/usr/lib/python2.7/dist-packages/pyFAI/geometry.py is in pyfai 0.3.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 | #!/usr/bin/env python
# -*- coding: utf8 -*-
#
# Project: Azimuthal integration
# https://forge.epn-campus.eu/projects/azimuthal
#
# File: "$Id$"
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "21/12/2011"
__status__ = "beta"
import os, threading, logging
import numpy
from numpy import sin, cos, arccos, sqrt, radians, degrees
from spline import Spline
from utils import timeit
logger = logging.getLogger("pyFAI.geometry")
class Geometry(object):
"""
This class is an azimuthal integrator based on P. Boesecke's geometry and
histogram algorithm by Manolo S. del Rio and V.A Sole
"""
def __init__(self, dist=1, poni1=0, poni2=0, rot1=0, rot2=0, rot3=0, pixel1=1, pixel2=1, splineFile=None):
"""
@param dist: distance sample - detector plan (orthogonal distance, not along the beam), in meter.
@param poni1: coordinate of the point of normal incidence along the detector's first dimension, in meter
@param poni2: coordinate of the point of normal incidence along the detector's second dimension, in meter
@param rot1: first rotation from sample ref to detector's ref, in radians
@param rot2: second rotation from sample ref to detector's ref, in radians
@param rot3: third rotation from sample ref to detector's ref, in radians
@param pixel1: pixel size of the fist dimension of the detector, in meter
@param pixel2: pixel size of the second dimension of the detector, in meter
@param splineFile: file containing the geometric distortion of the detector. Overrides the pixel size.
"""
self._dist = dist
self._poni1 = poni1
self._poni2 = poni2
self._rot1 = rot1
self._rot2 = rot2
self._rot3 = rot3
self.pixel1 = pixel1
self.pixel2 = pixel2
self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
self.chiDiscAtPi = True #position of the discontinuity of chi in radians, pi by default
self._ttha = None
self._dttha = None
self._dssa = None
self._chia = None
self._dchia = None
self._qa = None
self._dqa = None
self._corner4Da = None
self._corner4Dqa = None
self._wavelength = None
self._splineCache = {} #key=(dx,xpoints,ypoints) value: ndarray
self._oversampling = None
self._sem = threading.Semaphore()
if splineFile:
self.splineFile = os.path.abspath(splineFile)
self.spline = Spline(self.splineFile)
#NOTA : X is axis 1 and Y is Axis 0
self.pixel2, self.pixel1 = self.spline.getPixelSize()
else:
self.splineFile = None
self.spline = None
def __repr__(self):
self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
lstTxt = ["Spline= %s\t PixelSize= %.3e, %.3e m" % (self.splineFile, self.pixel1, self.pixel2)]
lstTxt.append("SampleDetDist= %.6em\tPONI= %.6e, %.6em\trot1=%.6f rot2= %.6f rot3= %.6f rad" % tuple(self.param))
f2d = self.getFit2D()
lstTxt.append("DirectBeamDist= %.3fmm\tCenter: x=%.3f, y=%.3f pix\tTilt=%.3f deg TiltPlanRot= %.3f deg" %
(f2d["DirectBeamDist"], f2d["BeamCenterX"], f2d["BeamCenterY"], f2d["Tilt"], f2d["TiltPlanRot"]))
return os.linesep.join(lstTxt)
def _calcCatesianPositions(self, d1, d2, poni1=None, poni2=None):
"""
Calculate the position in cartesian coordinate (centered on the PONI)
and in meter of a couple of coordinates.
The half pixel offset is taken into account here !!!
@param d1: ndarray of dimention 1/2 containing the Y pixel positions
@param d2: ndarray of dimention 1/2 containing the X pixel positions
@param poni1: value in the Y direction of the poni coordinate (in meter)
@param poni2: value in the X direction of the poni coordinate (in meter)
@return: 2-arrays of same shape as d1 & d2 with the position in meter
d1 and d2 must have the same shape, returned array will have the same shape.
