/usr/include/postgres-xc/server/nodes/primnodes.h is in postgres-xc-server-dev 1.1-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 | /*-------------------------------------------------------------------------
*
* primnodes.h
* Definitions for "primitive" node types, those that are used in more
* than one of the parse/plan/execute stages of the query pipeline.
* Currently, these are mostly nodes for executable expressions
* and join trees.
*
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
* Portions Copyright (c) 2010-2012 Postgres-XC Development Group
*
* src/include/nodes/primnodes.h
*
*-------------------------------------------------------------------------
*/
#ifndef PRIMNODES_H
#define PRIMNODES_H
#include "access/attnum.h"
#include "nodes/pg_list.h"
/* ----------------------------------------------------------------
* node definitions
* ----------------------------------------------------------------
*/
/*
* Alias -
* specifies an alias for a range variable; the alias might also
* specify renaming of columns within the table.
*
* Note: colnames is a list of Value nodes (always strings). In Alias structs
* associated with RTEs, there may be entries corresponding to dropped
* columns; these are normally empty strings (""). See parsenodes.h for info.
*/
typedef struct Alias
{
NodeTag type;
char *aliasname; /* aliased rel name (never qualified) */
List *colnames; /* optional list of column aliases */
} Alias;
typedef enum InhOption
{
INH_NO, /* Do NOT scan child tables */
INH_YES, /* DO scan child tables */
INH_DEFAULT /* Use current SQL_inheritance option */
} InhOption;
/* What to do at commit time for temporary relations */
typedef enum OnCommitAction
{
ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
ONCOMMIT_DROP /* ON COMMIT DROP */
} OnCommitAction;
/*
* RangeVar - range variable, used in FROM clauses
*
* Also used to represent table names in utility statements; there, the alias
* field is not used, and inhOpt shows whether to apply the operation
* recursively to child tables. In some contexts it is also useful to carry
* a TEMP table indication here.
*/
typedef struct RangeVar
{
NodeTag type;
char *catalogname; /* the catalog (database) name, or NULL */
char *schemaname; /* the schema name, or NULL */
char *relname; /* the relation/sequence name */
InhOption inhOpt; /* expand rel by inheritance? recursively act
* on children? */
char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
Alias *alias; /* table alias & optional column aliases */
int location; /* token location, or -1 if unknown */
} RangeVar;
/*
* IntoClause - target information for SELECT INTO and CREATE TABLE AS
*/
typedef struct IntoClause
{
NodeTag type;
RangeVar *rel; /* target relation name */
List *colNames; /* column names to assign, or NIL */
List *options; /* options from WITH clause */
OnCommitAction onCommit; /* what do we do at COMMIT? */
char *tableSpaceName; /* table space to use, or NULL */
bool skipData; /* true for WITH NO DATA */
#ifdef PGXC
struct DistributeBy *distributeby; /* distribution to use, or NULL */
struct PGXCSubCluster *subcluster; /* subcluster node members */
#endif
} IntoClause;
/* ----------------------------------------------------------------
* node types for executable expressions
* ----------------------------------------------------------------
*/
/*
* Expr - generic superclass for executable-expression nodes
*
* All node types that are used in executable expression trees should derive
* from Expr (that is, have Expr as their first field). Since Expr only
* contains NodeTag, this is a formality, but it is an easy form of
* documentation. See also the ExprState node types in execnodes.h.
*/
typedef struct Expr
{
NodeTag type;
} Expr;
/*
* Var - expression node representing a variable (ie, a table column)
*
* Note: during parsing/planning, varnoold/varoattno are always just copies
* of varno/varattno. At the tail end of planning, Var nodes appearing in
* upper-level plan nodes are reassigned to point to the outputs of their
* subplans; for example, in a join node varno becomes INNER_VAR or OUTER_VAR
* and varattno becomes the index of the proper element of that subplan's
* target list. But varnoold/varoattno continue to hold the original values.
* The code doesn't really need varnoold/varoattno, but they are very useful
* for debugging and interpreting completed plans, so we keep them around.
*/
#define INNER_VAR 65000 /* reference to inner subplan */
#define OUTER_VAR 65001 /* reference to outer subplan */
#define INDEX_VAR 65002 /* reference to index column */
#define IS_SPECIAL_VARNO(varno) ((varno) >= INNER_VAR)
/* Symbols for the indexes of the special RTE entries in rules */
#define PRS2_OLD_VARNO 1
#define PRS2_NEW_VARNO 2
typedef struct Var
{
Expr xpr;
Index varno; /* index of this var's relation in the range
* table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
AttrNumber varattno; /* attribute number of this var, or zero for
* all */
Oid vartype; /* pg_type OID for the type of this var */
int32 vartypmod; /* pg_attribute typmod value */
Oid varcollid; /* OID of collation, or InvalidOid if none */
Index varlevelsup; /* for subquery variables referencing outer
* relations; 0 in a normal var, >0 means N
* levels up */
Index varnoold; /* original value of varno, for debugging */
AttrNumber varoattno; /* original value of varattno */
int location; /* token location, or -1 if unknown */
} Var;
/*
* Const
*/
typedef struct Const
{
Expr xpr;
Oid consttype; /* pg_type OID of the constant's datatype */
int32 consttypmod; /* typmod value, if any */
Oid constcollid; /* OID of collation, or InvalidOid if none */
int constlen; /* typlen of the constant's datatype */
Datum constvalue; /* the constant's value */
bool constisnull; /* whether the constant is null (if true,
* constvalue is undefined) */
bool constbyval; /* whether this datatype is passed by value.
