;
=head2 fibonacci
=for sig
Signature: ([o]x(n))
=for ref
Constructor - a vector with Fibonacci's sequence
=for bad
fibonacci does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub fibonacci { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->fibonacci : PDL->fibonacci(@_) }
sub PDL::fibonacci{
my $class = shift;
my $x = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
&PDL::_fibonacci_int($x->clump(-1));
return $x;
}
=head2 append
=for sig
Signature: (a(n); b(m); [o] c(mn))
=for ref
append two or more piddles by concatenating along their first dimensions
=for example
$a = ones(2,4,7);
$b = sequence 5;
$c = $a->append($b); # size of $c is now (7,4,7) (a jumbo-piddle ;)
C<append> appends two piddles along their first dims. Rest of the dimensions
must be compatible in the threading sense. Resulting size of first dim is
the sum of the sizes of the first dims of the two argument piddles -
ie C<n + m>.
Similar functions include L<glue|/glue> (below) and L<cat|PDL::Core/cat>.
=for bad
append does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*append = \&PDL::append;
=head2 glue
=for usage
$c = $a->glue(<dim>,$b,...)
=for ref
Glue two or more PDLs together along an arbitrary dimension
(N-D L<append|append>).
Sticks $a, $b, and all following arguments together along the
specified dimension. All other dimensions must be compatible in the
threading sense.
Glue is permissive, in the sense that every PDL is treated as having an
infinite number of trivial dimensions of order 1 -- so C<< $a->glue(3,$b) >>
works, even if $a and $b are only one dimensional.
If one of the PDLs has no elements, it is ignored. Likewise, if one
of them is actually the undefined value, it is treated as if it had no
elements.
If the first parameter is a defined perl scalar rather than a pdl,
then it is taken as a dimension along which to glue everything else,
so you can say C<$cube = PDL::glue(3,@image_list);> if you like.
C<glue> is implemented in pdl, using a combination of L<xchg|PDL::Slices/xchg> and
L<append|append>. It should probably be updated (one day) to a pure PP
function.
Similar functions include L<append|/append> (above) and L<cat|PDL::Core/cat>.
=cut
sub PDL::glue{
my($a) = shift;
my($dim) = shift;
if(defined $a && !(ref $a)) {
my $b = $dim;
$dim = $a;
$a = $b;
}
if(!defined $a || $a->nelem==0) {
return $a unless(@_);
return shift() if(@_<=1);
$a=shift;
return PDL::glue($a,$dim,@_);
}
if($dim - $a->dim(0) > 100) {
print STDERR "warning:: PDL::glue allocating >100 dimensions!\n";
}
while($dim >= $a->ndims) {
$a = $a->dummy(-1,1);
}
$a = $a->xchg(0,$dim);
while(scalar(@_)){
my $b = shift;
next unless(defined $b && $b->nelem);
while($dim >= $b->ndims) {
$b = $b->dummy(-1,1);
}
$b = $b->xchg(0,$dim);
$a = $a->append($b);
}
$a->xchg(0,$dim);
}
=head2 axisvalues
=for sig
Signature: ([o,nc]a(n))
=for ref
Internal routine
C<axisvalues> is the internal primitive that implements
L<axisvals|PDL::Basic/axisvals>
and alters its argument.
=for bad
axisvalues does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*axisvalues = \&PDL::axisvalues;
=head2 random
=for ref
Constructor which returns piddle of random numbers
=for usage
$a = random([type], $nx, $ny, $nz,...);
$a = random $b;
etc (see L<zeroes|PDL::Core/zeroes>).
This is the uniform distribution between 0 and 1 (assumedly
excluding 1 itself). The arguments are the same as C<zeroes>
(q.v.) - i.e. one can specify dimensions, types or give
a template.
You can use the perl function L<srand|perlfunc/srand> to seed the random
generator. For further details consult Perl's L<srand|perlfunc/srand>
documentation.
=head2 randsym
=for ref
Constructor which returns piddle of random numbers
=for usage
$a = randsym([type], $nx, $ny, $nz,...);
$a = randsym $b;
etc (see L<zeroes|PDL::Core/zeroes>).
This is the uniform distribution between 0 and 1 (excluding both 0 and
1, cf L<random|/random>). The arguments are the same as C<zeroes> (q.v.) -
i.e. one can specify dimensions, types or give a template.
