This file is indexed.

/usr/lib/python2.7/dist-packages/pyFAI/geometry.py is in pyfai 0.3.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
#!/usr/bin/env python
# -*- coding: utf8 -*-
#
#    Project: Azimuthal integration 
#             https://forge.epn-campus.eu/projects/azimuthal
#
#    File: "$Id$"
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "21/12/2011"
__status__ = "beta"

import os, threading, logging
import numpy
from numpy import sin, cos, arccos, sqrt, radians, degrees
from spline import Spline
from utils import timeit
logger = logging.getLogger("pyFAI.geometry")



class Geometry(object):
    """
    This class is an azimuthal integrator based on P. Boesecke's geometry and 
    histogram algorithm by Manolo S. del Rio and V.A Sole
     
    """
    def __init__(self, dist=1, poni1=0, poni2=0, rot1=0, rot2=0, rot3=0, pixel1=1, pixel2=1, splineFile=None):
        """
        @param dist: distance sample - detector plan (orthogonal distance, not along the beam), in meter.
        @param poni1: coordinate of the point of normal incidence along the detector's first dimension, in meter
        @param poni2: coordinate of the point of normal incidence along the detector's second dimension, in meter
        @param rot1: first rotation from sample ref to detector's ref, in radians
        @param rot2: second rotation from sample ref to detector's ref, in radians
        @param rot3: third rotation from sample ref to detector's ref, in radians
        @param pixel1: pixel size of the fist dimension of the detector,  in meter
        @param pixel2: pixel size of the second dimension of the detector,  in meter
        @param splineFile: file containing the geometric distortion of the detector. Overrides the pixel size.  
        """
        self._dist = dist
        self._poni1 = poni1
        self._poni2 = poni2
        self._rot1 = rot1
        self._rot2 = rot2
        self._rot3 = rot3
        self.pixel1 = pixel1
        self.pixel2 = pixel2
        self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
        self.chiDiscAtPi = True #position of the discontinuity of chi in radians, pi by default
        self._ttha = None
        self._dttha = None
        self._dssa = None
        self._chia = None
        self._dchia = None
        self._qa = None
        self._dqa = None
        self._corner4Da = None
        self._corner4Dqa = None
        self._wavelength = None
        self._splineCache = {} #key=(dx,xpoints,ypoints) value: ndarray
        self._oversampling = None
        self._sem = threading.Semaphore()

        if splineFile:
            self.splineFile = os.path.abspath(splineFile)
            self.spline = Spline(self.splineFile)
            #NOTA : X is axis 1 and Y is Axis 0 
            self.pixel2, self.pixel1 = self.spline.getPixelSize()
        else:
            self.splineFile = None
            self.spline = None


    def __repr__(self):
        self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
        lstTxt = ["Spline= %s\t PixelSize= %.3e, %.3e m" % (self.splineFile, self.pixel1, self.pixel2)]
        lstTxt.append("SampleDetDist= %.6em\tPONI= %.6e, %.6em\trot1=%.6f  rot2= %.6f  rot3= %.6f rad" % tuple(self.param))
        f2d = self.getFit2D()
        lstTxt.append("DirectBeamDist= %.3fmm\tCenter: x=%.3f, y=%.3f pix\tTilt=%.3f deg  TiltPlanRot= %.3f deg" %
                       (f2d["DirectBeamDist"], f2d["BeamCenterX"], f2d["BeamCenterY"], f2d["Tilt"], f2d["TiltPlanRot"]))
        return os.linesep.join(lstTxt)


    def _calcCatesianPositions(self, d1, d2, poni1=None, poni2=None):
        """
        Calculate the position in cartesian coordinate (centered on the PONI) 
        and in meter of a couple of coordinates. 
        The half pixel offset is taken into account here !!!
        