* If true, then all the information is stored
* in the Datum. If false, then the Datum
* contains a pointer to the information. */
int location; /* token location, or -1 if unknown */
} Const;
/* ----------------
* Param
* paramkind - specifies the kind of parameter. The possible values
* for this field are:
*
* PARAM_EXTERN: The parameter value is supplied from outside the plan.
* Such parameters are numbered from 1 to n.
*
* PARAM_EXEC: The parameter is an internal executor parameter, used
* for passing values into and out of sub-queries or from
* nestloop joins to their inner scans.
* For historical reasons, such parameters are numbered from 0.
* These numbers are independent of PARAM_EXTERN numbers.
*
* PARAM_SUBLINK: The parameter represents an output column of a SubLink
* node's sub-select. The column number is contained in the
* `paramid' field. (This type of Param is converted to
* PARAM_EXEC during planning.)
*
* Note: currently, paramtypmod is valid for PARAM_SUBLINK Params, and for
* PARAM_EXEC Params generated from them; it is always -1 for PARAM_EXTERN
* params, since the APIs that supply values for such parameters don't carry
* any typmod info.
* ----------------
*/
typedef enum ParamKind
{
PARAM_EXTERN,
PARAM_EXEC,
PARAM_SUBLINK
} ParamKind;
typedef struct Param
{
Expr xpr;
ParamKind paramkind; /* kind of parameter. See above */
int paramid; /* numeric ID for parameter */
Oid paramtype; /* pg_type OID of parameter's datatype */
int32 paramtypmod; /* typmod value, if known */
Oid paramcollid; /* OID of collation, or InvalidOid if none */
int location; /* token location, or -1 if unknown */
} Param;
/*
* Aggref
*
* The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes
* (before Postgres 9.0 it was just bare expressions). The non-resjunk TLEs
* represent the aggregate's regular arguments (if any) and resjunk TLEs can
* be added at the end to represent ORDER BY expressions that are not also
* arguments. As in a top-level Query, the TLEs can be marked with
* ressortgroupref indexes to let them be referenced by SortGroupClause
* entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
* and DISTINCT operations to be applied to the aggregate input rows before
* they are passed to the transition function. The grammar only allows a
* simple "DISTINCT" specifier for the arguments, but we use the full
* query-level representation to allow more code sharing.
*/
typedef struct Aggref
{
Expr xpr;
Oid aggfnoid; /* pg_proc Oid of the aggregate */
Oid aggtype; /* type Oid of result of the aggregate */
Oid aggcollid; /* OID of collation of result */
Oid inputcollid; /* OID of collation that function should use */
#ifdef PGXC
Oid aggtrantype; /* type Oid of transition results */
bool agghas_collectfn; /* is collection function available */
#endif /* PGXC */
List *args; /* arguments and sort expressions */
List *aggorder; /* ORDER BY (list of SortGroupClause) */
List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
bool aggstar; /* TRUE if argument list was really '*' */
Index agglevelsup; /* > 0 if agg belongs to outer query */
int location; /* token location, or -1 if unknown */
} Aggref;
/*
* WindowFunc
*/
typedef struct WindowFunc
{
Expr xpr;
Oid winfnoid; /* pg_proc Oid of the function */
Oid wintype; /* type Oid of result of the window function */
Oid wincollid; /* OID of collation of result */
Oid inputcollid; /* OID of collation that function should use */
List *args; /* arguments to the window function */
Index winref; /* index of associated WindowClause */
bool winstar; /* TRUE if argument list was really '*' */
bool winagg; /* is function a simple aggregate? */
int location; /* token location, or -1 if unknown */
} WindowFunc;
/* ----------------
* ArrayRef: describes an array subscripting operation
*
* An ArrayRef can describe fetching a single element from an array,
* fetching a subarray (array slice), storing a single element into
* an array, or storing a slice. The "store" cases work with an
* initial array value and a source value that is inserted into the
* appropriate part of the array; the result of the operation is an
* entire new modified array value.
*
* If reflowerindexpr = NIL, then we are fetching or storing a single array
* element at the subscripts given by refupperindexpr. Otherwise we are
* fetching or storing an array slice, that is a rectangular subarray
* with lower and upper bounds given by the index expressions.
* reflowerindexpr must be the same length as refupperindexpr when it
* is not NIL.
*
* Note: the result datatype is the element type when fetching a single
* element; but it is the array type when doing subarray fetch or either
* type of store.
* ----------------
*/
typedef struct ArrayRef
{
Expr xpr;
Oid refarraytype; /* type of the array proper */
Oid refelemtype; /* type of the array elements */
int32 reftypmod; /* typmod of the array (and elements too) */
Oid refcollid; /* OID of collation, or InvalidOid if none */
List *refupperindexpr;/* expressions that evaluate to upper array
* indexes */
List *reflowerindexpr;/* expressions that evaluate to lower array
* indexes */
Expr *refexpr; /* the expression that evaluates to an array
* value */
Expr *refassgnexpr; /* expression for the source value, or NULL if
* fetch */
} ArrayRef;
/*
* CoercionContext - distinguishes the allowed set of type casts
*
* NB: ordering of the alternatives is significant; later (larger) values
* allow more casts than earlier ones.
*/
typedef enum CoercionContext
{
COERCION_IMPLICIT, /* coercion in context of expression */
COERCION_ASSIGNMENT, /* coercion in context of assignment */
COERCION_EXPLICIT /* explicit cast operation */
} CoercionContext;
/*
* CoercionForm - information showing how to display a function-call node
*
* NB: equal() ignores CoercionForm fields, therefore this *must* not carry
* any semantically significant information. We need that behavior so that
* the planner will consider equivalent implicit and explicit casts to be
* equivalent. In cases where those actually behave differently, the coercion
* function's arguments will be different.
