This file is indexed.

/usr/lib/python2.7/dist-packages/PyMca/PyMcaPlugins/AdvancedAlignmentScanPlugin.py is in pymca 4.7.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
#/*##########################################################################
# Copyright (C) 2004-2013 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMca is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMca; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# PyMca follows the dual licensing model of Riverbank's PyQt and cannot be
# used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
__author__ = "Tonn Rueter & V.A. Sole - ESRF Data Analysis"
import numpy
import sys
import traceback
from PyMca import PyMcaQt as qt
from PyMca import PyMcaDataDir, PyMcaDirs, PyMcaFileDialogs
from PyMca import ConfigDict
from PyMca import specfilewrapper as SFW
from PyMca import SpecfitFunctions as SF
from PyMca import SNIPModule as snip
from PyMca.Gefit import LeastSquaresFit as LSF
from PyMca.SpecfitFuns import gauss
from PyMca import SpecfitFuns
from os.path import join as pathjoin

try:
    from PyMca import Plugin1DBase
except ImportError:
    print("WARNING:AlignmentScanPlugin import from somewhere else")
    from . import Plugin1DBase

DEBUG = 0
class AlignmentWidget(qt.QDialog):
    
    _storeCode = 2
    _colLegend      = 0 # Column number of current legends from plot window
    _colShiftLegend = 1 # Column number of curve from which the shift was calculated
    _colShift       = 2 # Shift
    
    def __init__(self, parent, ddict, llist, plugin):
        qt.QDialog.__init__(self, parent)
        self.setWindowTitle('Alignment Window')
        
        nCols = 2
        nRows = len(ddict)
        self.plugin = plugin
        
        # Buttons
        buttonSave = qt.QPushButton('Save')
        buttonSave.setToolTip('Save shifts to file')
        buttonLoad = qt.QPushButton('Load')
        buttonLoad.setToolTip('Load shifts from file')
        buttonStore = qt.QPushButton('Store')
        buttonStore.setToolTip('Store shifts in memory.\n')
        buttonApply = qt.QPushButton('Apply')
        buttonApply.setToolTip('Apply shift to curves present'
                              +' in the plot window')
        buttonCancel = qt.QPushButton('Cancel')
        buttonCalc = qt.QPushButton('Calculate')

        # Table
        self.shiftTab = qt.QTableWidget(nRows, nCols)
        self.shiftTab.verticalHeader().hide()
        self.shiftTab.horizontalHeader().setStretchLastSection(True)
        self.shiftTab.setHorizontalHeaderLabels(['Legend','Shift'])
        
        # Shift Method selector
        self.shiftMethodComboBox = qt.QComboBox()
        self.shiftMethodComboBox.addItems(
            ['Shift x-range',
            'Inverse FFT shift'])
        shiftMethodToolTip =\
            ('Select the method that shifts the spectra\n\n'
            +'Shift x-range:\n'
            +'     Directly applies the shift to the data\'s\n'
            +'     x-range\n'
            +'Inverse FFT shift:\n'
            +'     Shifts the spectra by multiplying a\n'
            +'     phase factor to their Fourier transform. The result is\n'
            +'     transformed back to real space. Recommended for data with\n'
            +'     resp. regions with constant background.')
        self.shiftMethodComboBox.setToolTip(shiftMethodToolTip)
             
        # Alignment Method selector
        self.alignmentMethodComboBox = qt.QComboBox()
        self.alignmentMethodComboBox.addItems(
            ['FFT',
             'MAX',
             'FIT',
             'FIT DRV'])
        alignmentMethodToolTip =\
            ('Select the method used to calculate the shift is calculated.\n\n'
            +'FFT:\n'
            +'     Calculates the correlation between two curves using its\n'
            +'     Fourier transform. The shift is proportional to the distance of\n'
            +'     the correlation function\'s maxima.\n'
            +'MAX:\n'
            +'     Determines the shift as the distance between the maxima of\n'
            +'     two peaks\n'
            +'FIT:\n'
            +'     Guesses the most prominent feature in a spectrum and tries\n'
            +'     to fit it with a Gaussian peak. Before the fit is perform, the\n'
            +'     background is substracted. The shift is given by the difference\n'
            +'     of the center of mass between two peaks.\n'
            +'FIT DRV:\n'
            +'     Like FIT, but the fit is performed on the derivate of the\n'
            +'     spectrum. Recommended procedure for XAFS data.')
        self.alignmentMethodComboBox.setToolTip(alignmentMethodToolTip)
        
        # Fill table with data
        self.setDict(llist, ddict)
        self.shiftTab.resizeColumnToContents(self._colLegend)
        self.shiftTab.resizeColumnToContents(self._colShiftLegend)
        