        @param d1: ndarray of dimention 1/2 containing the Y pixel positions
        @param d2: ndarray of dimention 1/2 containing the X pixel positions
        @param poni1: value in the Y direction of the poni coordinate (in meter) 
        @param poni2: value in the X direction of the poni coordinate (in meter) 
        @return: 2-arrays of same shape as d1 & d2 with the position in meter

        d1 and d2 must have the same shape, returned array will have the same shape.
        """
        if  poni1 is None:
            poni1 = self.poni1
        if  poni2 is None:
            poni2 = self.poni2

        if self.spline is None:
            dX = 0.
            dY = 0.
        else:
            if d2.ndim == 1:
                keyX = ("dX", tuple(d1), tuple(d2))
                keyY = ("dY", tuple(d1), tuple(d2))
                if keyX not in self._splineCache:
                    self._splineCache[keyX] = numpy.array([self.spline.splineFuncX(i2, i1) for i1, i2 in zip(d1 + 0.5, d2 + 0.5)], dtype="float64")
                if keyY not in self._splineCache:
                    self._splineCache[keyY] = numpy.array([self.spline.splineFuncY(i2, i1) for i1, i2 in zip(d1 + 0.5, d2 + 0.5)], dtype="float64")
                dX = self._splineCache[keyX]
                dY = self._splineCache[keyY]
            else:
                dX = self.spline.splineFuncX(d2 + 0.5, d1 + 0.5)
                dY = self.spline.splineFuncY(d2 + 0.5, d1 + 0.5)
        p1 = (self.pixel1 * (dY + 0.5 + d1)) - poni1
        p2 = (self.pixel2 * (dX + 0.5 + d2)) - poni2
        return p1, p2

    def tth(self, d1, d2, param=None):
        """
        Calculates the 2theta value for the center of a given pixel (or set of pixels)
        @param d1: position(s) in pixel in first dimension (c order)
        @type d1: scalar or array of scalar
        @param d2: position(s) in pixel in second dimension (c order)
        @type d2: scalar or array of scalar
        @return 2theta in radians 
        @rtype: floar or array of floats.
        """

        if param == None:
            param = self.param
        cosRot1 = cos(param[3])
        cosRot2 = cos(param[4])
        cosRot3 = cos(param[5])
        sinRot1 = sin(param[3])
        sinRot2 = sin(param[4])
        sinRot3 = sin(param[5])
        p1, p2 = self._calcCatesianPositions(d1, d2, param[1], param[2])

        tmp = arccos((param[0] * cosRot1 * cosRot2 - p2 * cosRot2 * sinRot1 + p1 * sinRot2) / \
                     (sqrt((-param[0] * cosRot1 * cosRot2 + p2 * cosRot2 * sinRot1 - p1 * sinRot2) ** 2 + \
                            (p1 * cosRot2 * cosRot3 + p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) - param[0] * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)) ** 2 + \
                             (p1 * cosRot2 * sinRot3 - param[0] * (-cosRot3 * sinRot1 + cosRot1 * sinRot2 * sinRot3) + p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3)) ** 2)))
        return tmp


    def qFunction(self, d1, d2, param=None):
        """
        Calculates the q value for the center of a given pixel (or set of pixels)
        @param d1: position(s) in pixel in first dimension (c order)
        @type d1: scalar or array of scalar
        @param d2: position(s) in pixel in second dimension (c order)
        @type d2: scalar or array of scalar
        @return q in in nm^(-1) 
        @rtype: float or array of floats.
        """

        if param == None:
            param = self.param
        cosRot1 = cos(param[3])
        cosRot2 = cos(param[4])
        cosRot3 = cos(param[5])
        sinRot1 = sin(param[3])
        sinRot2 = sin(param[4])
        sinRot3 = sin(param[5])
        p1, p2 = self._calcCatesianPositions(d1, d2, param[1], param[2])
        tmp = ((param[0] * cosRot1 * cosRot2 - p2 * cosRot2 * sinRot1 + p1 * sinRot2) / \
                     (sqrt((-param[0] * cosRot1 * cosRot2 + p2 * cosRot2 * sinRot1 - p1 * sinRot2) ** 2 + \
                            (p1 * cosRot2 * cosRot3 + p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) - param[0] * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)) ** 2 + \
                             (p1 * cosRot2 * sinRot3 - param[0] * (-cosRot3 * sinRot1 + cosRot1 * sinRot2 * sinRot3) + p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3)) ** 2)))