"""
if poni1 is None:
poni1 = self.poni1
if poni2 is None:
poni2 = self.poni2
if self.spline is None:
dX = 0.
dY = 0.
else:
if d2.ndim == 1:
keyX = ("dX", tuple(d1), tuple(d2))
keyY = ("dY", tuple(d1), tuple(d2))
if keyX not in self._splineCache:
self._splineCache[keyX] = numpy.array([self.spline.splineFuncX(i2, i1) for i1, i2 in zip(d1 + 0.5, d2 + 0.5)], dtype="float64")
if keyY not in self._splineCache:
self._splineCache[keyY] = numpy.array([self.spline.splineFuncY(i2, i1) for i1, i2 in zip(d1 + 0.5, d2 + 0.5)], dtype="float64")
dX = self._splineCache[keyX]
dY = self._splineCache[keyY]
else:
dX = self.spline.splineFuncX(d2 + 0.5, d1 + 0.5)
dY = self.spline.splineFuncY(d2 + 0.5, d1 + 0.5)
p1 = (self.pixel1 * (dY + 0.5 + d1)) - poni1
p2 = (self.pixel2 * (dX + 0.5 + d2)) - poni2
return p1, p2
def tth(self, d1, d2, param=None):
"""
Calculates the 2theta value for the center of a given pixel (or set of pixels)
@param d1: position(s) in pixel in first dimension (c order)
@type d1: scalar or array of scalar
@param d2: position(s) in pixel in second dimension (c order)
@type d2: scalar or array of scalar
@return 2theta in radians
@rtype: floar or array of floats.
"""
if param == None:
param = self.param
cosRot1 = cos(param[3])
cosRot2 = cos(param[4])
cosRot3 = cos(param[5])
sinRot1 = sin(param[3])
sinRot2 = sin(param[4])
sinRot3 = sin(param[5])
p1, p2 = self._calcCatesianPositions(d1, d2, param[1], param[2])
tmp = arccos((param[0] * cosRot1 * cosRot2 - p2 * cosRot2 * sinRot1 + p1 * sinRot2) / \
(sqrt((-param[0] * cosRot1 * cosRot2 + p2 * cosRot2 * sinRot1 - p1 * sinRot2) ** 2 + \
(p1 * cosRot2 * cosRot3 + p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) - param[0] * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)) ** 2 + \
(p1 * cosRot2 * sinRot3 - param[0] * (-cosRot3 * sinRot1 + cosRot1 * sinRot2 * sinRot3) + p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3)) ** 2)))
return tmp
def qFunction(self, d1, d2, param=None):
"""
Calculates the q value for the center of a given pixel (or set of pixels)
@param d1: position(s) in pixel in first dimension (c order)
@type d1: scalar or array of scalar
@param d2: position(s) in pixel in second dimension (c order)
@type d2: scalar or array of scalar
@return q in in nm^(-1)
@rtype: float or array of floats.
"""
if param == None:
param = self.param
cosRot1 = cos(param[3])
cosRot2 = cos(param[4])
cosRot3 = cos(param[5])
sinRot1 = sin(param[3])
sinRot2 = sin(param[4])
sinRot3 = sin(param[5])
p1, p2 = self._calcCatesianPositions(d1, d2, param[1], param[2])
tmp = ((param[0] * cosRot1 * cosRot2 - p2 * cosRot2 * sinRot1 + p1 * sinRot2) / \
(sqrt((-param[0] * cosRot1 * cosRot2 + p2 * cosRot2 * sinRot1 - p1 * sinRot2) ** 2 + \
(p1 * cosRot2 * cosRot3 + p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) - param[0] * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)) ** 2 + \
(p1 * cosRot2 * sinRot3 - param[0] * (-cosRot3 * sinRot1 + cosRot1 * sinRot2 * sinRot3) + p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3)) ** 2)))
return 2.0e-9 * numpy.pi * sqrt(1.0 - tmp ** 2) / self.wavelength
def qArray(self, shape):
"""
Generate an array of the given shape with q(i,j) for all elements.
