This file is indexed.

/usr/lib/python2.7/dist-packages/PyMca/SimpleFitModule.py is in pymca 4.7.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
#/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMca is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMca; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# PyMca follows the dual licensing model of Riverbank's PyQt and cannot be
# used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
import sys
import os
import numpy
import copy
import types
from PyMca import Gefit
from PyMca import SpecfitFuns

DEBUG = 0

class SimpleFit(object):
    def __init__(self):
        #no data available by default
        self._x0 = None
        self._y0 = None
        
        #get default configuration
        self.getDefaultConfiguration()

        #the list and dictionary of defined functions
        self._functionList = []
        self._functionDict = {}

        #the current fit function
        self._stripFunction = None

    def getDefaultConfiguration(self):
        self._fitConfiguration = {}
        self._fitConfiguration['fit'] = {}
        self._fitConfiguration['fit']['fit_function'] = "None"
        self._fitConfiguration['fit']['function_flag'] = 1
        self._fitConfiguration['fit']['background_function'] = "None"
        self._fitConfiguration['fit']['background_flag'] = 1
        self._fitConfiguration['fit']['strip_function'] = "Strip"
        self._fitConfiguration['fit']['stripalgorithm'] = 0
        self._fitConfiguration['fit']['strip_flag'] = 1        
        self._fitConfiguration['fit']['fit_algorithm'] = "Levenberg-Marquardt"
        self._fitConfiguration['fit']['weight'] = "NO Weight"
        self._fitConfiguration['fit']['maximum_fit_iterations'] = 10
        self._fitConfiguration['fit']['background_estimation_policy'] = "Estimate always"
        self._fitConfiguration['fit']['function_estimation_policy'] = "Estimate always"
        self._fitConfiguration['fit']['minimum_delta_chi'] = 0.0010
        self._fitConfiguration['fit']['use_limits'] = 0
        self._fitConfiguration['fit']['xmin'] =    0.
        self._fitConfiguration['fit']['xmax'] = 1000.
        self._fitConfiguration['fit']['functions'] = []
        #strip/snip background configuration related
        self._fitConfiguration['fit']['stripanchorsflag'] = 0
        self._fitConfiguration['fit']['stripanchorslist'] = []
        self._fitConfiguration['fit']['stripfilterwidth'] = 1
        self._fitConfiguration['fit']['snipwidth'] = 10
        self._fitConfiguration['fit']['stripwidth'] = 4
        self._fitConfiguration['fit']['stripiterations'] = 5000
        self._fitConfiguration['fit']['stripconstant'] = 1.0
        self._fitConfiguration['functions'] = {}
        
    def configure(self, ddict=None):
        if ddict is None:
            return self.getConfiguration()
        else:
            return self.setConfiguration(ddict)

    def setConfiguration(self, ddict, try_import=False):
        oldConfig = self.getConfiguration()
        if ddict is None:
            return oldConfig
        if 'fit' in ddict:
            givenKeys = ddict['fit'].keys()
            for key in self._fitConfiguration['fit'].keys():
                if key in givenKeys:
                    self._fitConfiguration['fit'][key] = ddict['fit'][key]
            for key in ddict.keys():
                if key in ['fit', 'functions']:
                    continue
                self._fitConfiguration[key] = ddict[key]

        if 'functions' in ddict:
            functionNames = ddict['functions'].keys()
            for fName in functionNames:
                if fName not in self._fitConfiguration['functions'].keys():
                    if try_import:
                        ffile = ddict['functions'][fName].get('file', None)
                        if ffile is not None:
                            self.importFunctions(ffile)
                    else:
                        print("WARNING:Function %s not among defined functions" % fName)
                        continue
                self._fitConfiguration['functions'][fName]['configuration']=\
                        ddict['functions'][fName]['configuration']
                configureMethod = self._fitConfiguration['functions'][fName]\
                                  ['configure']
                if configureMethod is not None:
                    configureMethod(ddict['functions'][fName]['configuration'])