        return  2.0e-9 * numpy.pi * sqrt(1.0 - tmp ** 2) / self.wavelength


    def qArray(self, shape):
        """
        Generate an array of the given shape with q(i,j) for all elements.  
        """
        if self._qa is None:
            with self._sem:
                if self._qa is None:
                    self._qa = numpy.fromfunction(self.qFunction, shape, dtype="float32")
        return self._qa

    def qCornerFunct(self, d1, d2):
        """
        calculate the q_vector for any pixel corner
        """
        return self.qFunction(d1 - 0.5, d2 - 0.5)


    def tth_corner(self, d1, d2):
        """
        Calculates the 2theta value for the corner of a given pixel (or set of pixels)
        @param d1: position(s) in pixel in first dimension (c order)
        @type d1: scalar or array of scalar
        @param d2: position(s) in pixel in second dimension (c order)
        @type d2: scalar or array of scalar
        @return 2theta in radians 
        @rtype: floar or array of floats.
        """
        return self.tth(d1 - 0.5, d2 - 0.5)


    def twoThetaArray(self, shape):
        """
        Generate an array of the given shape with two-theta(i,j) for all elements.  
        """
        if self._ttha is None:
            with self._sem:
                if self._ttha is None:
                    self._ttha = numpy.fromfunction(self.tth, shape, dtype="float32")
        return self._ttha


    def chi(self, d1, d2):
        """
        Calculate the chi (azimuthal angle) for the centre of a pixel at coordinate d1,d2 
        which in the lab ref has coordinate:
        X1 = p1*Cos(rot2)*Cos(rot3) + p2*(Cos(rot3)*Sin(rot1)*Sin(rot2) - Cos(rot1)*Sin(rot3)) -  L*(Cos(rot1)*Cos(rot3)*Sin(rot2) + Sin(rot1)*Sin(rot3))
        X2 = p1*Cos(rot2)*Sin(rot3) - L*(-(Cos(rot3)*Sin(rot1)) + Cos(rot1)*Sin(rot2)*Sin(rot3)) +  p2*(Cos(rot1)*Cos(rot3) + Sin(rot1)*Sin(rot2)*Sin(rot3))
        X3 = -(L*Cos(rot1)*Cos(rot2)) + p2*Cos(rot2)*Sin(rot1) - p1*Sin(rot2)
        hence tan(Chi) =  X2 / X1
        
        @param d1: pixel coordinate along the 1st dimention (C convention)
        @type d1: float or array of them
        @param d2: pixel coordinate along the 2nd dimention (C convention)
        @type d2: float or array of them
        @return: chi, the azimuthal angle in rad
        """
        cosRot1 = cos(self._rot1)
        cosRot2 = cos(self._rot2)
        cosRot3 = cos(self._rot3)
        sinRot1 = sin(self._rot1)
        sinRot2 = sin(self._rot2)
        sinRot3 = sin(self._rot3)
        L = self._dist
        p1, p2 = self._calcCatesianPositions(d1, d2, self.poni1, self.poni2)
        num = p1 * cosRot2 * cosRot3 + p2 * (cosRot3 * sinRot2 * sinRot2 - cosRot1 * sinRot3) - L * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)
        den = p1 * cosRot2 * sinRot3 - L * (-(cosRot3 * sinRot1) + cosRot1 * sinRot2 * sinRot3) + p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3)
        return numpy.arctan2(-num, den)
#        return numpy.arctan2(-den, num)

    def chi_corner(self, d1, d2):
        """
        Calculate the chi (azimuthal angle) for the corner of a pixel at coordinate d1,d2 
        which in the lab ref has coordinate:
        X1 = p1*Cos(rot2)*Cos(rot3) + p2*(Cos(rot3)*Sin(rot1)*Sin(rot2) - Cos(rot1)*Sin(rot3)) -  L*(Cos(rot1)*Cos(rot3)*Sin(rot2) + Sin(rot1)*Sin(rot3))
        X2 = p1*Cos(rot2)*Sin(rot3) - L*(-(Cos(rot3)*Sin(rot1)) + Cos(rot1)*Sin(rot2)*Sin(rot3)) +  p2*(Cos(rot1)*Cos(rot3) + Sin(rot1)*Sin(rot2)*Sin(rot3))
        X3 = -(L*Cos(rot1)*Cos(rot2)) + p2*Cos(rot2)*Sin(rot1) - p1*Sin(rot2)
        hence tan(Chi) =  X2 / X1
        