You can use the perl function L<srand|perlfunc/srand> to seed the random
generator. For further details consult Perl's L<srand|perlfunc/srand>
documentation.
=cut
sub random { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->random : PDL->random(@_) }
sub PDL::random {
my $class = shift;
my $x = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
&PDL::_random_int($x);
return $x;
}
sub randsym { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->randsym : PDL->randsym(@_) }
sub PDL::randsym {
my $class = shift;
my $x = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
&PDL::_randsym_int($x);
return $x;
}
=head2 grandom
=for ref
Constructor which returns piddle of Gaussian random numbers
=for usage
$a = grandom([type], $nx, $ny, $nz,...);
$a = grandom $b;
etc (see L<zeroes|PDL::Core/zeroes>).
This is generated using the math library routine C<ndtri>.
Mean = 0, Stddev = 1
You can use the perl function L<srand|perlfunc/srand> to seed the random
generator. For further details consult Perl's L<srand|perlfunc/srand>
documentation.
=cut
sub grandom { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? $_[0]->grandom : PDL->grandom(@_) }
sub PDL::grandom {
my $class = shift;
my $x = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
use PDL::Math 'ndtri';
$x .= ndtri(randsym($x));
return $x;
}
=head2 vsearch
=for sig
Signature: (i(); x(n); indx [o]ip())
=for ref
routine for searching 1D values i.e. step-function interpolation.
=for usage
$inds = vsearch($vals, $xs);
Returns for each value of C<$vals> the index of the least larger member
of C<$xs> (which need to be in increasing order). If the value is larger
than any member of C<$xs>, the index to the last element of C<$xs> is
returned.
=for example
This function is useful e.g. when you have a list of probabilities
for events and want to generate indices to events:
$a = pdl(.01,.86,.93,1); # Barnsley IFS probabilities cumulatively
$b = random 20;
$c = vsearch($b, $a); # Now, $c will have the appropriate distr.
It is possible to use the L<cumusumover|PDL::Ufunc/cumusumover>
function to obtain cumulative probabilities from absolute probabilities.
=for bad
needs major (?) work to handles bad values
=cut
*vsearch = \&PDL::vsearch;
=head2 interpolate
=for sig
Signature: (xi(); x(n); y(n); [o] yi(); int [o] err())
=for ref
routine for 1D linear interpolation
=for usage
( $yi, $err ) = interpolate($xi, $x, $y)
Given a set of points C<($x,$y)>, use linear interpolation
to find the values C<$yi> at a set of points C<$xi>.
C<interpolate> uses a binary search to find the suspects, er...,
interpolation indices and therefore abscissas (ie C<$x>)
have to be I<strictly> ordered (increasing or decreasing).
For interpolation at lots of
closely spaced abscissas an approach that uses the last index found as
a start for the next search can be faster (compare Numerical Recipes
C<hunt> routine). Feel free to implement that on top of the binary
search if you like. For out of bounds values it just does a linear
extrapolation and sets the corresponding element of C<$err> to 1,
which is otherwise 0.
See also L<interpol|/interpol>, which uses the same routine,
differing only in the handling of extrapolation - an error message
is printed rather than returning an error piddle.
=for bad
needs major (?) work to handles bad values
=cut
*interpolate = \&PDL::interpolate;
=head2 interpol
=for sig
Signature: (xi(); x(n); y(n); [o] yi())
=for ref
routine for 1D linear interpolation
=for usage
$yi = interpol($xi, $x, $y)
C<interpol> uses the same search method as L<interpolate|/interpolate>,
hence C<$x> must be I<strictly> ordered (either increasing or decreasing).
The difference occurs in the handling of out-of-bounds values; here
an error message is printed.
=cut
# kept in for backwards compatability
sub interpol ($$$;$) {
my $xi = shift;
my $x = shift;
my $y = shift;
my $yi;
if ( $#_ == 0 ) { $yi = $_[0]; }
else { $yi = PDL->null; }
interpolate( $xi, $x, $y, $yi, my $err = PDL->null );
print "some values had to be extrapolated\n"
if any $err;
return $yi if $#_ == -1;
} # sub: interpol()
*PDL::interpol = \&interpol;
=head2 interpND
=for ref
Interpolate values from an N-D piddle, with switchable method
=for example
$source = 10*xvals(10,10) + yvals(10,10);
$index = pdl([[2.2,3.5],[4.1,5.0]],[[6.0,7.4],[8,9]]);
print $source->interpND( $index );
InterpND acts like L<indexND|PDL::Slices/indexND>,
collapsing C<$index> by lookup
into C<$source>; but it does interpolation rather than direct sampling.