*/
typedef enum CoercionForm
{
COERCE_EXPLICIT_CALL, /* display as a function call */
COERCE_EXPLICIT_CAST, /* display as an explicit cast */
COERCE_IMPLICIT_CAST, /* implicit cast, so hide it */
COERCE_DONTCARE /* special case for planner */
} CoercionForm;
/*
* FuncExpr - expression node for a function call
*/
typedef struct FuncExpr
{
Expr xpr;
Oid funcid; /* PG_PROC OID of the function */
Oid funcresulttype; /* PG_TYPE OID of result value */
bool funcretset; /* true if function returns set */
CoercionForm funcformat; /* how to display this function call */
Oid funccollid; /* OID of collation of result */
Oid inputcollid; /* OID of collation that function should use */
List *args; /* arguments to the function */
int location; /* token location, or -1 if unknown */
} FuncExpr;
/*
* NamedArgExpr - a named argument of a function
*
* This node type can only appear in the args list of a FuncCall or FuncExpr
* node. We support pure positional call notation (no named arguments),
* named notation (all arguments are named), and mixed notation (unnamed
* arguments followed by named ones).
*
* Parse analysis sets argnumber to the positional index of the argument,
* but doesn't rearrange the argument list.
*
* The planner will convert argument lists to pure positional notation
* during expression preprocessing, so execution never sees a NamedArgExpr.
*/
typedef struct NamedArgExpr
{
Expr xpr;
Expr *arg; /* the argument expression */
char *name; /* the name */
int argnumber; /* argument's number in positional notation */
int location; /* argument name location, or -1 if unknown */
} NamedArgExpr;
/*
* OpExpr - expression node for an operator invocation
*
* Semantically, this is essentially the same as a function call.
*
* Note that opfuncid is not necessarily filled in immediately on creation
* of the node. The planner makes sure it is valid before passing the node
* tree to the executor, but during parsing/planning opfuncid can be 0.
*/
typedef struct OpExpr
{
Expr xpr;
Oid opno; /* PG_OPERATOR OID of the operator */
Oid opfuncid; /* PG_PROC OID of underlying function */
Oid opresulttype; /* PG_TYPE OID of result value */
bool opretset; /* true if operator returns set */
Oid opcollid; /* OID of collation of result */
Oid inputcollid; /* OID of collation that operator should use */
List *args; /* arguments to the operator (1 or 2) */
int location; /* token location, or -1 if unknown */
} OpExpr;
/*
* DistinctExpr - expression node for "x IS DISTINCT FROM y"
*
* Except for the nodetag, this is represented identically to an OpExpr
* referencing the "=" operator for x and y.
* We use "=", not the more obvious "<>", because more datatypes have "="
* than "<>". This means the executor must invert the operator result.
* Note that the operator function won't be called at all if either input
* is NULL, since then the result can be determined directly.
*/
typedef OpExpr DistinctExpr;
/*
* NullIfExpr - a NULLIF expression
*
* Like DistinctExpr, this is represented the same as an OpExpr referencing
* the "=" operator for x and y.
*/
typedef OpExpr NullIfExpr;
/*
* ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
*
* The operator must yield boolean. It is applied to the left operand
* and each element of the righthand array, and the results are combined
* with OR or AND (for ANY or ALL respectively). The node representation
* is almost the same as for the underlying operator, but we need a useOr
* flag to remember whether it's ANY or ALL, and we don't have to store
* the result type (or the collation) because it must be boolean.
*/
typedef struct ScalarArrayOpExpr
{
Expr xpr;
Oid opno; /* PG_OPERATOR OID of the operator */
Oid opfuncid; /* PG_PROC OID of underlying function */
bool useOr; /* true for ANY, false for ALL */
Oid inputcollid; /* OID of collation that operator should use */
List *args; /* the scalar and array operands */
int location; /* token location, or -1 if unknown */
} ScalarArrayOpExpr;
/*
* BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
*
* Notice the arguments are given as a List. For NOT, of course the list
* must always have exactly one element. For AND and OR, the executor can
* handle any number of arguments. The parser generally treats AND and OR
* as binary and so it typically only produces two-element lists, but the
* optimizer will flatten trees of AND and OR nodes to produce longer lists
* when possible. There are also a few special cases where more arguments
* can appear before optimization.
*/
typedef enum BoolExprType
{
AND_EXPR, OR_EXPR, NOT_EXPR
} BoolExprType;
typedef struct BoolExpr
{
Expr xpr;
BoolExprType boolop;
List *args; /* arguments to this expression */
int location; /* token location, or -1 if unknown */
} BoolExpr;
/*
* SubLink
*
* A SubLink represents a subselect appearing in an expression, and in some
* cases also the combining operator(s) just above it. The subLinkType
* indicates the form of the expression represented:
* EXISTS_SUBLINK EXISTS(SELECT ...)
* ALL_SUBLINK (lefthand) op ALL (SELECT ...)
* ANY_SUBLINK (lefthand) op ANY (SELECT ...)
* ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
* EXPR_SUBLINK (SELECT with single targetlist item ...)
* ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
* CTE_SUBLINK WITH query (never actually part of an expression)
* For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
* same length as the subselect's targetlist. ROWCOMPARE will *always* have
* a list with more than one entry; if the subselect has just one target
* then the parser will create an EXPR_SUBLINK instead (and any operator
* above the subselect will be represented separately). Note that both
* ROWCOMPARE and EXPR require the subselect to deliver only one row.
* ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
* results. ALL and ANY combine the per-row results using AND and OR
* semantics respectively.
* ARRAY requires just one target column, and creates an array of the target
* column's type using any number of rows resulting from the subselect.
*
* SubLink is classed as an Expr node, but it is not actually executable;
* it must be replaced in the expression tree by a SubPlan node during
* planning.