        @param d1: pixel coordinate along the 1st dimention (C convention)
        @type d1: float or array of them
        @param d2: pixel coordinate along the 2nd dimention (C convention)
        @type d2: float or array of them
        @return: chi, the azimuthal angle in rad
        """
        return self.chi(d1 - 0.5, d2 - 0.5)

    def chiArray(self, shape):
        """
        Generate an array of the given shape with chi(i,j) (azimuthal angle) for all elements.  
        """
        if self._chia is None:
            if self.chiDiscAtPi:
                self._chia = numpy.fromfunction(self.chi, shape, dtype="float32")
            else:
                self._chia = numpy.fromfunction(self.chi, shape, dtype="float32") % (2 * numpy.pi)
        return self._chia


    def cornerArray(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) (azimuthal angle) for all elements.  
        """
################################################################################
# TODO : add the center to the 4 corners when splitpixel algo is ready
################################################################################
#        tth_center = self.twoThetaArray(shape)
#        chi_center = self.chiArray(shape)
        if self._corner4Da is None:
            with self._sem:
                if self._corner4Da is None:
                    self._corner4Da = numpy.zeros((shape[0], shape[1], 4, 2), dtype="float32")
                    chi = numpy.fromfunction(self.chi_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
                    tth = numpy.fromfunction(self.tth_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
                    self._corner4Da[:, :, 0, 0] = tth[:-1, :-1]
                    self._corner4Da[:, :, 0, 1] = chi[:-1, :-1]
                    self._corner4Da[:, :, 1, 0] = tth[1:, :-1]
                    self._corner4Da[:, :, 1, 1] = chi[1:, :-1]
                    self._corner4Da[:, :, 2, 0] = tth[1:, 1:]
                    self._corner4Da[:, :, 2, 1] = chi[1:, 1:]
                    self._corner4Da[:, :, 3, 0] = tth[:-1, 1:]
                    self._corner4Da[:, :, 3, 1] = chi[:-1, 1:]
#                    self._corner4Da[:, :, 4, 0] = tth_center
#                    self._corner4Da[:, :, 4, 1] = chi_center
        return self._corner4Da


    def cornerQArray(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) (azimuthal angle) for all elements.  
        """
################################################################################
# TODO : add the center to the 4 corners when splitpixel algo is ready
################################################################################
#        q_center = self.qArray(shape)
#        chi_center = self.chiArray(shape)
        if self._corner4Dqa is None:
            with self._sem:
                if self._corner4Dqa is None:
                    self._corner4Dqa = numpy.zeros((shape[0], shape[1], 4, 2), dtype="float32")
                    chi = numpy.fromfunction(self.chi_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
                    tth = numpy.fromfunction(self.qCornerFunct(shape[0] + 1, shape[1] + 1), dtype="float32")
                    self._corner4Dqa[:, :, 0, 0] = tth[:-1, :-1]
                    self._corner4Dqa[:, :, 0, 1] = chi[:-1, :-1]
                    self._corner4Dqa[:, :, 1, 0] = tth[1:, :-1]
                    self._corner4Dqa[:, :, 1, 1] = chi[1:, :-1]
                    self._corner4Dqa[:, :, 2, 0] = tth[1:, 1:]
                    self._corner4Dqa[:, :, 2, 1] = chi[1:, 1:]
                    self._corner4Dqa[:, :, 3, 0] = tth[:-1, 1:]
                    self._corner4Dqa[:, :, 3, 1] = chi[:-1, 1:]
#                    self._corner4Dqa[:, :, 4, 0] = q_center
#                    self._corner4Dqa[:, :, 4, 1] = chi_center
        return self._corner4Dqa