The interpolation method and boundary condition are switchable via
an options hash.
By default, linear or sample interpolation is used, with constant
value outside the boundaries of the source pdl. No dataflow occurs,
because in general the output is computed rather than indexed.
All the interpolation methods treat the pixels as value-centered, so
the C<sample> method will return C<< $a->(0) >> for coordinate values on
the set [-0.5,0.5), and all methods will return C<< $a->(1) >> for
a coordinate value of exactly 1.
Recognized options:
=over 3
=item method
Values can be:
=over 3
=item * 0, s, sample, Sample (default for integer source types)
The nearest value is taken. Pixels are regarded as centered on their
respective integer coordinates (no offset from the linear case).
=item * 1, l, linear, Linear (default for floating point source types)
The values are N-linearly interpolated from an N-dimensional cube of size 2.
=item * 3, c, cube, cubic, Cubic
The values are interpolated using a local cubic fit to the data. The
fit is constrained to match the original data and its derivative at the
data points. The second derivative of the fit is not continuous at the
data points. Multidimensional datasets are interpolated by the
successive-collapse method.
(Note that the constraint on the first derivative causes a small amount
of ringing around sudden features such as step functions).
=item * f, fft, fourier, Fourier
The source is Fourier transformed, and the interpolated values are
explicitly calculated from the coefficients. The boundary condition
option is ignored -- periodic boundaries are imposed.
If you pass in the option "fft", and it is a list (ARRAY) ref, then it
is a stash for the magnitude and phase of the source FFT. If the list
has two elements then they are taken as already computed; otherwise
they are calculated and put in the stash.
=back
=item b, bound, boundary, Boundary
This option is passed unmodified into L<indexND|PDL::Slices/indexND>,
which is used as the indexing engine for the interpolation.
Some current allowed values are 'extend', 'periodic', 'truncate', and 'mirror'
(default is 'truncate').
=item bad
contains the fill value used for 'truncate' boundary. (default 0)
=item fft
An array ref whose associated list is used to stash the FFT of the source
data, for the FFT method.
=back
=cut
*interpND = *PDL::interpND;
sub PDL::interpND {
my $source = shift;
my $index = shift;
my $options = shift;
barf 'Usage: interp_nd($source,$index,[{%options}])\n'
if(defined $options and ref $options ne 'HASH');
my($opt) = (defined $options) ? $options : {};
my($method) = $opt->{m} || $opt->{meth} || $opt->{method} || $opt->{Method};
if(!defined $method) {
$method = ($source->type <= zeroes(long,1)->type) ?
'sample' :
'linear';
}
my($boundary) = $opt->{b} || $opt->{boundary} || $opt->{Boundary} || $opt->{bound} || $opt->{Bound} || 'extend';
my($bad) = $opt->{bad} || $opt->{Bad} || 0.0;
if($method =~ m/^s(am(p(le)?)?)?/i) {
return $source->range(PDL::Math::floor($index+0.5),0,$boundary);
}
elsif (($method eq 1) || $method =~ m/^l(in(ear)?)?/i) {
## key: (ith = index thread; cth = cube thread; sth = source thread)
my $d = $index->dim(0);
my $di = $index->ndims - 1;
# Grab a 2-on-a-side n-cube around each desired pixel
my $samp = $source->range($index->floor,2,$boundary); # (ith, cth, sth)
# Reorder to put the cube dimensions in front and convert to a list
$samp = $samp->reorder( $di .. $di+$d-1,
0 .. $di-1,
$di+$d .. $samp->ndims-1) # (cth, ith, sth)
->clump($d); # (clst, ith, sth)
# Enumerate the corners of an n-cube and convert to a list
# (the 'x' is the normal perl repeat operator)
my $crnr = PDL::Basic::ndcoords( (2) x $index->dim(0) ) # (index,cth)
->mv(0,-1)->clump($index->dim(0))->mv(-1,0); # (index, clst)