        #Layouts
        topLayout = qt.QHBoxLayout()
        topLayout.addWidget(buttonCalc)
        topLayout.addWidget(qt.HorizontalSpacer())
        topLayout.addWidget(qt.QLabel('Alignment method:'))
        topLayout.addWidget(self.alignmentMethodComboBox)
        topLayout.addWidget(qt.QLabel('Shift method:'))
        topLayout.addWidget(self.shiftMethodComboBox)
        
        buttonLayout = qt.QHBoxLayout()
        buttonLayout.addWidget(buttonSave)
        buttonLayout.addWidget(buttonLoad)
        buttonLayout.addWidget(qt.HorizontalSpacer())
        buttonLayout.addWidget(buttonApply)
        buttonLayout.addWidget(buttonStore)
        buttonLayout.addWidget(buttonCancel)
        
        mainLayout = qt.QVBoxLayout()
        mainLayout.addLayout(topLayout)
        mainLayout.addWidget(self.shiftTab)
        mainLayout.addLayout(buttonLayout)
        mainLayout.setContentsMargins(1,1,1,1)
        self.setLayout(mainLayout)
        
        # Connects
        self.shiftTab.cellChanged.connect(self.validateInput)
        buttonApply.clicked.connect(self.accept)
        buttonCancel.clicked.connect(self.reject)
        buttonStore.clicked.connect(self.store)
        buttonSave.clicked.connect(self.saveDict)
        buttonLoad.clicked.connect(self.loadDict)

        # ..to Plugin instance
        buttonCalc.clicked[()].connect(self.triggerCalculateShift)
        self.alignmentMethodComboBox.activated['QString'].\
                            connect(self.triggerCalculateShift)

    def triggerCalculateShift(self, methodName=None):
        # Need to call the plugin instance to perform calculations
        try:
            if methodName != None:
                self.plugin.setAlignmentMethod(methodName)
            llist, ddict = self.plugin.calculateShifts()
            self.setDict(llist, ddict)
        except:
            msg = qt.QMessageBox(self)
            msg.setIcon(qt.QMessageBox.Critical)
            msg.setWindowTitle("Plugin error")
            msg.setText("An error has occured while executing the plugin:")
            msg.setInformativeText(str(sys.exc_info()[1]))
            msg.setDetailedText(traceback.format_exc())
            msg.exec_()

    def store(self):
        self.done(self._storeCode)

    def loadDict(self):
        openDir = PyMcaDirs.outputDir
        filter = 'PyMca (*.shift)'
        filename = qt.QFileDialog.\
                    getOpenFileName(self,
                                    'Load Shifts obtained from FFTAlignment',
                                    openDir,
                                    filter)
        if len(filename) == 0:
            return
        inDict = ConfigDict.ConfigDict()
        try:
            inDict.read(filename)
        except IOError:
            msg = qt.QMessageBox()
            msg.setTitle('FFTAlignment Load Error')
            msg.setText('Unable to read shifts form file \'%s\''%filename)
            msg.exec_()
            return
        if 'Shifts' not in inDict.keys():
            # Only if the shift file consists exclusively of ShiftList
            orderedLegends = [legend for legend in self.plugin.getOrder()]
            try:
                shiftList = inDict['ShiftList']['ShiftList']
            except KeyError:
                msg = qt.QMessageBox()
                msg.setWindowTitle('FFTAlignment Load Error')
                msg.setText('No shift information found in file \'%s\''%filename)
                msg.exec_()
            ddict = dict(zip(orderedLegends, shiftList))
            llist = self.plugin.getOrder()
        else:
            llist = inDict['Order']['Order']
            ddict = inDict['Shifts']
        self.setDict(llist, ddict)

    def saveDict(self):
        saveDir = PyMcaDirs.outputDir
        filter = ['PyMca (*.shift)']
        try:
            filename = PyMcaFileDialogs.\
                        getFileList(parent=self,
                            filetypelist=filter,
                            message='Safe FFT Alignment shifts',
                            mode='SAVE',
                            single=True)[0]
        except IndexError:
            # Returned list is empty
            return False
        if len(filename) == 0:
            return False
        if not str(filename).endswith('.shift'):
            filename += '.shift'
        if DEBUG:
            print('saveOptions -- Filename: "%s"' % filename)
        currentOrder = self.plugin.getOrder()
        outDict = ConfigDict.ConfigDict()
        llist, ddict = self.getDict()
        outDict['Order'] = {'Order': currentOrder}
        outDict['Shifts'] = ddict
        outDict['ShiftList'] = {
            'ShiftList':[ddict[legend] for legend in currentOrder]}
        try:
            outDict.write(filename)
        except IOError:
            msg = qt.QMessageBox()
            msg.setWindowTitle('FFTAlignment Save Error')
            msg.setText('Unable to write configuration to \'%s\''%filename)
            msg.exec_()
        return True