        #if data are present, update strip background                    
        if (self._x0 is None) or (self._y0 is None):
            return
        if (oldConfig['fit']['xmin'] != self._fitConfiguration['fit']['xmin']) or\
           (oldConfig['fit']['xmax'] != self._fitConfiguration['fit']['xmax']):
            if DEBUG:
                print("SETTING DATA AGAIN")
            self.setData(self._x0, self._y0,
                         xmin=self._fitConfiguration['fit']['xmin'],
                         xmax=self._fitConfiguration['fit']['xmax'])
            return

        for key in ['strip_flag', 'stripanchorsflag', 'stripalgorithm',
                    'stripwidth', 'stripiterations', 'stripconstant']:
            if oldConfig['fit'][key] != self._fitConfiguration['fit'][key]:
                if DEBUG:
                    print("RECALCULATING STRIP")
                self._getStripBackground()
                break
            if key == 'stripanchorsflag':
                if len(oldConfig['fit']['stripanchorslist']) !=\
                   len(self._fitConfiguration['fit']['stripanchorslist']):
                    if DEBUG:
                        print("ANCHORS CHANGE, RECALCULATING STRIP")
                    self._getStripBackground()
                    break

    def getConfiguration(self):
        ddict = {}
        for key in self._fitConfiguration.keys():
            if key == 'functions':
                continue
            ddict[key] = copy.deepcopy(self._fitConfiguration[key])

        ddict['functions'] = {}
        for key in self._fitConfiguration['functions'].keys():
            ddict['functions'][key] = {}
            ddict['functions'][key]['configuration'] = copy.deepcopy(\
                self._fitConfiguration['functions'][key]['configuration'])
            configureMethod = self._fitConfiguration['functions']\
                                                      [key]['configure']
            if configureMethod is not None:
                currentFunctionConfig = configureMethod()
                for newKey in currentFunctionConfig.keys():
                    if newKey not in ['estimation']:
                        ddict['functions'][key]['configuration'][newKey] = currentFunctionConfig[newKey]
            parameters = self._fitConfiguration['functions'][key]['parameters']
            ddict['functions'][key]['parameters'] =  parameters
            widget = self._fitConfiguration['functions'][key]['widget']
            ddict['functions'][key]['widget'] = widget
            fname = self._fitConfiguration['functions'][key]['file']
            ddict['functions'][key]['file'] = fname
        return ddict

    def setData(self, x, y, sigma=None, xmin=None, xmax=None, **kw):
        # make sure last fit result is not used
        self._fitResult = None
        idx = numpy.argsort(x)
        if sigma is not None:
            self._sigma = sigma[idx]
        else:
            self._sigma = None
        self._y0 = y[idx]
        self._x0 = x[idx]
        if sigma is not None:
            self._sigma0 = sigma[idx]
        xmin, xmax = self._getLimits(self._x0, xmin, xmax)
        idx = (self._x0 >= xmin) & (self._x0 <= xmax)
        self._x = self._x0[idx]
        self._y = self._y0[idx]
        self._fitConfiguration['fit']['xmin'] = xmin * 1.0
        self._fitConfiguration['fit']['xmax'] = xmax * 1.0
        if sigma is not None:
            self._sigma = self._sigma0[idx]
        if DEBUG:
            print("TODO: Make sure we have something to fit")
        #get strip/SNIP background
        self._z = self._getStripBackground()

    def importFunctions(self, modname):
        #modname can be a module or a file
        if type(modname) == types.ModuleType:
            newfun = modname
        elif os.path.exists(modname):
            sys.path.append(os.path.dirname(modname))
            f=os.path.basename(os.path.splitext(modname)[0])
            newfun=__import__(f)
        else:
            raise ValueError("Cannot interprete/find %s" % modname)
        
        theory = newfun.THEORY
        function=newfun.FUNCTION
        parameters = newfun.PARAMETERS
        try:
            estimate=newfun.ESTIMATE
        except:
            estimate=None        
        try:
            derivative=newfun.DERIVATIVE
        except:
            derivative=None
        try:
            configure=newfun.CONFIGURE
        except:
            configure=None
        try:
            widget=newfun.WIDGET
        except:
            widget=None

        basename = os.path.basename(newfun.__file__)