"""
if self._qa is None:
with self._sem:
if self._qa is None:
self._qa = numpy.fromfunction(self.qFunction, shape, dtype="float32")
return self._qa
def qCornerFunct(self, d1, d2):
"""
calculate the q_vector for any pixel corner
"""
return self.qFunction(d1 - 0.5, d2 - 0.5)
def tth_corner(self, d1, d2):
"""
Calculates the 2theta value for the corner of a given pixel (or set of pixels)
@param d1: position(s) in pixel in first dimension (c order)
@type d1: scalar or array of scalar
@param d2: position(s) in pixel in second dimension (c order)
@type d2: scalar or array of scalar
@return 2theta in radians
@rtype: floar or array of floats.
"""
return self.tth(d1 - 0.5, d2 - 0.5)
def twoThetaArray(self, shape):
"""
Generate an array of the given shape with two-theta(i,j) for all elements.
"""
if self._ttha is None:
with self._sem:
if self._ttha is None:
self._ttha = numpy.fromfunction(self.tth, shape, dtype="float32")
return self._ttha
def chi(self, d1, d2):
"""
Calculate the chi (azimuthal angle) for the centre of a pixel at coordinate d1,d2
which in the lab ref has coordinate:
X1 = p1*Cos(rot2)*Cos(rot3) + p2*(Cos(rot3)*Sin(rot1)*Sin(rot2) - Cos(rot1)*Sin(rot3)) - L*(Cos(rot1)*Cos(rot3)*Sin(rot2) + Sin(rot1)*Sin(rot3))
X2 = p1*Cos(rot2)*Sin(rot3) - L*(-(Cos(rot3)*Sin(rot1)) + Cos(rot1)*Sin(rot2)*Sin(rot3)) + p2*(Cos(rot1)*Cos(rot3) + Sin(rot1)*Sin(rot2)*Sin(rot3))
X3 = -(L*Cos(rot1)*Cos(rot2)) + p2*Cos(rot2)*Sin(rot1) - p1*Sin(rot2)
hence tan(Chi) = X2 / X1
@param d1: pixel coordinate along the 1st dimention (C convention)
@type d1: float or array of them
@param d2: pixel coordinate along the 2nd dimention (C convention)
@type d2: float or array of them
@return: chi, the azimuthal angle in rad
"""
cosRot1 = cos(self._rot1)
cosRot2 = cos(self._rot2)
cosRot3 = cos(self._rot3)
sinRot1 = sin(self._rot1)
sinRot2 = sin(self._rot2)
sinRot3 = sin(self._rot3)
L = self._dist
p1, p2 = self._calcCatesianPositions(d1, d2, self.poni1, self.poni2)
num = p1 * cosRot2 * cosRot3 + p2 * (cosRot3 * sinRot2 * sinRot2 - cosRot1 * sinRot3) - L * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3)
den = p1 * cosRot2 * sinRot3 - L * (-(cosRot3 * sinRot1) + cosRot1 * sinRot2 * sinRot3) + p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3)
return numpy.arctan2(-num, den)
# return numpy.arctan2(-den, num)
def chi_corner(self, d1, d2):
"""
Calculate the chi (azimuthal angle) for the corner of a pixel at coordinate d1,d2
which in the lab ref has coordinate:
X1 = p1*Cos(rot2)*Cos(rot3) + p2*(Cos(rot3)*Sin(rot1)*Sin(rot2) - Cos(rot1)*Sin(rot3)) - L*(Cos(rot1)*Cos(rot3)*Sin(rot2) + Sin(rot1)*Sin(rot3))
X2 = p1*Cos(rot2)*Sin(rot3) - L*(-(Cos(rot3)*Sin(rot1)) + Cos(rot1)*Sin(rot2)*Sin(rot3)) + p2*(Cos(rot1)*Cos(rot3) + Sin(rot1)*Sin(rot2)*Sin(rot3))
X3 = -(L*Cos(rot1)*Cos(rot2)) + p2*Cos(rot2)*Sin(rot1) - p1*Sin(rot2)
hence tan(Chi) = X2 / X1
@param d1: pixel coordinate along the 1st dimention (C convention)
@type d1: float or array of them
@param d2: pixel coordinate along the 2nd dimention (C convention)
@type d2: float or array of them
@return: chi, the azimuthal angle in rad
"""
return self.chi(d1 - 0.5, d2 - 0.5)
def chiArray(self, shape):
"""
Generate an array of the given shape with chi(i,j) (azimuthal angle) for all elements.