    def delta2Theta(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) with the max distance between the center and any corner in 2 theta  
        """
        tth_center = self.twoThetaArray(shape)
        if self._dttha is None:
            with self._sem:
                if self._dttha is None:
                    tth_corner = numpy.fromfunction(self.tth_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
                    delta = numpy.zeros([shape[0], shape[1], 4], dtype="float32")
                    delta[:, :, 0] = abs(tth_corner[:-1, :-1] - tth_center)
                    delta[:, :, 1] = abs(tth_corner[1:, :-1] - tth_center)
                    delta[:, :, 2] = abs(tth_corner[1:, 1:] - tth_center)
                    delta[:, :, 3] = abs(tth_corner[:-1, 1:] - tth_center)
                    self._dttha = delta.max(axis=2)
        return self._dttha


    def deltaChi(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) with the max distance between the center and any corner in chi-angle  
        """
        chi_center = self.chiArray(shape)
        if self._dchia is None:
            with self._sem:
                if self._dchia is None:
                    twoPi = (2 * numpy.pi)
                    chi_corner = numpy.fromfunction(self.chi_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
                    delta = numpy.zeros([shape[0], shape[1], 4], dtype="float32")
                    delta[:, :, 0] = numpy.minimum(((chi_corner[:-1, :-1] - chi_center) % twoPi), ((chi_center - chi_corner[:-1, :-1]) % twoPi))
                    delta[:, :, 1] = numpy.minimum(((chi_corner[1: , :-1] - chi_center) % twoPi), ((chi_center - chi_corner[1: , :-1]) % twoPi))
                    delta[:, :, 2] = numpy.minimum(((chi_corner[1: , 1: ] - chi_center) % twoPi), ((chi_center - chi_corner[1: , 1: ]) % twoPi))
                    delta[:, :, 3] = numpy.minimum(((chi_corner[:-1, 1: ] - chi_center) % twoPi), ((chi_center - chi_corner[:-1, 1: ]) % twoPi))
                    self._dchia = delta.max(axis=2)
        return self._dchia


    def deltaQ(self, shape):
        """
        Generate a 3D array of the given shape with (i,j) with the max distance between the center and any corner in q_vector  
        """
        q_center = self.qArray(shape)
        if self._dqa is None:
            with self._sem:
                if self._dqa is None:
                    q_corner = numpy.fromfunction(self.qCornerFunct, (shape[0] + 1, shape[1] + 1), dtype="float32")
                    delta = numpy.zeros([shape[0], shape[1], 4], dtype="float32")
                    delta[:, :, 0] = abs(q_corner[:-1, :-1] - q_center)
                    delta[:, :, 1] = abs(q_corner[1:, :-1] - q_center)
                    delta[:, :, 2] = abs(q_corner[1:, 1:] - q_center)
                    delta[:, :, 3] = abs(q_corner[:-1, 1:] - q_center)
                    self._dqa = delta.max(axis=2)
        return self._dqa


    def diffSolidAngle(self, d1, d2):
        """
        calulate the solid angle of the current pixels
        """
        p1 = (0.5 + d1) * self.pixel1 - self._poni1
        p2 = (0.5 + d2) * self.pixel2 - self._poni2
        ds = 1.0

        ########################################################################
        # Nota: the solid angle correction should be done in flat field correction
        # Here is dual-correction 
        ########################################################################

#        if self.spline is None:
#            ds = 1.0
#        else:
#            max1 = d1.max() + 1
#            max2 = d2.max() + 1
#            sX = self.spline.splineFuncX(numpy.arange(max2 + 1) , numpy.arange(max1) + 0.5)
#            sY = self.spline.splineFuncY(numpy.arange(max2) + 0.5 , numpy.arange(max1 + 1))
#            dX = sX[:, 1:] - sX[:, :-1]
#            dY = sY[1:, : ] - sY[:-1, :]
#            ds = (dX + 1.0) * (dY + 1.0)
        dsa = ds * (self._dist) / sqrt(self._dist ** 2 + p1 ** 2 + p2 ** 2)
        return dsa


    def solidAngleArray(self, shape):
        """
        Generate an array of the given shape with the solid angle of the current element two-theta(i,j) for all elements.  
        """
        if self._dssa is None:
            self._dssa = numpy.fromfunction(self.diffSolidAngle, shape, dtype="float32")
        return self._dssa