    def getAlignmentMethodName(self):
        return self.alignmentMethodComboBox.currentText()

    def getShiftMethodName(self):
        return self.shiftMethodComboBox.currentText()

    def getDict(self):
        llist, ddict = [], {}
        for idx in range(self.shiftTab.rowCount()):
            # Loop through rows
            legend      = self.shiftTab.item(idx, self._colLegend)
            shiftLegend = self.shiftTab.item(idx, self._colShiftLegend)
            value       = self.shiftTab.item(idx, self._colShift)
            try:
                floatValue = float(value.text())
            except:
                floatValue = float('NaN')
            ddict[str(legend.text())] = floatValue
            llist.append(str(shiftLegend.text()))
        return llist, ddict
    
    def setDict(self, llist, ddict):
        # Order in which shift are shown is not
        # necessarily the order in which they were
        # added to plot window
        
        curr = self.plugin.getOrder()
        keys = llist
        vals = [ddict[k] for k in keys]
        # ..or just leave them in random ddict order
        #dkeys = ddict.keys()        
        #dvals = ddict.values()
        
        self.shiftTab.clear()
        self.shiftTab.setColumnCount(3)
        self.shiftTab.setHorizontalHeaderLabels(
                ['Legend','Shift calculated from','Shift'])
        self.shiftTab.setRowCount(len(keys))
        if len(ddict) == 0:
            return

        for j, dlist in enumerate([curr, keys, vals]):
            # j denotes the column of the table
            # j = 0: Legend, set cells inactive (greyed out)
            # j = 1: Legend from which the shift was calculated (greyed out)
            # j = 2: Shift values, set cells active
            for i in range(len(dlist)):
                # i loops through the contents of each list
                # setting every row of the table
                if (j == 0) or (j == 1):
                    elem = qt.QTableWidgetItem(dlist[i])
                    elem.setFlags(qt.Qt.ItemIsSelectable)
                    #elem.setFlags(qt.Qt.ItemIsEnabled)
                elif j == 2:
                    elem = qt.QTableWidgetItem(str(dlist[i]))
                    elem.setTextAlignment(qt.Qt.AlignRight)
                    elem.setTextAlignment(qt.Qt.AlignRight + qt.Qt.AlignVCenter)
                    elem.setFlags(qt.Qt.ItemIsEditable | qt.Qt.ItemIsEnabled)
                else:
                    elem = qt.QTableWidgetItem('')
                self.shiftTab.setItem(i,j, elem)
        self.shiftTab.resizeColumnToContents(self._colLegend)
        self.shiftTab.resizeColumnToContents(self._colShiftLegend)
        self.shiftTab.resizeRowsToContents()

    def validateInput(self, row, col):
        if (col == 0) or (col == 1):
            return
        elif col == 2:
            item  = self.shiftTab.item(row, 2)
            try:
                floatValue = float(item.text())
                item.setText('%.6g'%floatValue)
            except:
                floatValue = float('NaN')
                item.setText(str(floatValue))
        
class AdvancedAlignmentScanPlugin(Plugin1DBase.Plugin1DBase):
    def __init__(self, plotWindow, **kw):
        Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
        self.__randomization = True
        self.__methodKeys = []
        self.methodDict = {}

        function = self.calculateAndApplyShifts
        method = "Perform FFT Alignment"
        text  = "Performs FFT based alignment and\n"
        text += "inverse FFT based shift"
        info = text
        icon = None
        self.methodDict[method] = [function,
                                   info,
                                   icon]
        self.__methodKeys.append(method)
    
        function = self.showShifts
        method = "Show Alignment Window"
        text  = "Displays the calculated shifts and\n"
        text += "allows to fine tune the plugin"
        info = text
        icon = None
        self.methodDict[method] = [function,
                                   info,
                                   icon]
        self.__methodKeys.append(method)
        
        function = self.showDocs
        method = "Show documentation"
        text  = "Shows the plug-ins documentation\n"
        text += "in a browser window"
        info = text
        icon = None
        self.methodDict[method] = [function,
                                   info,
                                   icon]
        self.__methodKeys.append(method)
        
        self.alignmentMethod = self.calculateShiftsFFT
        self.shiftMethod     = self.fftShift
        self.shiftDict       = {}
        self.shiftList      = []
        
    #Methods to be implemented by the plugin
    def getMethods(self, plottype=None):
        """
        A list with the NAMES  associated to the callable methods
        that are applicable to the specified plot.