*
* NOTE: in the raw output of gram.y, testexpr contains just the raw form
* of the lefthand expression (if any), and operName is the String name of
* the combining operator. Also, subselect is a raw parsetree. During parse
* analysis, the parser transforms testexpr into a complete boolean expression
* that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
* output columns of the subselect. And subselect is transformed to a Query.
* This is the representation seen in saved rules and in the rewriter.
*
* In EXISTS, EXPR, and ARRAY SubLinks, testexpr and operName are unused and
* are always null.
*
* The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
* in SubPlans generated for WITH subqueries.
*/
typedef enum SubLinkType
{
EXISTS_SUBLINK,
ALL_SUBLINK,
ANY_SUBLINK,
ROWCOMPARE_SUBLINK,
EXPR_SUBLINK,
ARRAY_SUBLINK,
CTE_SUBLINK /* for SubPlans only */
} SubLinkType;
typedef struct SubLink
{
Expr xpr;
SubLinkType subLinkType; /* see above */
Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
List *operName; /* originally specified operator name */
Node *subselect; /* subselect as Query* or parsetree */
int location; /* token location, or -1 if unknown */
} SubLink;
/*
* SubPlan - executable expression node for a subplan (sub-SELECT)
*
* The planner replaces SubLink nodes in expression trees with SubPlan
* nodes after it has finished planning the subquery. SubPlan references
* a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
* (We avoid a direct link to make it easier to copy expression trees
* without causing multiple processing of the subplan.)
*
* In an ordinary subplan, testexpr points to an executable expression
* (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
* operator(s); the left-hand arguments are the original lefthand expressions,
* and the right-hand arguments are PARAM_EXEC Param nodes representing the
* outputs of the sub-select. (NOTE: runtime coercion functions may be
* inserted as well.) This is just the same expression tree as testexpr in
* the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
* suitably numbered PARAM_EXEC nodes.
*
* If the sub-select becomes an initplan rather than a subplan, the executable
* expression is part of the outer plan's expression tree (and the SubPlan
* node itself is not, but rather is found in the outer plan's initPlan
* list). In this case testexpr is NULL to avoid duplication.
*
* The planner also derives lists of the values that need to be passed into
* and out of the subplan. Input values are represented as a list "args" of
* expressions to be evaluated in the outer-query context (currently these
* args are always just Vars, but in principle they could be any expression).
* The values are assigned to the global PARAM_EXEC params indexed by parParam
* (the parParam and args lists must have the same ordering). setParam is a
* list of the PARAM_EXEC params that are computed by the sub-select, if it
* is an initplan; they are listed in order by sub-select output column
* position. (parParam and setParam are integer Lists, not Bitmapsets,
* because their ordering is significant.)
*
* Also, the planner computes startup and per-call costs for use of the
* SubPlan. Note that these include the cost of the subquery proper,
* evaluation of the testexpr if any, and any hashtable management overhead.
*/
typedef struct SubPlan
{
Expr xpr;
/* Fields copied from original SubLink: */
SubLinkType subLinkType; /* see above */
/* The combining operators, transformed to an executable expression: */
Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
List *paramIds; /* IDs of Params embedded in the above */
/* Identification of the Plan tree to use: */
int plan_id; /* Index (from 1) in PlannedStmt.subplans */
/* Identification of the SubPlan for EXPLAIN and debugging purposes: */
char *plan_name; /* A name assigned during planning */
/* Extra data useful for determining subplan's output type: */
Oid firstColType; /* Type of first column of subplan result */
int32 firstColTypmod; /* Typmod of first column of subplan result */
Oid firstColCollation; /* Collation of first column of
* subplan result */
/* Information about execution strategy: */
bool useHashTable; /* TRUE to store subselect output in a hash
* table (implies we are doing "IN") */
bool unknownEqFalse; /* TRUE if it's okay to return FALSE when the
* spec result is UNKNOWN; this allows much
* simpler handling of null values */
/* Information for passing params into and out of the subselect: */
/* setParam and parParam are lists of integers (param IDs) */
List *setParam; /* initplan subqueries have to set these
* Params for parent plan */
List *parParam; /* indices of input Params from parent plan */
List *args; /* exprs to pass as parParam values */
/* Estimated execution costs: */
Cost startup_cost; /* one-time setup cost */
Cost per_call_cost; /* cost for each subplan evaluation */
} SubPlan;
/*
* AlternativeSubPlan - expression node for a choice among SubPlans
*
* The subplans are given as a List so that the node definition need not
* change if there's ever more than two alternatives. For the moment,
* though, there are always exactly two; and the first one is the fast-start
* plan.
*/
typedef struct AlternativeSubPlan
{
Expr xpr;
List *subplans; /* SubPlan(s) with equivalent results */
} AlternativeSubPlan;
/* ----------------
* FieldSelect
*
* FieldSelect represents the operation of extracting one field from a tuple
* value. At runtime, the input expression is expected to yield a rowtype
* Datum. The specified field number is extracted and returned as a Datum.
* ----------------
*/
typedef struct FieldSelect
{
Expr xpr;
Expr *arg; /* input expression */
AttrNumber fieldnum; /* attribute number of field to extract */
Oid resulttype; /* type of the field (result type of this
* node) */
int32 resulttypmod; /* output typmod (usually -1) */
Oid resultcollid; /* OID of collation of the field */
} FieldSelect;
/* ----------------
* FieldStore
*
* FieldStore represents the operation of modifying one field in a tuple
* value, yielding a new tuple value (the input is not touched!). Like
* the assign case of ArrayRef, this is used to implement UPDATE of a
* portion of a column.
*
* A single FieldStore can actually represent updates of several different
* fields. The parser only generates FieldStores with single-element lists,
* but the planner will collapse multiple updates of the same base column
* into one FieldStore.