    def save(self, filename):
        """
        Save the refined parameters.
        @param filename: name of the file where to save the parameters
        @type filename: string
        """
        try:
            with open(filename, "a") as f:
                f.write("# Nota: C-Order, 1 refers to the Y axis, 2 to the X axis %s" % os.linesep)
                f.write("PixelSize1: %s%s" % (self.pixel1, os.linesep))
                f.write("PixelSize2: %s%s" % (self.pixel2, os.linesep))
                f.write("Distance: %s%s" % (self._dist, os.linesep))
                f.write("Poni1: %s%s" % (self._poni1, os.linesep))
                f.write("Poni2: %s%s" % (self._poni2, os.linesep))
                f.write("Rot1: %s%s" % (self._rot1, os.linesep))
                f.write("Rot2: %s%s" % (self._rot2, os.linesep))
                f.write("Rot3: %s%s" % (self._rot3, os.linesep))
                f.write("SplineFile: %s%s" % (self.splineFile, os.linesep))
                if self._wavelength is not None:
                    f.write("Wavelength: %s%s" % (self._wavelength, os.linesep))
        except IOError:
            logger.error("IOError while writing to file %s" % filename)
    write = save


    def load(self, filename):
        """
        Load the refined parameters from a file.
        @param filename: name of the file to load
        @type filename: string
        """
        for line in open(filename):
            if line.startswith("#") or (":" not in line):
                continue
            words = line.split(":", 1)

            key = words[0].strip().lower()
            try:
                value = words[1].strip()
            except Exception as error:#IGNORE:W0703:
                logger.error("Error %s with line: %s" % (error, line))
            if key == "pixelsize1":
                self.pixel1 = float(value)
            elif key == "pixelsize2":
                self.pixel2 = float(value)
            elif key == "distance":
                self._dist = float(value)
            elif key == "poni1":
                self._poni1 = float(value)
            elif key == "poni2":
                self._poni2 = float(value)
            elif key == "rot1":
                self._rot1 = float(value)
            elif key == "rot2":
                self._rot2 = float(value)
            elif key == "rot3":
                self._rot3 = float(value)
            elif key == "wavelength":
                self.wavelength = float(value)
            elif key == "splinefile":
                if value.lower() != "none":
                    self.splineFile = os.path.abspath(value)
                    self.spline = Spline(self.splineFile)
                    #NOTA : X is axis 1 and Y is Axis 0 
                    self.pixel2, self.pixel1 = self.spline.getPixelSize()
        self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
        self.reset()
    read = load

    def getPyFai(self):
        """
        return the parameter set from the PyFAI geometry as a dictionary
        """
        return {"dist":self._dist,
                "poni1":self._poni1,
                "poni2":self._poni2,
                "rot1":self._rot1,
                "rot2":self._rot2,
                "rot3":self._rot3,
                "pixel1":self.pixel1,
                "pixel2":self.pixel2,
                "splineFile":self.splineFile}

    def setPyFai(self, **kwargs):
        """
        set the geometry from a pyFAI-like dict
        """
        for key in ["dist", "poni1", "poni2", "rot1", "rot2", "rot3", "pixel1", "pixel2", "splineFile"]:
            if key in kwargs:
                setattr(self, key, kwargs[key])
        self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
        self.chiDiscAtPi = True #position of the discontinuity of chi in radians, pi by default
        self.reset()
        self._wavelength = None
        self._splineCache = {} #key=(dx,xpoints,ypoints) value: ndarray
        self._oversampling = None
        if self.splineFile:
            self.splineFile = os.path.abspath(self.splineFile)
            self.spline = Spline(self.splineFile)
            #NOTA : X is axis 1 and Y is Axis 0 
            self.pixel2, self.pixel1 = self.spline.getPixelSize()
        else:
            self.splineFile = None
            self.spline = None