        Plot type can be "SCAN", "MCA", None, ...        
        """
#        if self.__randomization:
#            return self.__methodKeys[0:1] +  self.__methodKeys[2:]
#        else:
#            return self.__methodKeys[1:]
        return self.__methodKeys

    def getMethodToolTip(self, name):
        """
        Returns the help associated to the particular method name or None.
        """
        return self.methodDict[name][1]

    def getMethodPixmap(self, name):
        """
        Returns the pixmap associated to the particular method name or None.
        """
        return None

    def applyMethod(self, name):
        """
        The plugin is asked to apply the method associated to name.
        """
        return self.methodDict[name][0]()


    def calculateAndApplyShifts(self):
        # Assure that FFT alignment & shift methods are set
        self.alignmentMethod = self.calculateShiftsFFT
        self.shiftMethod     = self.fftShift
        self.calculateShifts()
        self.applyShifts()
        # Reset shift Dictionary and legend List
        self.shiftDict  = {}
        self.shiftList = []

    def calculateShifts(self):
        '''
        Generic alignment method, executes the method
        that is set under self.alignmentMethod.
        
        Choices are:
        - calculateShiftsFit
        - calculateShiftsFFT
        - calculateShiftsMax
        
        Sets self.shiftList and self.shiftDict
        '''
        self.shiftList, self.shiftDict = self.alignmentMethod()
        return  self.shiftList, self.shiftDict

    def getOrder(self):
        '''
        Returns the legends of the curves in the plot winow
        in the order they were added.
        '''
        ret = [legend for (x,y,legend,info) in self._plotWindow.getAllCurves()]
        return ret

    # BEGIN Alignment Methods
    def calculateShiftsFitDerivative(self):
        return self.calculateShiftsFit(derivative=True)
    
    def calculateShiftsFit(self, derivative=False, thr=30):
        retDict = {}
        retList = []
        
        curves = self.getAllCurves()
        nCurves = len(curves)
        if nCurves < 2:
            raise ValueError("At least 2 curves needed")
            return
        
        # Check if scan window is zoomed in
        xmin, xmax = self.getGraphXLimits()
        # Determine largest overlap between curves
        xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves)
        if xmin0 > xmin:
            xmin = xmin0
        if xmax0 < xmax:
            xmax = xmax0
        if DEBUG:
            print('calculateShiftsFit -- xmin = %.3f, xmax = %.3f'%(xmin, xmax))

        # Get active curve
        activeCurve = self.getActiveCurve()
        if activeCurve is None:
            # If active curve is not set, continue with first curve
            activeCurve = curves[0]
        else:
            activeLegend = activeCurve[2]
            idx = list.index([curve[2] for curve in curves],
                             activeLegend)
            activeCurve = curves[idx]

        x0, y0 = activeCurve[0], activeCurve[1]
        idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0]
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)
        
        if derivative:
            # Take first derivative
            y0 = numpy.diff(y0)/numpy.diff(x0)
            x0 = .5 * (x0[1:] + x0[:-1])
        
        peak0 = self.findPeaks(x0, y0, .80, derivative)
        if peak0:
            xp0, yp0, fwhm0, fitrange0 = peak0
        else:
            raise ValueError("No peak identified in '%s'"%activeCurve[2])
        fitp0, chisq0, sigma0 = LSF(gauss,
                                    numpy.asarray([yp0, xp0, fwhm0]), 
                                    xdata=x0[fitrange0], 
                                    ydata=y0[fitrange0])
        if DEBUG:
            if derivative:
                print('calculateShiftsFit -- Results (Leg, PeakPos, Shift):')
            else:
                print('calculateShiftsFitDerivative -- Results (Leg, PeakPos, Shift):')
        for x,y,legend,info in curves:
            idx = numpy.nonzero((xmin <= x) & (x <= xmax))[0]
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)
            
            if derivative:
                # Take first derivative
                y = numpy.diff(y)/numpy.diff(x)
                x = .5 * (x[1:] + x[:-1])
            
            peak = self.findPeaks(x, y, .80, derivative)
            if peak:
                xp, yp, fwhm, fitrange = peak
            else:
                raise ValueError("No peak identified in '%s'"%activeCurve[2])
            try:
                fitp, chisq, sigma = LSF(gauss,
                                         numpy.asarray([yp, xp, fwhm]), 
                                         xdata=x[fitrange], 
                                         ydata=y[fitrange])
                # Shift is difference in peak's x position
                shift = fitp0[1] - fitp[1]
            except numpy.linalg.linalg.LinAlgError:
                msg = qt.QMessageBox(None)
                msg.setWindowTitle('Alignment Error')
                msg.setText('Singular matrix encountered during least squares fit.')
                msg.setStandardButtons(qt.QMessageBox.Ok)
                msg.exec_()
                shift = float('NaN')
            key = legend
            retList.append(key)
            retDict[key] = shift
            if DEBUG:
                  print( '\t%s\t%.3f\t%.3f'%(legend, fitp[1], shift))
        return retList, retDict

    def calculateShiftsMax(self):
        retDict = {}
        retList = []        
        
        curves = self.getAllCurves()
        nCurves = len(curves)
        
        if nCurves < 2:
            raise ValueError("At least 2 curves needed")
            return