* ----------------
*/
typedef struct FieldStore
{
Expr xpr;
Expr *arg; /* input tuple value */
List *newvals; /* new value(s) for field(s) */
List *fieldnums; /* integer list of field attnums */
Oid resulttype; /* type of result (same as type of arg) */
/* Like RowExpr, we deliberately omit a typmod and collation here */
} FieldStore;
/* ----------------
* RelabelType
*
* RelabelType represents a "dummy" type coercion between two binary-
* compatible datatypes, such as reinterpreting the result of an OID
* expression as an int4. It is a no-op at runtime; we only need it
* to provide a place to store the correct type to be attributed to
* the expression result during type resolution. (We can't get away
* with just overwriting the type field of the input expression node,
* so we need a separate node to show the coercion's result type.)
* ----------------
*/
typedef struct RelabelType
{
Expr xpr;
Expr *arg; /* input expression */
Oid resulttype; /* output type of coercion expression */
int32 resulttypmod; /* output typmod (usually -1) */
Oid resultcollid; /* OID of collation, or InvalidOid if none */
CoercionForm relabelformat; /* how to display this node */
int location; /* token location, or -1 if unknown */
} RelabelType;
/* ----------------
* CoerceViaIO
*
* CoerceViaIO represents a type coercion between two types whose textual
* representations are compatible, implemented by invoking the source type's
* typoutput function then the destination type's typinput function.
* ----------------
*/
typedef struct CoerceViaIO
{
Expr xpr;
Expr *arg; /* input expression */
Oid resulttype; /* output type of coercion */
/* output typmod is not stored, but is presumed -1 */
Oid resultcollid; /* OID of collation, or InvalidOid if none */
CoercionForm coerceformat; /* how to display this node */
int location; /* token location, or -1 if unknown */
} CoerceViaIO;
/* ----------------
* ArrayCoerceExpr
*
* ArrayCoerceExpr represents a type coercion from one array type to another,
* which is implemented by applying the indicated element-type coercion
* function to each element of the source array. If elemfuncid is InvalidOid
* then the element types are binary-compatible, but the coercion still
* requires some effort (we have to fix the element type ID stored in the
* array header).
* ----------------
*/
typedef struct ArrayCoerceExpr
{
Expr xpr;
Expr *arg; /* input expression (yields an array) */
Oid elemfuncid; /* OID of element coercion function, or 0 */
Oid resulttype; /* output type of coercion (an array type) */
int32 resulttypmod; /* output typmod (also element typmod) */
Oid resultcollid; /* OID of collation, or InvalidOid if none */
bool isExplicit; /* conversion semantics flag to pass to func */
CoercionForm coerceformat; /* how to display this node */
int location; /* token location, or -1 if unknown */
} ArrayCoerceExpr;
/* ----------------
* ConvertRowtypeExpr
*
* ConvertRowtypeExpr represents a type coercion from one composite type
* to another, where the source type is guaranteed to contain all the columns
* needed for the destination type plus possibly others; the columns need not
* be in the same positions, but are matched up by name. This is primarily
* used to convert a whole-row value of an inheritance child table into a
* valid whole-row value of its parent table's rowtype.
* ----------------
*/
typedef struct ConvertRowtypeExpr
{
Expr xpr;
Expr *arg; /* input expression */
Oid resulttype; /* output type (always a composite type) */
/* Like RowExpr, we deliberately omit a typmod and collation here */
CoercionForm convertformat; /* how to display this node */
int location; /* token location, or -1 if unknown */
} ConvertRowtypeExpr;
/*----------
* CollateExpr - COLLATE
*
* The planner replaces CollateExpr with RelabelType during expression
* preprocessing, so execution never sees a CollateExpr.
*----------
*/
typedef struct CollateExpr
{
Expr xpr;
Expr *arg; /* input expression */
Oid collOid; /* collation's OID */
int location; /* token location, or -1 if unknown */
} CollateExpr;
/*----------
* CaseExpr - a CASE expression
*
* We support two distinct forms of CASE expression:
* CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
* CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
* These are distinguishable by the "arg" field being NULL in the first case
* and the testexpr in the second case.
*
* In the raw grammar output for the second form, the condition expressions
* of the WHEN clauses are just the comparison values. Parse analysis
* converts these to valid boolean expressions of the form
* CaseTestExpr '=' compexpr
* where the CaseTestExpr node is a placeholder that emits the correct
* value at runtime. This structure is used so that the testexpr need be
* evaluated only once. Note that after parse analysis, the condition
* expressions always yield boolean.
*
* Note: we can test whether a CaseExpr has been through parse analysis
* yet by checking whether casetype is InvalidOid or not.
*----------
*/
typedef struct CaseExpr
{
Expr xpr;
Oid casetype; /* type of expression result */
Oid casecollid; /* OID of collation, or InvalidOid if none */
Expr *arg; /* implicit equality comparison argument */
List *args; /* the arguments (list of WHEN clauses) */
Expr *defresult; /* the default result (ELSE clause) */
int location; /* token location, or -1 if unknown */
} CaseExpr;
/*
* CaseWhen - one arm of a CASE expression
*/
typedef struct CaseWhen
{
Expr xpr;
Expr *expr; /* condition expression */
Expr *result; /* substitution result */
int location; /* token location, or -1 if unknown */
} CaseWhen;
/*
* Placeholder node for the test value to be processed by a CASE expression.
* This is effectively like a Param, but can be implemented more simply
* since we need only one replacement value at a time.
*
* We also use this in nested UPDATE expressions.
* See transformAssignmentIndirection().