# a & b are the weighting coefficients.
my($a,$b);
my($indexwhere);
($indexwhere = $index->where( 0 * $index )) .= -10; # Change NaN to invalid
{
my $bb = PDL::Math::floor($index);
$a = ($index - $bb) -> dummy(1,$crnr->dim(1)); # index, clst, ith
$b = ($bb + 1 - $index) -> dummy(1,$crnr->dim(1)); # index, clst, ith
}
# Use 1/0 corners to select which multiplier happens, multiply
# 'em all together to get sample weights, and sum to get the answer.
my $out0 = ( ($a * ($crnr==1) + $b * ($crnr==0)) #index, clst, ith
-> prodover #clst, ith
);
my $out = ($out0 * $samp)->sumover; # ith, sth
# Work around BAD-not-being-contagious bug in PDL <= 2.6 bad handling code --CED 3-April-2013
if($PDL::Bad::Status and $source->badflag) {
my $baddies = $samp->isbad->orover;
$out = $out->setbadif($baddies);
}
return $out;
} elsif(($method eq 3) || $method =~ m/^c(u(b(e|ic)?)?)?/i) {
my ($d,@di) = $index->dims;
my $di = $index->ndims - 1;
# Grab a 4-on-a-side n-cube around each desired pixel
my $samp = $source->range($index->floor - 1,4,$boundary) #ith, cth, sth
->reorder( $di .. $di+$d-1, 0..$di-1, $di+$d .. $source->ndims-1 );
# (cth, ith, sth)
# Make a cube of the subpixel offsets, and expand its dims to
# a 4-on-a-side N-1 cube, to match the slices of $samp (used below).
my $b = $index - $index->floor;
for my $i(1..$d-1) {
$b = $b->dummy($i,4);
}
# Collapse by interpolation, one dimension at a time...
for my $i(0..$d-1) {
my $a0 = $samp->slice("(1)"); # Just-under-sample
my $a1 = $samp->slice("(2)"); # Just-over-sample
my $a1a0 = $a1 - $a0;
my $gradient = 0.5 * ($samp->slice("2:3")-$samp->slice("0:1"));
my $s0 = $gradient->slice("(0)"); # Just-under-gradient
my $s1 = $gradient->slice("(1)"); # Just-over-gradient
$bb = $b->slice("($i)");
# Collapse the sample...
$samp = ( $a0 +
$bb * (
$s0 +
$bb * ( (3 * $a1a0 - 2*$s0 - $s1) +
$bb * ( $s1 + $s0 - 2*$a1a0 )
)
)
);
# "Collapse" the subpixel offset...
$b = $b->slice(":,($i)");
}
return $samp;
} elsif($method =~ m/^f(ft|ourier)?/i) {
eval "use PDL::FFT;";
my $fftref = $opt->{fft};
$fftref = [] unless(ref $fftref eq 'ARRAY');
if(@$fftref != 2) {
my $a = $source->copy;
my $b = zeroes($source);
fftnd($a,$b);
$fftref->[0] = sqrt($a*$a+$b*$b) / $a->nelem;
$fftref->[1] = - atan2($b,$a);
}
my $i;
my $c = PDL::Basic::ndcoords($source); # (dim, source-dims)
for $i(1..$index->ndims-1) {
$c = $c->dummy($i,$index->dim($i))
}
my $id = $index->ndims-1;
my $phase = (($c * $index * 3.14159 * 2 / pdl($source->dims))
->sumover) # (index-dims, source-dims)
->reorder($id..$id+$source->ndims-1,0..$id-1); # (src, index)
my $phref = $fftref->[1]->copy; # (source-dims)
my $mag = $fftref->[0]->copy; # (source-dims)
for $i(1..$index->ndims-1) {
$phref = $phref->dummy(-1,$index->dim($i));
$mag = $mag->dummy(-1,$index->dim($i));
}
my $out = cos($phase + $phref ) * $mag;
$out = $out->clump($source->ndims)->sumover;
return $out;
} else {
barf("interpND: unknown method '$method'; valid ones are 'linear' and 'sample'.\n");
}
}
=head2 one2nd
=for ref
Converts a one dimensional index piddle to a set of ND coordinates
=for usage
@coords=one2nd($a, $indices)
returns an array of piddles containing the ND indexes corresponding to
the one dimensional list indices. The indices are assumed to
correspond to array C<$a> clumped using C<clump(-1)>. This routine is
used in the old vector form of L<whichND|/whichND>, but is useful on
its own occasionally.