    def getFit2D(self):
        """
        return a dict with parameters compatible with fit2D geometry 
        """
        cosTilt = cos(self._rot1) * cos(self._rot2)
        sinTilt = sqrt(1 - cosTilt * cosTilt)
        cosTpr = max(-1, (min(1, -cos(self._rot2) * sin(self._rot1) / sinTilt)))
        sinTpr = sin(self._rot2) / sinTilt
        direct = 1.0e3 * self._dist / cosTilt
        tilt = degrees(arccos(cosTilt))
        if sinTpr < 0:
            tpr = -degrees(arccos(cosTpr))
        else:
            tpr = degrees(arccos(cosTpr))

        centerX = (self._poni2 + self._dist * sinTilt / cosTilt * cosTpr) / self.pixel2
        if abs(tilt) < 1e-5:
            centerY = (self._poni1) / self.pixel1
        else:
            centerY = (self._poni1 + self._dist * sinTilt / cosTilt * sinTpr) / self.pixel1
        return {"DirectBeamDist":direct,
                "BeamCenterX":centerX,
                "BeamCenterY": centerY,
                "Tilt": tilt,
                "TiltPlanRot": tpr }


    def setFit2d(self, direct, centerX, centerY, tilt=0., tiltPlanRotation=0., pixelX=None, pixelY=None, splineFile=None):
        """
        Set the Fit2D-like parameter set: For geometry description see  HPR 1996 (14) pp-240 
        @param direct: direct distance from sample to detector along the incident beam (in millimeter as in fit2d) 
        @param tilt: tilt in degrees 
        @param tiltPlanRotation: Rotation (in degrees) of the tilt plan arround the Z-detector axis 
                * 0deg -> Y does not move, +X goes to Z<0
                * 90deg -> X does not move, +Y goes to Z<0
                * 180deg -> Y does not move, +X goes to Z>0
                * 270deg -> X does not move, +Y goes to Z>0
                
        @param pixelX,pixelY: as in fit2d they ar given in micron, not in meter
        @param centerX, centerY: pixel position of the beam center
        @param splineFile: name of the file containing the spline
        """
        cosTilt = cos(radians(tilt))
        sinTilt = sin(radians(tilt))
        cosTpr = cos(radians(tiltPlanRotation))
        sinTpr = sin(radians(tiltPlanRotation))
        if splineFile is None:
            if pixelX is not None:
                self.pixel1 = pixelY * 1.0e-6
            if pixelY is not None:
                self.pixel2 = pixelX * 1.0e-6
        else:
            self.splineFile = splineFile
            self.spline = Spline(self.splineFile)
            #NOTA : X is axis 1 and Y is Axis 0 
            self.pixel2, self.pixel1 = self.spline.getPixelSize()
        self._dist = direct * cosTilt * 1.0e-3
        self._poni1 = centerY * self.pixel1 - direct * sinTilt * sinTpr * 1.0e-3
        self._poni2 = centerX * self.pixel2 - direct * sinTilt * cosTpr * 1.0e-3
        rot2 = numpy.arcsin(sinTilt * sinTpr) # or pi-#
        rot1 = numpy.arccos(min(1.0, max(-1.0, (cosTilt / numpy.sqrt(1 - sinTpr * sinTpr * sinTilt * sinTilt))))) # + or -
        if cosTpr * sinTilt > 0:
            rot1 = -rot1
        assert abs(cosTilt - cos(rot1) * cos(rot2)) < 1e-6
        if tilt == 0:
            rot3 = 0
        else:
            rot3 = numpy.arccos(min(1.0, max(-1.0, (cosTilt * cosTpr * sinTpr - cosTpr * sinTpr) / numpy.sqrt(1 - sinTpr * sinTpr * sinTilt * sinTilt)))) # + or -
        self._rot1 = rot1
        self._rot2 = rot2
        self._rot3 = rot3
        self.reset()

    def setChiDiscAtZero(self):
        """
        Set the position of the discontinuity of the chi axis between 0 and 2pi.
        By default it is between pi and -pi
        
        """
        self.chiDiscAtPi = False
        self._chia = None
        self._corner4Da = None
        self._corner4Dqa = None

    def setChiDiscAtPi(self):
        """
        Set the position of the discontinuity of the chi axis between -pi and +pi.
        This is the default behavour
        