*/
typedef struct CaseTestExpr
{
Expr xpr;
Oid typeId; /* type for substituted value */
int32 typeMod; /* typemod for substituted value */
Oid collation; /* collation for the substituted value */
} CaseTestExpr;
/*
* ArrayExpr - an ARRAY[] expression
*
* Note: if multidims is false, the constituent expressions all yield the
* scalar type identified by element_typeid. If multidims is true, the
* constituent expressions all yield arrays of element_typeid (ie, the same
* type as array_typeid); at runtime we must check for compatible subscripts.
*/
typedef struct ArrayExpr
{
Expr xpr;
Oid array_typeid; /* type of expression result */
Oid array_collid; /* OID of collation, or InvalidOid if none */
Oid element_typeid; /* common type of array elements */
List *elements; /* the array elements or sub-arrays */
bool multidims; /* true if elements are sub-arrays */
int location; /* token location, or -1 if unknown */
} ArrayExpr;
/*
* RowExpr - a ROW() expression
*
* Note: the list of fields must have a one-for-one correspondence with
* physical fields of the associated rowtype, although it is okay for it
* to be shorter than the rowtype. That is, the N'th list element must
* match up with the N'th physical field. When the N'th physical field
* is a dropped column (attisdropped) then the N'th list element can just
* be a NULL constant. (This case can only occur for named composite types,
* not RECORD types, since those are built from the RowExpr itself rather
* than vice versa.) It is important not to assume that length(args) is
* the same as the number of columns logically present in the rowtype.
*
* colnames provides field names in cases where the names can't easily be
* obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
* If row_typeid identifies a known composite type, colnames can be NIL to
* indicate the type's cataloged field names apply. Note that colnames can
* be non-NIL even for a composite type, and typically is when the RowExpr
* was created by expanding a whole-row Var. This is so that we can retain
* the column alias names of the RTE that the Var referenced (which would
* otherwise be very difficult to extract from the parsetree). Like the
* args list, colnames is one-for-one with physical fields of the rowtype.
*/
typedef struct RowExpr
{
Expr xpr;
List *args; /* the fields */
Oid row_typeid; /* RECORDOID or a composite type's ID */
/*
* Note: we deliberately do NOT store a typmod. Although a typmod will be
* associated with specific RECORD types at runtime, it will differ for
* different backends, and so cannot safely be stored in stored
* parsetrees. We must assume typmod -1 for a RowExpr node.
*
* We don't need to store a collation either. The result type is
* necessarily composite, and composite types never have a collation.
*/
CoercionForm row_format; /* how to display this node */
List *colnames; /* list of String, or NIL */
int location; /* token location, or -1 if unknown */
} RowExpr;
/*
* RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
*
* We support row comparison for any operator that can be determined to
* act like =, <>, <, <=, >, or >= (we determine this by looking for the
* operator in btree opfamilies). Note that the same operator name might
* map to a different operator for each pair of row elements, since the
* element datatypes can vary.
*
* A RowCompareExpr node is only generated for the < <= > >= cases;
* the = and <> cases are translated to simple AND or OR combinations
* of the pairwise comparisons. However, we include = and <> in the
* RowCompareType enum for the convenience of parser logic.
*/
typedef enum RowCompareType
{
/* Values of this enum are chosen to match btree strategy numbers */
ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
ROWCOMPARE_NE = 6 /* no such btree strategy */
} RowCompareType;
typedef struct RowCompareExpr
{
Expr xpr;
RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
List *opnos; /* OID list of pairwise comparison ops */
List *opfamilies; /* OID list of containing operator families */
List *inputcollids; /* OID list of collations for comparisons */
List *largs; /* the left-hand input arguments */
List *rargs; /* the right-hand input arguments */
} RowCompareExpr;
/*
* CoalesceExpr - a COALESCE expression
*/
typedef struct CoalesceExpr
{
Expr xpr;
Oid coalescetype; /* type of expression result */
Oid coalescecollid; /* OID of collation, or InvalidOid if none */
List *args; /* the arguments */
int location; /* token location, or -1 if unknown */
} CoalesceExpr;
/*
* MinMaxExpr - a GREATEST or LEAST function
*/
typedef enum MinMaxOp
{
IS_GREATEST,
IS_LEAST
} MinMaxOp;
typedef struct MinMaxExpr
{
Expr xpr;
Oid minmaxtype; /* common type of arguments and result */
Oid minmaxcollid; /* OID of collation of result */
Oid inputcollid; /* OID of collation that function should use */
MinMaxOp op; /* function to execute */
List *args; /* the arguments */
int location; /* token location, or -1 if unknown */
} MinMaxExpr;
/*
* XmlExpr - various SQL/XML functions requiring special grammar productions
*
* 'name' carries the "NAME foo" argument (already XML-escaped).
* 'named_args' and 'arg_names' represent an xml_attribute list.
* 'args' carries all other arguments.
*
* Note: result type/typmod/collation are not stored, but can be deduced
* from the XmlExprOp. The type/typmod fields are just used for display
* purposes, and are NOT necessarily the true result type of the node.
* (We also use type == InvalidOid to mark a not-yet-parse-analyzed XmlExpr.)
*/
typedef enum XmlExprOp
{
IS_XMLCONCAT, /* XMLCONCAT(args) */
IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
IS_XMLPI, /* XMLPI(name [, args]) */
IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
IS_DOCUMENT /* xmlval IS DOCUMENT */
} XmlExprOp;
typedef enum
{
XMLOPTION_DOCUMENT,
XMLOPTION_CONTENT
} XmlOptionType;
typedef struct XmlExpr
{
Expr xpr;
XmlExprOp op; /* xml function ID */
char *name; /* name in xml(NAME foo ...) syntaxes */
List *named_args; /* non-XML expressions for xml_attributes */
List *arg_names; /* parallel list of Value strings */
List *args; /* list of expressions */
XmlOptionType xmloption; /* DOCUMENT or CONTENT */
Oid type; /* target type/typmod for XMLSERIALIZE */
int32 typmod;
int location; /* token location, or -1 if unknown */
} XmlExpr;
/* ----------------
* NullTest
*
* NullTest represents the operation of testing a value for NULLness.