=for example
pdl> $a=pdl [[[1,2],[-1,1]], [[0,-3],[3,2]]]; $c=$a->clump(-1)
pdl> $maxind=maximum_ind($c); p $maxind;
6
pdl> print one2nd($a, maximum_ind($c))
0 1 1
pdl> p $a->at(0,1,1)
3
=cut
*one2nd = \&PDL::one2nd;
sub PDL::one2nd {
barf "Usage: one2nd \$array \$indices\n" if $#_ != 1;
my ($a, $ind)=@_;
my @dimension=$a->dims;
my(@index);
my $count=0;
foreach (@dimension) {
$index[$count++]=$ind % $_;
$ind=long($ind/$_);
}
return @index;
}
=head2 which
=for sig
Signature: (mask(n); indx [o] inds(m))
=for ref
Returns indices of non-zero values from a 1-D PDL
=for usage
$i = which($mask);
returns a pdl with indices for all those elements that are nonzero in
the mask. Note that the returned indices will be 1D. If you feed in a
multidimensional mask, it will be flattened before the indices are
calculated. See also L<whichND|/whichND> for multidimensional masks.
If you want to index into the original mask or a similar piddle
with output from C<which>, remember to flatten it before calling index:
$data = random 5, 5;
$idx = which $data > 0.5; # $idx is now 1D
$bigsum = $data->flat->index($idx)->sum; # flatten before indexing
Compare also L<where|/where> for similar functionality.
SEE ALSO:
L<which_both|/which_both> returns separately the indices of both
zero and nonzero values in the mask.
L<where|/where> returns associated values from a data PDL, rather than
indices into the mask PDL.
L<whichND|/whichND> returns N-D indices into a multidimensional PDL.
=for example
pdl> $x = sequence(10); p $x
[0 1 2 3 4 5 6 7 8 9]
pdl> $indx = which($x>6); p $indx
[7 8 9]
=for bad
which processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub which { my ($this,$out) = @_;
$this = $this->flat;
$out = $this->nullcreate unless defined $out;
PDL::_which_int($this,$out);
return $out;
}
*PDL::which = \&which;
*which = \&PDL::which;
=head2 which_both
=for sig
Signature: (mask(n); indx [o] inds(m); indx [o]notinds(q))
=for ref
Returns indices of zero and nonzero values in a mask PDL
=for usage
($i, $c_i) = which_both($mask);
This works just as L<which|/which>, but the complement of C<$i> will be in
C<$c_i>.
=for example
pdl> $x = sequence(10); p $x
[0 1 2 3 4 5 6 7 8 9]
pdl> ($small, $big) = which_both ($x >= 5); p "$small\n $big"
[5 6 7 8 9]
[0 1 2 3 4]
=for bad
which_both processes bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub which_both { my ($this,$outi,$outni) = @_;
$this = $this->flat;
$outi = $this->nullcreate unless defined $outi;
$outni = $this->nullcreate unless defined $outni;
PDL::_which_both_int($this,$outi,$outni);
return wantarray ? ($outi,$outni) : $outi;
}
*PDL::which_both = \&which_both;
*which_both = \&PDL::which_both;
=head2 where
=for ref
Use a mask to select values from one or more data PDLs
C<where> accepts one or more data piddles and a mask piddle. It
returns a list of output piddles, corresponding to the input data
piddles. Each output piddle is a 1-dimensional list of values in its
corresponding data piddle. The values are drawn from locations where
the mask is nonzero.
The output PDLs are still connected to the original data PDLs, for the
purpose of dataflow.
C<where> combines the functionality of L<which|/which> and L<index|PDL::Slices/index>
into a single operation.
BUGS:
While C<where> works OK for most N-dimensional cases, it does not
thread properly over (for example) the (N+1)th dimension in data
that is compared to an N-dimensional mask. Use C<whereND> for that.
=for usage
$i = $x->where($x+5 > 0); # $i contains those elements of $x
# where mask ($x+5 > 0) is 1
$i .= -5; # Set those elements (of $x) to -5. Together, these
# commands clamp $x to a maximum of -5.
It is also possible to use the same mask for several piddles with
the same call:
($i,$j,$k) = where($x,$y,$z, $x+5>0);
Note: C<$i> is always 1-D, even if C<$x> is E<gt>1-D.