"""
if self._chia is None:
if self.chiDiscAtPi:
self._chia = numpy.fromfunction(self.chi, shape, dtype="float32")
else:
self._chia = numpy.fromfunction(self.chi, shape, dtype="float32") % (2 * numpy.pi)
return self._chia
def cornerArray(self, shape):
"""
Generate a 3D array of the given shape with (i,j) (azimuthal angle) for all elements.
"""
################################################################################
# TODO : add the center to the 4 corners when splitpixel algo is ready
################################################################################
# tth_center = self.twoThetaArray(shape)
# chi_center = self.chiArray(shape)
if self._corner4Da is None:
with self._sem:
if self._corner4Da is None:
self._corner4Da = numpy.zeros((shape[0], shape[1], 4, 2), dtype="float32")
chi = numpy.fromfunction(self.chi_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
tth = numpy.fromfunction(self.tth_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
self._corner4Da[:, :, 0, 0] = tth[:-1, :-1]
self._corner4Da[:, :, 0, 1] = chi[:-1, :-1]
self._corner4Da[:, :, 1, 0] = tth[1:, :-1]
self._corner4Da[:, :, 1, 1] = chi[1:, :-1]
self._corner4Da[:, :, 2, 0] = tth[1:, 1:]
self._corner4Da[:, :, 2, 1] = chi[1:, 1:]
self._corner4Da[:, :, 3, 0] = tth[:-1, 1:]
self._corner4Da[:, :, 3, 1] = chi[:-1, 1:]
# self._corner4Da[:, :, 4, 0] = tth_center
# self._corner4Da[:, :, 4, 1] = chi_center
return self._corner4Da
def cornerQArray(self, shape):
"""
Generate a 3D array of the given shape with (i,j) (azimuthal angle) for all elements.
"""
################################################################################
# TODO : add the center to the 4 corners when splitpixel algo is ready
################################################################################
# q_center = self.qArray(shape)
# chi_center = self.chiArray(shape)
if self._corner4Dqa is None:
with self._sem:
if self._corner4Dqa is None:
self._corner4Dqa = numpy.zeros((shape[0], shape[1], 4, 2), dtype="float32")
chi = numpy.fromfunction(self.chi_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
tth = numpy.fromfunction(self.qCornerFunct(shape[0] + 1, shape[1] + 1), dtype="float32")
self._corner4Dqa[:, :, 0, 0] = tth[:-1, :-1]
self._corner4Dqa[:, :, 0, 1] = chi[:-1, :-1]
self._corner4Dqa[:, :, 1, 0] = tth[1:, :-1]
self._corner4Dqa[:, :, 1, 1] = chi[1:, :-1]
self._corner4Dqa[:, :, 2, 0] = tth[1:, 1:]
self._corner4Dqa[:, :, 2, 1] = chi[1:, 1:]
self._corner4Dqa[:, :, 3, 0] = tth[:-1, 1:]
self._corner4Dqa[:, :, 3, 1] = chi[:-1, 1:]
# self._corner4Dqa[:, :, 4, 0] = q_center
# self._corner4Dqa[:, :, 4, 1] = chi_center
return self._corner4Dqa
def delta2Theta(self, shape):
"""
Generate a 3D array of the given shape with (i,j) with the max distance between the center and any corner in 2 theta
"""
tth_center = self.twoThetaArray(shape)
if self._dttha is None:
with self._sem:
if self._dttha is None:
tth_corner = numpy.fromfunction(self.tth_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