        # Check if plotwindow is zoomed in
        xmin, xmax = self.getGraphXLimits()
        # Determine largest overlap between curves
        xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves)
        if xmin0 > xmin:
            xmin = xmin0
        if xmax0 < xmax:
            xmax = xmax0
        
        # Get active curve            
        activeCurve = self.getActiveCurve()
        if activeCurve is None:
            # If active curve is not set, continue with first curve
            activeCurve = curves[0]
        else:
            activeLegend = activeCurve[2]
            idx = list.index([curve[2] for curve in curves],
                             activeLegend)
            activeCurve = curves[idx]
        
        x0, y0 = activeCurve[0], activeCurve[1]
        idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0]
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)
        
        # Determine the index of maximum in active curve
        shift0 = numpy.argmax(y0)
        if DEBUG:
            print('calculateShiftsMax -- Results:')
            print('\targmax(y) shift')
        for x,y,legend,info in curves:
            idx = numpy.nonzero((xmin <= x) & (x <= xmax))[0]
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)
            
            shifty = numpy.argmax(y)
            shift = x0[shift0] - x[shifty]
            key = legend
            retList.append(key)
            retDict[key] = shift
            if DEBUG:
                print('\t%d %.3f'%(x[shifty],shift))
        return retList, retDict

    def calculateShiftsFFT(self, portion=.95):
        retDict = {}
        retList = []
        
        curves = self.interpolate()
        nCurves = len(curves)
        if nCurves < 2:
            raise ValueError("At least 2 curves needed")
            return
        
        # Check if scan window is zoomed in
        xmin, xmax = self.getGraphXLimits()
        # Determine largest overlap between curves
        xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves)
        if xmin0 > xmin:
            xmin = xmin0
        if xmax0 < xmax:
            xmax = xmax0
        if DEBUG:
            print('calculateShiftsFFT -- xmin = %.3f, xmax = %.3f'%(xmin, xmax))

        # Get active curve
        activeCurve = self.getActiveCurve()
        if activeCurve is None:
            # If active curve is not set, continue with first curve
            activeCurve = curves[0]
        else:
            activeLegend = activeCurve[2]
            idx = list.index([curve[2] for curve in curves],
                             activeLegend)
            activeCurve = curves[idx]

        x0, y0 = activeCurve[0], activeCurve[1]
        idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0]
        x0 = numpy.take(x0, idx)
        y0 = self.normalize(y0)
        y0 = numpy.take(y0, idx)

        fft0 = numpy.fft.fft(y0)
        if DEBUG:
            print('calculateShiftsFFT -- results (Legend len(idx) shift):')
        for x,y,legend,info in curves:
            idx = numpy.nonzero((x >= xmin) & (x <= xmax))[0]
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)
            ffty = numpy.fft.fft(y)
            shiftTmp = numpy.fft.ifft(fft0 * ffty.conjugate()).real
            shiftPhase = numpy.zeros(shiftTmp.shape, dtype=shiftTmp.dtype)
            m = shiftTmp.size//2
            shiftPhase[m:] = shiftTmp[:-m]
            shiftPhase[:m] = shiftTmp[-m:]
            # Normalize shiftPhase to standardize thresholding
            shiftPhase = self.normalize(shiftPhase)
            
            # Thresholding
            xShiftMax = shiftPhase.argmax()
            left, right = xShiftMax, xShiftMax
            threshold = portion * shiftPhase.max()
            while (shiftPhase[left] > threshold)&\
                  (shiftPhase[right] > threshold):
                left  -= 1
                right += 1
            idx = numpy.arange(left, right+1, 1, dtype=int)
            # The shift is determined by center-of-mass around shiftMax
            shiftTmp = (shiftPhase[idx] * idx/shiftPhase[idx].sum()).sum()
            shift = (shiftTmp - m) * (x[1] - x[0])

            key = legend
            retList.append(key)
            retDict[key] = shift
            if DEBUG:
                print('\t%s\t%d\t%f'%(legend,len(idx),shift))
        return retList, retDict
    # END Alignment Methods

    def applyShifts(self):
        '''
        Generic shift method. The method shifts curves
        according to the shift stored in self.shiftDict
        and executes the method stored in self.shiftMethod.
        