WARNING: The first argument
(the values) and the second argument (the mask) currently have to have
the exact same dimensions (or horrible things happen). You *cannot*
thread over a smaller mask, for example.
=cut
sub PDL::where {
barf "Usage: where( \$pdl1, ..., \$pdlN, \$mask )\n" if $#_ == 0;
if($#_ == 1) {
my($data,$mask) = @_;
$data = $_[0]->clump(-1) if $_[0]->getndims>1;
$mask = $_[1]->clump(-1) if $_[0]->getndims>1;
return $data->index($mask->which());
} else {
if($_[-1]->getndims > 1) {
my $mask = $_[-1]->clump(-1)->which;
return map {$_->clump(-1)->index($mask)} @_[0..$#_-1];
} else {
my $mask = $_[-1]->which;
return map {$_->index($mask)} @_[0..$#_-1];
}
}
}
*where = \&PDL::where;
=head2 whereND
=for ref
C<where> with support for ND masks and threading
C<whereND> accepts one or more data piddles and a
mask piddle. It returns a list of output piddles,
corresponding to the input data piddles. The values
are drawn from locations where the mask is nonzero.
C<whereND> differs from C<where> in that the mask
dimensionality is preserved which allows for
proper threading of the selection operation over
higher dimensions.
As with C<where> the output PDLs are still connected
to the original data PDLs, for the purpose of dataflow.
=for usage
$sdata = whereND $data, $mask
($s1, $s2, ..., $sn) = whereND $d1, $d2, ..., $dn, $mask
where
$data is M dimensional
$mask is N < M dimensional
dims($data) 1..N == dims($mask) 1..N
with threading over N+1 to M dimensions
=for example
$data = sequence(4,3,2); # example data array
$mask4 = (random(4)>0.5); # example 1-D mask array, has $n4 true values
$mask43 = (random(4,3)>0.5); # example 2-D mask array, has $n43 true values
$sdat4 = whereND $data, $mask4; # $sdat4 is a [$n4,3,2] pdl
$sdat43 = whereND $data, $mask43; # $sdat43 is a [$n43,2] pdl
Just as with C<where>, you can use the returned value in an
assignment. That means that both of these examples are valid:
# Used to create a new slice stored in $sdat4:
$sdat4 = $data->whereND($mask4);
$sdat4 .= 0;
# Used in lvalue context:
$data->whereND($mask4) .= 0;
=cut
sub PDL::whereND :lvalue {
barf "Usage: whereND( \$pdl1, ..., \$pdlN, \$mask )\n" if $#_ == 0;
my $mask = pop @_; # $mask has 0==false, 1==true
my @to_return;
my $n = PDL::sum($mask);
foreach my $arr (@_) {
my $sub_i = $mask * ones($arr);
my $where_sub_i = PDL::where($arr, $sub_i);
# count the number of dims in $mask and $arr
# $mask = a b c d e f.....
my @idims = dims($arr);
# ...and pop off the number of dims in $mask
foreach ( dims($mask) ) { shift(@idims) };
my $ndim = 0;
foreach my $id ($n, @idims[0..($#idims-1)]) {
$where_sub_i = $where_sub_i->splitdim($ndim++,$id) if $n>0;
}
push @to_return, $where_sub_i;
}
return (@to_return == 1) ? $to_return[0] : @to_return;
}
*whereND = \&PDL::whereND;
=head2 whichND
=for ref
Return the coordinates of non-zero values in a mask.
=for usage
WhichND returns the N-dimensional coordinates of each nonzero value in
a mask PDL with any number of dimensions. The returned values arrive
as an array-of-vectors suitable for use in
L<indexND|PDL::Slices/indexND> or L<range|PDL::Slices/range>.
$coords = whichND($mask);
returns a PDL containing the coordinates of the elements that are non-zero
in C<$mask>, suitable for use in indexND. The 0th dimension contains the
full coordinate listing of each point; the 1st dimension lists all the points.
For example, if $mask has rank 4 and 100 matching elements, then $coords has
dimension 4x100.
If no such elements exist, then whichND returns a structured empty PDL:
an Nx0 PDL that contains no values (but matches, threading-wise, with
the vectors that would be produced if such elements existed).