delta = numpy.zeros([shape[0], shape[1], 4], dtype="float32")
delta[:, :, 0] = abs(tth_corner[:-1, :-1] - tth_center)
delta[:, :, 1] = abs(tth_corner[1:, :-1] - tth_center)
delta[:, :, 2] = abs(tth_corner[1:, 1:] - tth_center)
delta[:, :, 3] = abs(tth_corner[:-1, 1:] - tth_center)
self._dttha = delta.max(axis=2)
return self._dttha
def deltaChi(self, shape):
"""
Generate a 3D array of the given shape with (i,j) with the max distance between the center and any corner in chi-angle
"""
chi_center = self.chiArray(shape)
if self._dchia is None:
with self._sem:
if self._dchia is None:
twoPi = (2 * numpy.pi)
chi_corner = numpy.fromfunction(self.chi_corner, (shape[0] + 1, shape[1] + 1), dtype="float32")
delta = numpy.zeros([shape[0], shape[1], 4], dtype="float32")
delta[:, :, 0] = numpy.minimum(((chi_corner[:-1, :-1] - chi_center) % twoPi), ((chi_center - chi_corner[:-1, :-1]) % twoPi))
delta[:, :, 1] = numpy.minimum(((chi_corner[1: , :-1] - chi_center) % twoPi), ((chi_center - chi_corner[1: , :-1]) % twoPi))
delta[:, :, 2] = numpy.minimum(((chi_corner[1: , 1: ] - chi_center) % twoPi), ((chi_center - chi_corner[1: , 1: ]) % twoPi))
delta[:, :, 3] = numpy.minimum(((chi_corner[:-1, 1: ] - chi_center) % twoPi), ((chi_center - chi_corner[:-1, 1: ]) % twoPi))
self._dchia = delta.max(axis=2)
return self._dchia
def deltaQ(self, shape):
"""
Generate a 3D array of the given shape with (i,j) with the max distance between the center and any corner in q_vector
"""
q_center = self.qArray(shape)
if self._dqa is None:
with self._sem:
if self._dqa is None:
q_corner = numpy.fromfunction(self.qCornerFunct, (shape[0] + 1, shape[1] + 1), dtype="float32")
delta = numpy.zeros([shape[0], shape[1], 4], dtype="float32")
delta[:, :, 0] = abs(q_corner[:-1, :-1] - q_center)
delta[:, :, 1] = abs(q_corner[1:, :-1] - q_center)
delta[:, :, 2] = abs(q_corner[1:, 1:] - q_center)
delta[:, :, 3] = abs(q_corner[:-1, 1:] - q_center)
self._dqa = delta.max(axis=2)
return self._dqa
def diffSolidAngle(self, d1, d2):
"""
calulate the solid angle of the current pixels
"""
p1 = (0.5 + d1) * self.pixel1 - self._poni1
p2 = (0.5 + d2) * self.pixel2 - self._poni2
ds = 1.0
########################################################################
# Nota: the solid angle correction should be done in flat field correction
# Here is dual-correction
########################################################################
# if self.spline is None:
# ds = 1.0
# else:
# max1 = d1.max() + 1
# max2 = d2.max() + 1
# sX = self.spline.splineFuncX(numpy.arange(max2 + 1) , numpy.arange(max1) + 0.5)
# sY = self.spline.splineFuncY(numpy.arange(max2) + 0.5 , numpy.arange(max1 + 1))
# dX = sX[:, 1:] - sX[:, :-1]
# dY = sY[1:, : ] - sY[:-1, :]
# ds = (dX + 1.0) * (dY + 1.0)
dsa = ds * (self._dist) / sqrt(self._dist ** 2 + p1 ** 2 + p2 ** 2)
return dsa
def solidAngleArray(self, shape):
"""
Generate an array of the given shape with the solid angle of the current element two-theta(i,j) for all elements.