        Curves are sorted with respect to their legend,
        the values of self.shiftDict are sorted with
        respect to their key.
        '''
        if len(self.shiftDict) == 0:
            msg = qt.QMessageBox(None)
            msg.setWindowTitle('Alignment Error')
            msg.setText('No shift data present.')
            msg.setStandardButtons(qt.QMessageBox.Ok)
            msg.exec_()
            return False
        
        # Check if interpolation is needed
        if self.shiftMethod == self.fftShift:
            curves = self.interpolate()
        else:
            curves = self.getAllCurves()
        
        if len(self.shiftList) != len(curves):
            msg = qt.QMessageBox(None)
            msg.setWindowTitle('Alignment Error')
            msg.setText(
                '''Number of shifts does not match the number of curves.
                Do you want to continue anyway?''')
            msg.setStandardButtons(qt.QMessageBox.Ok)
            msg.setStandardButtons(qt.QMessageBox.Ok | qt.QMessageBox.Cancel)
            msg.setDefaultButton(qt.QMessageBox.Ok)
            
            if msg.exec_() != qt.QMessageBox.Ok:
                return False
        
        if DEBUG:
            print('applyShifts -- Shifting ...')
        for idx, (x,y,legend,info) in enumerate(curves):
            shift = self.shiftDict[legend]
            
            if shift is None:
                if DEBUG:
                    print('\tCurve \'%s\' not found in shiftDict\n%s'\
                          %(legend,str(self.shiftDict)))
                continue
            if shift == float('NaN'):
                if DEBUG:
                    print('\tCurve \'%s\' has NaN shift'%legend)
                continue
            
            # Limit shift to zoomed in area
            xmin, xmax = self.getGraphXLimits()
            mask = numpy.nonzero((xmin<=x) & (x<=xmax))[0]
            # Execute method stored in self.shiftMethod
            xShifted, yShifted = self.shiftMethod(shift, x[mask], y[mask])
            
            if idx == 0:
                replace, replot = True, False
            elif idx == (len(curves)-1):
                replace, replot = False, True
            else:
                replace, replot = False, False
            # Check if scan number is adopted by new curve
            if DEBUG:
                print('\'%s\' -- shifts -> \'%s\' by %f'%(self.shiftList[idx], legend, shift))
            selectionlegend = info.get('selectionlegend',legend)
            self.addCurve(xShifted, yShifted, 
                          (selectionlegend + ' SHIFT'),
                          info,
                          replace, replot)
        return True


    # BEGIN Shift Methods
    def fftShift(self, shift, x, y):
        yShifted = numpy.fft.ifft(
             numpy.exp(-2.0*numpy.pi*numpy.sqrt(numpy.complex(-1))*\
                numpy.fft.fftfreq(len(x), d=x[1]-x[0])*shift)*numpy.fft.fft(y))
        return x, yShifted.real

    def xShift(self, shift, x, y):
        return x+shift, y
    # END Shift Methods

    def showShifts(self):
        '''
        Creates an instance of Alignment Widget that
        allows to
        
        - Calculate, display  & save/store shifts
        - Load existing shift data
        - Select different alignment and shift methods
        '''
        # Empty shift table in the beginning
        widget = AlignmentWidget(None, self.shiftDict, self.shiftList, self)
        ret = widget.exec_()
        if ret == 1:
            # Result code Apply
            self.shiftList, self.shiftDict = widget.getDict()
            # self.shiftList = self.getOrder()
            self.setShiftMethod(widget.getShiftMethodName())
            self.applyShifts()
            self.shiftDict = {}
            self.shiftList = []
        elif ret == 2:    
            # Result code Store
            self.shiftList, self.shiftDict = widget.getDict()
            self.shiftList = self.getOrder() # Remember order of scans
            self.setShiftMethod(widget.getShiftMethodName())
        else:
            # Dialog is canceled
            self.shiftDict = {}
            self.shiftList = []
        widget.destroy() # Widget should be destroyed after finishing method
        return

    # BEGIN Helper Methods
    def setShiftMethod(self, methodName):
        '''
        Method receives methodName from AlignmentWidget
        instance and assigns the according shift method. 
        '''
        if DEBUG:
            print('setShiftMethod -- %s'%methodName)
        methodName = str(methodName)
        if methodName == 'Inverse FFT shift':
            self.shiftMethod = self.fftShift
        elif methodName == 'Shift x-range':
            self.shiftMethod = self.xShift
        else:
            # Unknown method name, use fftShift as default
            self.shiftMethod = self.fftShift