* The appropriate test is performed and returned as a boolean Datum.
*
* NOTE: the semantics of this for rowtype inputs are noticeably different
* from the scalar case. We provide an "argisrow" flag to reflect that.
* ----------------
*/
typedef enum NullTestType
{
IS_NULL, IS_NOT_NULL
} NullTestType;
typedef struct NullTest
{
Expr xpr;
Expr *arg; /* input expression */
NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
bool argisrow; /* T if input is of a composite type */
} NullTest;
/*
* BooleanTest
*
* BooleanTest represents the operation of determining whether a boolean
* is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
* are supported. Note that a NULL input does *not* cause a NULL result.
* The appropriate test is performed and returned as a boolean Datum.
*/
typedef enum BoolTestType
{
IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN
} BoolTestType;
typedef struct BooleanTest
{
Expr xpr;
Expr *arg; /* input expression */
BoolTestType booltesttype; /* test type */
} BooleanTest;
/*
* CoerceToDomain
*
* CoerceToDomain represents the operation of coercing a value to a domain
* type. At runtime (and not before) the precise set of constraints to be
* checked will be determined. If the value passes, it is returned as the
* result; if not, an error is raised. Note that this is equivalent to
* RelabelType in the scenario where no constraints are applied.
*/
typedef struct CoerceToDomain
{
Expr xpr;
Expr *arg; /* input expression */
Oid resulttype; /* domain type ID (result type) */
int32 resulttypmod; /* output typmod (currently always -1) */
Oid resultcollid; /* OID of collation, or InvalidOid if none */
CoercionForm coercionformat; /* how to display this node */
int location; /* token location, or -1 if unknown */
} CoerceToDomain;
/*
* Placeholder node for the value to be processed by a domain's check
* constraint. This is effectively like a Param, but can be implemented more
* simply since we need only one replacement value at a time.
*
* Note: the typeId/typeMod/collation will be set from the domain's base type,
* not the domain itself. This is because we shouldn't consider the value
* to be a member of the domain if we haven't yet checked its constraints.
*/
typedef struct CoerceToDomainValue
{
Expr xpr;
Oid typeId; /* type for substituted value */
int32 typeMod; /* typemod for substituted value */
Oid collation; /* collation for the substituted value */
int location; /* token location, or -1 if unknown */
} CoerceToDomainValue;
/*
* Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
*
* This is not an executable expression: it must be replaced by the actual
* column default expression during rewriting. But it is convenient to
* treat it as an expression node during parsing and rewriting.
*/
typedef struct SetToDefault
{
Expr xpr;
Oid typeId; /* type for substituted value */
int32 typeMod; /* typemod for substituted value */
Oid collation; /* collation for the substituted value */
int location; /* token location, or -1 if unknown */
} SetToDefault;
/*
* Node representing [WHERE] CURRENT OF cursor_name
*
* CURRENT OF is a bit like a Var, in that it carries the rangetable index
* of the target relation being constrained; this aids placing the expression
* correctly during planning. We can assume however that its "levelsup" is
* always zero, due to the syntactic constraints on where it can appear.
*
* The referenced cursor can be represented either as a hardwired string
* or as a reference to a run-time parameter of type REFCURSOR. The latter
* case is for the convenience of plpgsql.
*/
typedef struct CurrentOfExpr
{
Expr xpr;
Index cvarno; /* RT index of target relation */
char *cursor_name; /* name of referenced cursor, or NULL */
int cursor_param; /* refcursor parameter number, or 0 */
} CurrentOfExpr;
/*--------------------
* TargetEntry -
* a target entry (used in query target lists)
*
* Strictly speaking, a TargetEntry isn't an expression node (since it can't
* be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
* very many places it's convenient to process a whole query targetlist as a
* single expression tree.
*
* In a SELECT's targetlist, resno should always be equal to the item's
* ordinal position (counting from 1). However, in an INSERT or UPDATE
* targetlist, resno represents the attribute number of the destination
* column for the item; so there may be missing or out-of-order resnos.
* It is even legal to have duplicated resnos; consider
* UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
* The two meanings come together in the executor, because the planner
* transforms INSERT/UPDATE tlists into a normalized form with exactly
* one entry for each column of the destination table. Before that's
* happened, however, it is risky to assume that resno == position.
* Generally get_tle_by_resno() should be used rather than list_nth()
* to fetch tlist entries by resno, and only in SELECT should you assume
* that resno is a unique identifier.
*
* resname is required to represent the correct column name in non-resjunk
* entries of top-level SELECT targetlists, since it will be used as the
* column title sent to the frontend. In most other contexts it is only
* a debugging aid, and may be wrong or even NULL. (In particular, it may
* be wrong in a tlist from a stored rule, if the referenced column has been
* renamed by ALTER TABLE since the rule was made. Also, the planner tends
* to store NULL rather than look up a valid name for tlist entries in
* non-toplevel plan nodes.) In resjunk entries, resname should be either
* a specific system-generated name (such as "ctid") or NULL; anything else
* risks confusing ExecGetJunkAttribute!
*
* ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
* DISTINCT items. Targetlist entries with ressortgroupref=0 are not
* sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
* GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
* may have the same nonzero ressortgroupref --- but there is no particular
* meaning to the nonzero values, except as tags. (For example, one must
* not assume that lower ressortgroupref means a more significant sort key.)
* The order of the associated SortGroupClause lists determine the semantics.