DEPRECATED BEHAVIOR IN LIST CONTEXT:
whichND once delivered different values in list context than in scalar
context, for historical reasons. In list context, it returned the
coordinates transposed, as a collection of 1-PDLs (one per dimension)
in a list. This usage is deprecated in PDL 2.4.10, and will cause a
warning to be issued every time it is encountered. To avoid the
warning, you can set the global variable "$PDL::whichND" to 's' to
get scalar behavior in all contexts, or to 'l' to get list behavior in
list context.
In later versions of PDL, the deprecated behavior will disappear. Deprecated
list context whichND expressions can be replaced with:
@list = $a->whichND->mv(0,-1)->dog;
SEE ALSO:
L<which|/which> finds coordinates of nonzero values in a 1-D mask.
L<where|/where> extracts values from a data PDL that are associated
with nonzero values in a mask PDL.
=for example
pdl> $a=sequence(10,10,3,4)
pdl> ($x, $y, $z, $w)=whichND($a == 203); p $x, $y, $z, $w
[3] [0] [2] [0]
pdl> print $a->at(list(cat($x,$y,$z,$w)))
203
=cut
*whichND = \&PDL::whichND;
sub PDL::whichND {
my $mask = shift;
$mask = PDL::pdl('PDL',$mask) unless(UNIVERSAL::isa($mask,'PDL'));
# List context: generate a perl list by dimension
if(wantarray) {
if(!defined($PDL::whichND)) {
printf STDERR "whichND: WARNING - list context deprecated. Set \$PDL::whichND. Details in pod.";
} elsif($PDL::whichND =~ m/l/i) {
# old list context enabled by setting $PDL::whichND to 'l'
my $ind=($mask->clump(-1))->which;
return $mask->one2nd($ind);
}
# if $PDL::whichND does not contain 'l' or 'L', fall through to scalar context
}
# Scalar context: generate an N-D index piddle
unless($mask->nelem) {
return PDL::new_from_specification('PDL',$mask->ndims,0);
}
unless($mask->getndims) {
return $mask ? pdl(0) : PDL::new_from_specification('PDL',0);
}
$ind = $mask->flat->which->dummy(0,$mask->getndims)->long->make_physical;
if($ind->nelem==0) {
# In the empty case, explicitly return the correct type of structured empty
return PDL::new_from_specification('PDL',$mask->ndims, 0);
}
my $mult = ones($mask->getndims)->long;
my @mdims = $mask->dims;
my $i;
for $i(0..$#mdims-1) {
# use $tmp for 5.005_03 compatibility
(my $tmp = $mult->index($i+1)) .= $mult->index($i)*$mdims[$i];
}
for $i(0..$#mdims) {
my($s) = $ind->index($i);
$s /= $mult->index($i);
$s %= $mdims[$i];
}
return $ind;
}
=head2 setops
=for ref
Implements simple set operations like union and intersection
=for usage
Usage: $set = setops($a, <OPERATOR>, $b);
The operator can be C<OR>, C<XOR> or C<AND>. This is then applied
to C<$a> viewed as a set and C<$b> viewed as a set. Set theory says
that a set may not have two or more identical elements, but setops
takes care of this for you, so C<$a=pdl(1,1,2)> is OK. The functioning
is as follows:
=over
=item C<OR>
The resulting vector will contain the elements that are either in C<$a>
I<or> in C<$b> or both. This is the union in set operation terms
=item C<XOR>
The resulting vector will contain the elements that are either in C<$a>
or C<$b>, but not in both. This is
Union($a, $b) - Intersection($a, $b)
in set operation terms.
=item C<AND>
The resulting vector will contain the intersection of C<$a> and C<$b>, so
the elements that are in both C<$a> and C<$b>. Note that for convenience
this operation is also aliased to L<intersect|intersect>
=back
It should be emphasized that these routines are used when one or both of
the sets C<$a>, C<$b> are hard to calculate or that you get from a separate
subroutine.
Finally IDL users might be familiar with Craig Markwardt's C<cmset_op.pro>
routine which has inspired this routine although it was written independently
However the present routine has a few less options (but see the exampels)
=for example
You will very often use these functions on an index vector, so that is
what we will show here. We will in fact something slightly silly. First
we will find all squares that are also cubes below 10000.