        """
        self.chiDiscAtPi = True
        self._chia = None
        self._corner4Da = None
        self._corner4Dqa = None

    def setOversampling(self, iOversampling):
        """
        set the oversampling factor
        """
        if self._oversampling is None:
            lastOversampling = 1.0
        else:
            lastOversampling = float(self._oversampling)

        self._oversampling = iOversampling
        self._ttha = None
        self._dssa = None
        self._chia = None
        self._qa = None
        self.pixel1 /= self._oversampling / lastOversampling
        self.pixel2 /= self._oversampling / lastOversampling


    def oversampleArray(self, myarray):
        origShape = myarray.shape
        origType = myarray.dtype
        new = numpy.zeros((origShape[0] * self._oversampling, origShape[1] * self._oversampling)).astype(origType)
        for i in range(self._oversampling):
            for j in range(self._oversampling):
                new[i::self._oversampling, j::self._oversampling] = myarray
        return new

    def reset(self):
        """
        reset most arrays that are cached: used when a parameter changes. 
        """
#        with self._sem:
        self._ttha = None
        self._dttha = None
        self._dssa = None
        self._chia = None
        self._dchia = None
        self._qa = None
        self._dqa = None
        self._corner4Da = None
        self._corner4Dqa = None

################################################################################
# Accessors and public properties of the class
################################################################################

    def set_dist(self, value):
        if isinstance(value, float):
            self._dist = value
        else:
            self._dist = float(value)
        self.reset()
    def get_dist(self):
        return self._dist
    dist = property(get_dist, set_dist)

    def set_poni1(self, value):
        if isinstance(value, float):
            self._poni1 = value
        else:
            self._poni1 = float(value)
        self.reset()
    def get_poni1(self):
        return self._poni1
    poni1 = property(get_poni1, set_poni1)
    def set_poni2(self, value):
        if isinstance(value, float):
            self._poni2 = value
        else:
            self._poni2 = float(value)
        self.reset()
    def get_poni2(self):
        return self._poni2
    poni2 = property(get_poni2, set_poni2)
    def set_rot1(self, value):
        if isinstance(value, float):
            self._rot1 = value
        else:
            self._rot1 = float(value)
        self.reset()
    def get_rot1(self):
        return self._rot1
    rot1 = property(get_rot1, set_rot1)
    def set_rot2(self, value):
        if isinstance(value, float):
            self._rot2 = value
        else:
            self._rot2 = float(value)
        self.reset()
    def get_rot2(self):
        return self._rot2
    rot2 = property(get_rot2, set_rot2)
    def set_rot3(self, value):
        if isinstance(value, float):
            self._rot3 = value
        else:
            self._rot3 = float(value)
        self.reset()
    def get_rot3(self):
        return self._rot3
    rot3 = property(get_rot3, set_rot3)
    def set_wavelength(self, value):
        if isinstance(value, float):
            self._wavelength = value
        else:
            self._wavelength = float(value)
        self._qa = None
        self._dqa = None
    def get_wavelength(self):
        if self._wavelength is None:
            raise RuntimeWarning("Using wavelength without having defined it previously ... excpect to fail !")
        return self._wavelength
    wavelength = property(get_wavelength, set_wavelength)

    def get_ttha(self):
        return self._ttha
    def set_ttha(self, value):
        logger.error("You are not allowed to modify 2theta array")
    def del_ttha(self):
        self._ttha = None
    ttha = property(get_ttha, set_ttha, del_ttha, "2theta array in cache")
    def get_chia(self):
        return self._chia
    def set_chia(self, value):
        logger.error("You are not allowed to modify chi array")
    def del_chia(self):
        self._chia = None
    chia = property(get_chia, set_chia, del_chia, "chi array in cache")
    def get_dssa(self):
        return self._dssa
    def set_dssa(self, value):
        logger.error("You are not allowed to modify solid angle array")
    def del_dssa(self):
        self._dssa = None
    dssa = property(get_dssa, set_dssa, del_dssa, "solid angle array in cache")
    def get_qa(self):
        return self._qa
    def set_qa(self, value):
        logger.error("You are not allowed to modify Q array")
    def del_qa(self):
        self._qa = None
    qa = property(get_qa, set_qa, del_qa, "Q array in cache")