*
* resorigtbl/resorigcol identify the source of the column, if it is a
* simple reference to a column of a base table (or view). If it is not
* a simple reference, these fields are zeroes.
*
* If resjunk is true then the column is a working column (such as a sort key)
* that should be removed from the final output of the query. Resjunk columns
* must have resnos that cannot duplicate any regular column's resno. Also
* note that there are places that assume resjunk columns come after non-junk
* columns.
*--------------------
*/
typedef struct TargetEntry
{
Expr xpr;
Expr *expr; /* expression to evaluate */
AttrNumber resno; /* attribute number (see notes above) */
char *resname; /* name of the column (could be NULL) */
Index ressortgroupref;/* nonzero if referenced by a sort/group
* clause */
Oid resorigtbl; /* OID of column's source table */
AttrNumber resorigcol; /* column's number in source table */
bool resjunk; /* set to true to eliminate the attribute from
* final target list */
} TargetEntry;
/* ----------------------------------------------------------------
* node types for join trees
*
* The leaves of a join tree structure are RangeTblRef nodes. Above
* these, JoinExpr nodes can appear to denote a specific kind of join
* or qualified join. Also, FromExpr nodes can appear to denote an
* ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
* FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
* may have any number of child nodes, not just two.
*
* NOTE: the top level of a Query's jointree is always a FromExpr.
* Even if the jointree contains no rels, there will be a FromExpr.
*
* NOTE: the qualification expressions present in JoinExpr nodes are
* *in addition to* the query's main WHERE clause, which appears as the
* qual of the top-level FromExpr. The reason for associating quals with
* specific nodes in the jointree is that the position of a qual is critical
* when outer joins are present. (If we enforce a qual too soon or too late,
* that may cause the outer join to produce the wrong set of NULL-extended
* rows.) If all joins are inner joins then all the qual positions are
* semantically interchangeable.
*
* NOTE: in the raw output of gram.y, a join tree contains RangeVar,
* RangeSubselect, and RangeFunction nodes, which are all replaced by
* RangeTblRef nodes during the parse analysis phase. Also, the top-level
* FromExpr is added during parse analysis; the grammar regards FROM and
* WHERE as separate.
* ----------------------------------------------------------------
*/
/*
* RangeTblRef - reference to an entry in the query's rangetable
*
* We could use direct pointers to the RT entries and skip having these
* nodes, but multiple pointers to the same node in a querytree cause
* lots of headaches, so it seems better to store an index into the RT.
*/
typedef struct RangeTblRef
{
NodeTag type;
int rtindex;
} RangeTblRef;
/*----------
* JoinExpr - for SQL JOIN expressions
*
* isNatural, usingClause, and quals are interdependent. The user can write
* only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
* If he writes NATURAL then parse analysis generates the equivalent USING()
* list, and from that fills in "quals" with the right equality comparisons.
* If he writes USING() then "quals" is filled with equality comparisons.
* If he writes ON() then only "quals" is set. Note that NATURAL/USING
* are not equivalent to ON() since they also affect the output column list.
*
* alias is an Alias node representing the AS alias-clause attached to the
* join expression, or NULL if no clause. NB: presence or absence of the
* alias has a critical impact on semantics, because a join with an alias
* restricts visibility of the tables/columns inside it.
*
* During parse analysis, an RTE is created for the Join, and its index
* is filled into rtindex. This RTE is present mainly so that Vars can
* be created that refer to the outputs of the join. The planner sometimes
* generates JoinExprs internally; these can have rtindex = 0 if there are
* no join alias variables referencing such joins.
*----------
*/
typedef struct JoinExpr
{
NodeTag type;
JoinType jointype; /* type of join */
bool isNatural; /* Natural join? Will need to shape table */
Node *larg; /* left subtree */
Node *rarg; /* right subtree */
List *usingClause; /* USING clause, if any (list of String) */
Node *quals; /* qualifiers on join, if any */
Alias *alias; /* user-written alias clause, if any */
int rtindex; /* RT index assigned for join, or 0 */
} JoinExpr;
/*----------
* FromExpr - represents a FROM ... WHERE ... construct
*
* This is both more flexible than a JoinExpr (it can have any number of
* children, including zero) and less so --- we don't need to deal with
* aliases and so on. The output column set is implicitly just the union
* of the outputs of the children.
*----------
*/
typedef struct FromExpr
{
NodeTag type;
List *fromlist; /* List of join subtrees */
Node *quals; /* qualifiers on join, if any */
} FromExpr;
#ifdef PGXC
/*----------
* DistributionType - how to distribute the data
*
*----------
*/
typedef enum DistributionType
{
DISTTYPE_REPLICATION, /* Replicated */
DISTTYPE_HASH, /* Hash partitioned */
DISTTYPE_ROUNDROBIN, /* Round Robin */
DISTTYPE_MODULO /* Modulo partitioned */
} DistributionType;
/*----------
* DistributeBy - represents a DISTRIBUTE BY clause in a CREATE TABLE statement
*
*----------
*/
typedef struct DistributeBy
{
NodeTag type;
DistributionType disttype; /* Distribution type */
char *colname; /* Distribution column name */
} DistributeBy;
/*----------
* SubClusterType - type of subcluster used
*
*----------
*/
typedef enum PGXCSubClusterType
{
SUBCLUSTER_NONE,
SUBCLUSTER_NODE,
SUBCLUSTER_GROUP
} PGXCSubClusterType;
/*----------
* PGXCSubCluster - Subcluster on which a table can be created
*
*----------
*/
typedef struct PGXCSubCluster
{
NodeTag type;
PGXCSubClusterType clustertype; /* Subcluster type */
List *members; /* List of nodes or groups */
} PGXCSubCluster;
#endif
#endif /* PRIMNODES_H */
|