    def setAlignmentMethod(self, methodName):
        '''
        Method receives methodName from AlignmentWidget
        instance and assigns the according alignment method. 
        '''
        if DEBUG:
            print('setAlignmentMethod -- %s'%methodName)
        methodName = str(methodName)
        if methodName == 'FFT':
            self.alignmentMethod = self.calculateShiftsFFT
        elif methodName == 'MAX':
            self.alignmentMethod = self.calculateShiftsMax
        elif methodName == 'FIT':
            self.alignmentMethod = self.calculateShiftsFit
        elif methodName == 'FIT DRV':
            self.alignmentMethod = self.calculateShiftsFitDerivative
        else:
            # Unknown method name, use fftShift as default
            self.alignmentMethod = self.calculateShiftsFFT

    def getAllCurves(self, just_legend=False):
        '''
        Ensures that the x-range of the curves
        is strictly monotonically increasing.
        Conserves curves legend and info dictionary.
        '''
        curves = Plugin1DBase.Plugin1DBase.getAllCurves(self)
        if just_legend:
            return curves
    
        processedCurves = []
        for curve in curves:
            x, y, legend, info = curve[0:4]
            xproc = x[:]
            yproc = y[:]
            # Sort
            idx = numpy.argsort(xproc, kind='mergesort')
            xproc = numpy.take(xproc, idx)
            yproc = numpy.take(yproc, idx)
            # Ravel, Increasing
            xproc = xproc.ravel()
            idx = numpy.nonzero((xproc[1:] > xproc[:-1]))[0]
            xproc = numpy.take(xproc, idx)
            yproc = numpy.take(yproc, idx)
            processedCurves += [(xproc, yproc, legend, info)]
        return processedCurves

    def interpolate(self, factor=1.):
        '''
        Input
        -----
        factor : float
            factor used to oversample existing data, use
            with caution.
        
        Interpolates all existing curves to an equidistant
        x-range using the either the active or the first
        curve do determine the number of data points.
        Use this method instead of self.getAllCurves() when
        performin FFT related tasks.
        
        Returns
        -------
        interpCurves : ndarray
            Array containing the interpolated curves shown
            in the plot window. 
            Format: [(x0, y0, legend0, info0), ...]
        '''
        curves = self.getAllCurves()
        if len(curves) < 1:
            raise ValueError("At least 1 curve needed")
            if DEBUG:
                print('interpolate -- no curves present')
            return

        activeCurve = self.getActiveCurve()
        if not activeCurve:
            activeCurve = curves[0]
        else:
            activeLegend = activeCurve[2]
            idx = list.index([curve[2] for curve in curves],
                             activeLegend)
            activeCurve = curves[idx]
        activeX, activeY, activeLegend, activeInfo = activeCurve[0:4]
        
        # Determine average spaceing between Datapoints
        step = numpy.average(numpy.diff(activeX))
        xmin, xmax = self.getXLimits([x for (x,y,leg,info) in curves],
                                     overlap=False)
        num  = factor * numpy.ceil((xmax-xmin)/step)
        
        # Create equidistant x-range, exclude first and last point
        xeq = numpy.linspace(xmin, xmax, num, endpoint=False)[:-1]
        
        # Interpolate on sections of xeq
        interpCurves = []
        for (x,y,legend,info) in curves:
            idx = numpy.nonzero((x.min()<xeq) & (xeq<x.max()))[0]
            xi = numpy.take(xeq, idx)
            yi = SpecfitFuns.interpol([x], y, xi.reshape(-1,1), y.min())
            yi.shape = -1
            interpCurves += [(xi, yi, legend, info)]
        return interpCurves

    def getXLimits(self, values, overlap=True):
        '''
        Input
        -----
        overlap : bool
            True  -> returns minimal and maximal x-values
                     that are that are still lie within the 
                     x-ranges of all curves in plot window
            False -> returns minimal and maximal x-values of
                     all curves in plot window
                     
        Returns
        -------
        xmin0, xmax0 : float
        '''
        if overlap:
            xmin0, xmax0 = -numpy.inf, numpy.inf
        else:
            xmin0, xmax0 = numpy.inf, -numpy.inf
        for x in values:
            xmin = x.min()
            xmax = x.max()
            if overlap:
                if xmin > xmin0:
                    xmin0 = xmin
                if xmax < xmax0:
                    xmax0 = xmax
            else:
                if xmin < xmin0:
                    xmin0 = xmin
                if xmax > xmax0:
                    xmax0 = xmax
        if DEBUG:
            print('getXLimits -- overlap = %s, xmin = %.3f, xmax =%.3f'\
                  %(overlap,xmin0,xmax0))
        return xmin0, xmax0

    def normalize(self, y):
        '''
        Normalizes spectrum to values between zero and one.
        '''
        ymax, ymin = y.max(), y.min()
        return (y-ymin)/(ymax-ymin)

    def findPeaks(self, x, y, thr, derivative):
        '''
        Input
        -----
        x,y : ndarrays
            Arrays contain curve intformation
        thr : float
            Threshold in percent of normalized maximum
        derivative : bool
            The derivative of a curve is being fitted

        Finds most prominent feature contained in y
        and tries to estimate starting parameters for a
        Gaussian least squares fit (LSF). Recommends values
        used to fit the Gaussian.
        