"""
if self._dssa is None:
self._dssa = numpy.fromfunction(self.diffSolidAngle, shape, dtype="float32")
return self._dssa
def save(self, filename):
"""
Save the refined parameters.
@param filename: name of the file where to save the parameters
@type filename: string
"""
try:
with open(filename, "a") as f:
f.write("# Nota: C-Order, 1 refers to the Y axis, 2 to the X axis %s" % os.linesep)
f.write("PixelSize1: %s%s" % (self.pixel1, os.linesep))
f.write("PixelSize2: %s%s" % (self.pixel2, os.linesep))
f.write("Distance: %s%s" % (self._dist, os.linesep))
f.write("Poni1: %s%s" % (self._poni1, os.linesep))
f.write("Poni2: %s%s" % (self._poni2, os.linesep))
f.write("Rot1: %s%s" % (self._rot1, os.linesep))
f.write("Rot2: %s%s" % (self._rot2, os.linesep))
f.write("Rot3: %s%s" % (self._rot3, os.linesep))
f.write("SplineFile: %s%s" % (self.splineFile, os.linesep))
if self._wavelength is not None:
f.write("Wavelength: %s%s" % (self._wavelength, os.linesep))
except IOError:
logger.error("IOError while writing to file %s" % filename)
write = save
def load(self, filename):
"""
Load the refined parameters from a file.
@param filename: name of the file to load
@type filename: string
"""
for line in open(filename):
if line.startswith("#") or (":" not in line):
continue
words = line.split(":", 1)
key = words[0].strip().lower()
try:
value = words[1].strip()
except Exception as error:#IGNORE:W0703:
logger.error("Error %s with line: %s" % (error, line))
if key == "pixelsize1":
self.pixel1 = float(value)
elif key == "pixelsize2":
self.pixel2 = float(value)
elif key == "distance":
self._dist = float(value)
elif key == "poni1":
self._poni1 = float(value)
elif key == "poni2":
self._poni2 = float(value)
elif key == "rot1":
self._rot1 = float(value)
elif key == "rot2":
self._rot2 = float(value)
elif key == "rot3":
self._rot3 = float(value)
elif key == "wavelength":
self.wavelength = float(value)
elif key == "splinefile":
if value.lower() != "none":
self.splineFile = os.path.abspath(value)
self.spline = Spline(self.splineFile)
#NOTA : X is axis 1 and Y is Axis 0
self.pixel2, self.pixel1 = self.spline.getPixelSize()
self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
self.reset()
read = load
def getPyFai(self):
"""
return the parameter set from the PyFAI geometry as a dictionary
"""
return {"dist":self._dist,
"poni1":self._poni1,
"poni2":self._poni2,
"rot1":self._rot1,
"rot2":self._rot2,
"rot3":self._rot3,
"pixel1":self.pixel1,
"pixel2":self.pixel2,
"splineFile":self.splineFile}
def setPyFai(self, **kwargs):
"""
set the geometry from a pyFAI-like dict
"""
for key in ["dist", "poni1", "poni2", "rot1", "rot2", "rot3", "pixel1", "pixel2", "splineFile"]:
if key in kwargs:
setattr(self, key, kwargs[key])
self.param = [self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3]
self.chiDiscAtPi = True #position of the discontinuity of chi in radians, pi by default
self.reset()
self._wavelength = None
self._splineCache = {} #key=(dx,xpoints,ypoints) value: ndarray
self._oversampling = None
if self.splineFile:
self.splineFile = os.path.abspath(self.splineFile)
self.spline = Spline(self.splineFile)
#NOTA : X is axis 1 and Y is Axis 0