Create a sequence vector:
pdl> $x = sequence(10000)
Find all odd and even elements:
pdl> ($even, $odd) = which_both( ($x % 2) == 0)
Find all squares
pdl> $squares= which(ceil(sqrt($x)) == floor(sqrt($x)))
Find all cubes (being careful with roundoff error!)
pdl> $cubes= which(ceil($x**(1.0/3.0)) == floor($x**(1.0/3.0)+1e-6))
Then find all squares that are cubes:
pdl> $both = setops($squares, 'AND', $cubes)
And print these (assumes that C<PDL::NiceSlice> is loaded!)
pdl> p $x($both)
[0 1 64 729 4096]
Then find all numbers that are either cubes or squares, but not both:
pdl> $cube_xor_square = setops($squares, 'XOR', $cubes)
pdl> p $cube_xor_square->nelem()
112
So there are a total of 112 of these!
Finally find all odd squares:
pdl> $odd_squares = setops($squares, 'AND', $odd)
Another common occurance is to want to get all objects that are
in C<$a> and in the complement of C<$b>. But it is almost always best
to create the complement explicitly since the universe that both are
taken from is not known. Thus use L<which_both|which_both> if possible
to keep track of complements.
If this is impossible the best approach is to make a temporary:
This creates an index vector the size of the universe of the sets and
set all elements in C<$b> to 0
pdl> $tmp = ones($n_universe); $tmp($b) .= 0;
This then finds the complement of C<$b>
pdl> $C_b = which($tmp == 1);
and this does the final selection:
pdl> $set = setops($a, 'AND', $C_b)
=cut
*setops = \&PDL::setops;
sub PDL::setops {
my ($a, $op, $b)=@_;
# Check that $a and $b are 1D.
if ($a->ndims() > 1 || $b->ndims() > 1) {
warn 'setops: $a and $b must be 1D - flattening them!'."\n";
$a = $a->flat;
$b = $b->flat;
}
#Make sure there are no duplicate elements.
$a=$a->uniq;
$b=$b->uniq;
my $result;
if ($op eq 'OR') {
# Easy...
$result = uniq(append($a, $b));
} elsif ($op eq 'XOR') {
# Make ordered list of set union.
my $union = append($a, $b)->qsort;
# Index lists.
my $s1=zeroes(byte, $union->nelem());
my $s2=zeroes(byte, $union->nelem());
# Find indices which are duplicated - these are to be excluded
#
# We do this by comparing x with x shifted each way.
my $i1 = which($union != rotate($union, 1));
my $i2 = which($union != rotate($union, -1));
#
# We then mark/mask these in the s1 and s2 arrays to indicate which ones
# are not equal to their neighbours.
#
my $ts;
($ts = $s1->index($i1)) .= 1 if $i1->nelem() > 0;
($ts = $s2->index($i2)) .= 1 if $i2->nelem() > 0;
my $inds=which($s1 == $s2);
if ($inds->nelem() > 0) {
return $union->index($inds);
} else {
return $inds;
}
} elsif ($op eq 'AND') {
# The intersection of the arrays.
# Make ordered list of set union.
my $union = append($a, $b)->qsort;
return $union->where($union == rotate($union, -1));
} else {
print "The operation $op is not known!";
return -1;
}
}
=head2 intersect
=for ref
Calculate the intersection of two piddles
=for usage
Usage: $set = intersect($a, $b);
This routine is merely a simple interface to L<setops|setops>. See
that for more information
=for example
Find all numbers less that 100 that are of the form 2*y and 3*x
pdl> $x=sequence(100)
pdl> $factor2 = which( ($x % 2) == 0)
pdl> $factor3 = which( ($x % 3) == 0)
pdl> $ii=intersect($factor2, $factor3)
pdl> p $x($ii)
[0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96]
=cut
*intersect = \&PDL::intersect;
sub PDL::intersect {
return setops($_[0], 'AND', $_[1]);
}
;
=head1 AUTHOR
Copyright (C) Tuomas J. Lukka 1997 (lukka@husc.harvard.edu). Contributions
by Christian Soeller (c.soeller@auckland.ac.nz), Karl Glazebrook
(kgb@aaoepp.aao.gov.au), Craig DeForest (deforest@boulder.swri.edu)
and Jarle Brinchmann (jarle@astro.up.pt)
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL
distribution. If this file is separated from the PDL distribution,
the copyright notice should be included in the file.
Updated for CPAN viewing compatibility by David Mertens.
=cut
# Exit with OK status
1;
|