        Return
        ------
        xpeak, ypeak, fwhm : float
            Estimated values for x-position, amplitude
            and width of the Gaussian
        fwhmIdx : ndarray
            Indices determine the range on which the LSF
            is performed
        '''
        # Use SNIP algorithm for background substraction &
        # seek method for peak detection
        sffuns = SF.SpecfitFunctions()
        if derivative:
            # Avoid BG substraction & normalization if
            # fitting the derivate of a curve
            ybg = y
            ynorm = y/(abs(y.max())+abs(y.min()))
        else:
            ybg = y-snip.getSnip1DBackground(y, len(y)//thr) # USER INPUT!!!
            # Normalize background substracted data to
            # standardize the yscaling of seek method
            #ynorm = (ybg - ybg.min())/(ybg.max()-ybg.min())
            ynorm = self.normalize(ybg)

        # Replace by max()?
        try:
            # Calculate array woth all peak indices
            peakIdx = numpy.asarray(sffuns.seek(ybg, yscaling=1000.), dtype=int)
            # Extract highest peak
            sortIdx = y[peakIdx].argsort()[-1]
        except IndexError:
            if DEBUG:
                print('No peaks found..')
            return None
        except SystemError:
            if DEBUG:
                print('Peak search failed. Continue with y maximum')
            peakIdx = [ybg.argmax()]
            sortIdx = 0
        xpeak = float(x[peakIdx][sortIdx])
        ypeak = float(y[peakIdx][sortIdx])
        ypeak_norm = float(ynorm[peakIdx][sortIdx])
        ypeak_bg   = float(ybg[peakIdx][sortIdx])
        
        # Estimate FWHM
        fwhmIdx = numpy.nonzero(ynorm >= thr*ypeak_norm)[0]
        #fwhmIdx = numpy.nonzero(ybg >= thr*ypeak_bg)[0]
        # Underestimates FWHM
        x0, x1 = x[fwhmIdx].min(), x[fwhmIdx].max()
        fwhm = x1 - x0
        
        return xpeak, ypeak, fwhm, fwhmIdx
    # END Helper Methods
    
    def showDocs(self):
        '''
        Displays QTextBrowser showing the documentation
        '''
        helpFileName = pathjoin(PyMcaDataDir.PYMCA_DOC_DIR,
                                "HTML",
                                "AdvancedAlignmentScanPlugin.html")
        self.helpFileBrowser = qt.QTextBrowser()
        self.helpFileBrowser.setWindowTitle('Alignment Scan Plug-in Documentation')
        self.helpFileBrowser.setLineWrapMode(qt.QTextEdit.FixedPixelWidth)
        self.helpFileBrowser.setLineWrapColumnOrWidth(500)
        self.helpFileBrowser.resize(520,300)
        try:
            helpFileHandle = open(helpFileName)
            helpFileHTML = helpFileHandle.read()
            helpFileHandle.close()
            self.helpFileBrowser.setHtml(helpFileHTML)
        except IOError:
            msg = qt.QMessageBox()
            msg.setWindowTitle('Alignment Scan Error')
            msg.setText('No help file found.')
            msg.exec_()
            if DEBUG:
                print('XMCDWindow -- init: Unable to read help file')
            self.helpFileBrowser = None
        if self.helpFileBrowser is not None:
            self.helpFileBrowser.show()
            self.helpFileBrowser.raise_()
    
MENU_TEXT = "Advanced Alignment Plugin"
def getPlugin1DInstance(plotWindow, **kw):
    ob = AdvancedAlignmentScanPlugin(plotWindow)
    return ob

if __name__ == "__main__":
    from PyMca import PyMcaQt as qt
    app = qt.QApplication([])
    from PyMca.Plot1DQwt import Plot1DQwt as Plot1D

    x = numpy.arange(250, 750, 2, dtype=float)
    y1 = 1.0 + 50.0 * numpy.exp(-0.001*(x-500)**2) + 2.*numpy.random.random(250.)
    y2 = 1.0 + 20.5 * numpy.exp(-0.005*(x-600)**2) + 2.*numpy.random.random(250.)

    plot = Plot1D()
    plot.addCurve(x, y1, "y1", {'selectionlegend': 'y1'})
    plot.addCurve(x, y2, "y2", {'selectionlegend': 'y2'})

    plugin = getPlugin1DInstance(plot)
    for method in plugin.getMethods():
        print(method, ":", plugin.getMethodToolTip(method))
    plugin.applyMethod(plugin.getMethods()[0])