self.pixel2, self.pixel1 = self.spline.getPixelSize()
else:
self.splineFile = None
self.spline = None
def getFit2D(self):
"""
return a dict with parameters compatible with fit2D geometry
"""
cosTilt = cos(self._rot1) * cos(self._rot2)
sinTilt = sqrt(1 - cosTilt * cosTilt)
cosTpr = max(-1, (min(1, -cos(self._rot2) * sin(self._rot1) / sinTilt)))
sinTpr = sin(self._rot2) / sinTilt
direct = 1.0e3 * self._dist / cosTilt
tilt = degrees(arccos(cosTilt))
if sinTpr < 0:
tpr = -degrees(arccos(cosTpr))
else:
tpr = degrees(arccos(cosTpr))
centerX = (self._poni2 + self._dist * sinTilt / cosTilt * cosTpr) / self.pixel2
if abs(tilt) < 1e-5:
centerY = (self._poni1) / self.pixel1
else:
centerY = (self._poni1 + self._dist * sinTilt / cosTilt * sinTpr) / self.pixel1
return {"DirectBeamDist":direct,
"BeamCenterX":centerX,
"BeamCenterY": centerY,
"Tilt": tilt,
"TiltPlanRot": tpr }
def setFit2d(self, direct, centerX, centerY, tilt=0., tiltPlanRotation=0., pixelX=None, pixelY=None, splineFile=None):
"""
Set the Fit2D-like parameter set: For geometry description see HPR 1996 (14) pp-240
@param direct: direct distance from sample to detector along the incident beam (in millimeter as in fit2d)
@param tilt: tilt in degrees
@param tiltPlanRotation: Rotation (in degrees) of the tilt plan arround the Z-detector axis
* 0deg -> Y does not move, +X goes to Z<0
* 90deg -> X does not move, +Y goes to Z<0
* 180deg -> Y does not move, +X goes to Z>0
* 270deg -> X does not move, +Y goes to Z>0
@param pixelX,pixelY: as in fit2d they ar given in micron, not in meter
@param centerX, centerY: pixel position of the beam center
@param splineFile: name of the file containing the spline
"""
cosTilt = cos(radians(tilt))
sinTilt = sin(radians(tilt))
cosTpr = cos(radians(tiltPlanRotation))
sinTpr = sin(radians(tiltPlanRotation))
if splineFile is None:
if pixelX is not None:
self.pixel1 = pixelY * 1.0e-6
if pixelY is not None:
self.pixel2 = pixelX * 1.0e-6
else:
self.splineFile = splineFile
self.spline = Spline(self.splineFile)
#NOTA : X is axis 1 and Y is Axis 0
self.pixel2, self.pixel1 = self.spline.getPixelSize()
self._dist = direct * cosTilt * 1.0e-3
self._poni1 = centerY * self.pixel1 - direct * sinTilt * sinTpr * 1.0e-3
self._poni2 = centerX * self.pixel2 - direct * sinTilt * cosTpr * 1.0e-3
rot2 = numpy.arcsin(sinTilt * sinTpr) # or pi-#
rot1 = numpy.arccos(min(1.0, max(-1.0, (cosTilt / numpy.sqrt(1 - sinTpr * sinTpr * sinTilt * sinTilt))))) # + or -
if cosTpr * sinTilt > 0:
rot1 = -rot1
assert abs(cosTilt - cos(rot1) * cos(rot2)) < 1e-6
if tilt == 0:
rot3 = 0
else:
rot3 = numpy.arccos(min(1.0, max(-1.0, (cosTilt * cosTpr * sinTpr - cosTpr * sinTpr) / numpy.sqrt(1 - sinTpr * sinTpr * sinTilt * sinTilt)))) # + or -
self._rot1 = rot1
self._rot2 = rot2
self._rot3 = rot3
self.reset()
def setChiDiscAtZero(self):
"""
Set the position of the discontinuity of the chi axis between 0 and 2pi.
By default it is between pi and -pi
"""
self.chiDiscAtPi = False
self._chia = None
self._corner4Da = None
self._corner4Dqa = None
def setChiDiscAtPi(self):
"""
Set the position of the discontinuity of the chi axis between -pi and +pi.
This is the default behavour
"""
self.chiDiscAtPi = True
self._chia = None
self._corner4Da = None
self._corner4Dqa = None
def setOversampling(self, iOversampling):
"""
set the oversampling factor
"""
if self._oversampling is None:
lastOversampling = 1.0
else:
lastOversampling = float(self._oversampling)
self._oversampling = iOversampling
self._ttha = None
self._dssa = None
self._chia = None
self._qa = None
self.pixel1 /= self._oversampling / lastOversampling
self.pixel2 /= self._oversampling / lastOversampling
def oversampleArray(self, myarray):
origShape = myarray.shape
origType = myarray.dtype
new = numpy.zeros((origShape[0] * self._oversampling, origShape[1] * self._oversampling)).astype(origType)
for i in range(self._oversampling):
for j in range(self._oversampling):
new[i::self._oversampling, j::self._oversampling] = myarray
return new
def reset(self):
"""
reset most arrays that are cached: used when a parameter changes.
"""
# with self._sem:
self._ttha = None
self._dttha = None
self._dssa = None
self._chia = None
self._dchia = None
self._qa = None
self._dqa = None
self._corner4Da = None
self._corner4Dqa = None
################################################################################
# Accessors and public properties of the class
################################################################################
def set_dist(self, value):
if isinstance(value, float):
self._dist = value
else:
self._dist = float(value)
self.reset()
def get_dist(self):
return self._dist
dist = property(get_dist, set_dist)
def set_poni1(self, value):
if isinstance(value, float):
self._poni1 = value
else:
self._poni1 = float(value)
self.reset()
def get_poni1(self):
return self._poni1
poni1 = property(get_poni1, set_poni1)
def set_poni2(self, value):
if isinstance(value, float):
self._poni2 = value
else:
self._poni2 = float(value)
self.reset()
def get_poni2(self):
return self._poni2
poni2 = property(get_poni2, set_poni2)
def set_rot1(self, value):
if isinstance(value, float):
self._rot1 = value
else:
self._rot1 = float(value)
self.reset()
def get_rot1(self):
return self._rot1
rot1 = property(get_rot1, set_rot1)
def set_rot2(self, value):
if isinstance(value, float):
self._rot2 = value
else:
self._rot2 = float(value)
self.reset()
def get_rot2(self):
return self._rot2
rot2 = property(get_rot2, set_rot2)
def set_rot3(self, value):
if isinstance(value, float):
self._rot3 = value
else:
self._rot3 = float(value)
self.reset()
def get_rot3(self):
return self._rot3
rot3 = property(get_rot3, set_rot3)
def set_wavelength(self, value):
if isinstance(value, float):
self._wavelength = value
else:
self._wavelength = float(value)
self._qa = None
self._dqa = None
def get_wavelength(self):
if self._wavelength is None:
raise RuntimeWarning("Using wavelength without having defined it previously ... excpect to fail !")
return self._wavelength
wavelength = property(get_wavelength, set_wavelength)
def get_ttha(self):
return self._ttha
def set_ttha(self, value):
logger.error("You are not allowed to modify 2theta array")
def del_ttha(self):
self._ttha = None
ttha = property(get_ttha, set_ttha, del_ttha, "2theta array in cache")
def get_chia(self):
return self._chia
def set_chia(self, value):
logger.error("You are not allowed to modify chi array")
def del_chia(self):
self._chia = None
chia = property(get_chia, set_chia, del_chia, "chi array in cache")
def get_dssa(self):
return self._dssa
def set_dssa(self, value):
logger.error("You are not allowed to modify solid angle array")
def del_dssa(self):
self._dssa = None
dssa = property(get_dssa, set_dssa, del_dssa, "solid angle array in cache")
def get_qa(self):
return self._qa
def set_qa(self, value):
logger.error("You are not allowed to modify Q array")
def del_qa(self):
self._qa = None
qa = property(get_qa, set_qa, del_qa, "Q array in cache")
|