        for i in range(len(theory)):
            ddict = {}
            functionName = theory[i]
            ddict['function'] = function[i]
            ddict['parameters'] = parameters[i]
            ddict['default_parameters'] = None
            ddict['estimate']   = None
            ddict['derivative'] = None
            ddict['configure']  = None
            ddict['widget']     = None
            ddict['file']       = newfun.__file__
            ddict['configuration'] = {} 
            if estimate is not None:
                ddict['estimate'] = estimate[i]
            if derivative is not None:
                ddict['derivative'] = derivative[i]
            if configure is not None:
                ddict['configure'] = configure[i]
                if ddict['configure'] is not None:
                    ddict['configuration'] = configure[i]()
                if ddict['estimate'] is None:
                    ddict['configuration']['estimation'] = None
            if widget is not None:
                ddict['widget'] = widget[i]
            self._fitConfiguration['functions'][functionName] = ddict
            self._fitConfiguration['fit']['functions'].append(functionName)

    def setFitFunction(self, name):
        if name in [None, "None", "NONE"]:
            self._fitConfiguration['fit']['fit_function'] = "None"
            return
        self._fitFunctionConfigured = False
        if name not in self._fitConfiguration['fit']['functions']:
            txt = "Function %s not among defined functions"  % name
            raise KeyError(txt)
        self._fitConfiguration['fit']['fit_function'] = name

    def getFitFunction(self):
        return "%s" % self._fitConfiguration['fit']['fit_function']

    def setBackgroundFunction(self, name):
        if name in [None, "None", "NONE"]:
            self._fitConfiguration['fit']['background_function'] = "None"
            return
        self._backgroundFunctionConfigured = False
        if name not in self._fitConfiguration['fit']['functions']:
            txt = "Function %s not among defined functions"  % name
            raise KeyError(txt)
        self._fitConfiguration['fit']['background_function'] = name

    def getBackgroundFunction(self):
        return "%s" % self._fitConfiguration['fit']['background_function']
    
    def _getLimits(self, x, xmin, xmax):
        if self._fitConfiguration['fit']['use_limits']:
            xmin = self._fitConfiguration['fit']['xmin']
            xmax = self._fitConfiguration['fit']['xmax']
            return xmin, xmax
        if xmin is None:
            xmin = x[0]
        if xmax is None:
            xmax = x[-1]
        return xmin, xmax
            
    def _getStripBackground(self, x=None, y=None):
        #this makes the assumption x are equally spaced
        #and I should build a spline if that is not the case
        #but I do not want to put a dependency on SciPy
        if y is not None:
            ywork = y
        else:
            ywork = self._y

        if x is not None:
            xwork = x
        else:
            xwork = self._x

        n=len(xwork)
        #loop for anchors
        anchorslist = []
        if self._fitConfiguration['fit']['stripanchorsflag']:
            if self._fitConfiguration['fit']['stripanchorslist'] is not None:
                oldShape = xwork.shape
                ravelled = xwork
                ravelled.shape = -1
                for channel in self._fitConfiguration['fit']['stripanchorslist']:
                    if channel <= ravelled[0]:continue
                    index = numpy.nonzero(ravelled >= channel)
                    if len(index):
                        index = min(index)
                        if index > 0:
                            anchorslist.append(index)
                ravelled.shape = oldShape

        #work with smoothed data
        ysmooth = self._getSmooth(xwork, ywork)
        
        #SNIP algorithm
        if self._fitConfiguration['fit']['stripalgorithm'] in ["SNIP", 1]:
            if DEBUG:
                print("CALCULATING SNIP")
            if len(anchorslist) == 0:
                anchorslist = [0, len(ysmooth)-1]
            anchorslist.sort()
            result = 0.0 * ysmooth
            lastAnchor = 0
            width = self._fitConfiguration['fit']['snipwidth']
            for anchor in anchorslist:
                if (anchor > lastAnchor) and (anchor < len(ysmooth)):
                    result[lastAnchor:anchor] =\
                            SpecfitFuns.snip1d(ysmooth[lastAnchor:anchor], width, 0)
                    lastAnchor = anchor
            if lastAnchor < len(ysmooth):                
                result[lastAnchor:] =\
                        SpecfitFuns.snip1d(ysmooth[lastAnchor:], width, 0)
            return result
        
        #strip background
        niter = self._fitConfiguration['fit']['stripiterations']
        if niter > 0:
            if DEBUG:
                print("CALCULATING STRIP")
                print("iterations = ", niter)
                print("constant   = ",
                      self._fitConfiguration['fit']['stripconstant'])
                print("width      = ",
                      self._fitConfiguration['fit']['stripwidth'])
                print("anchors    = ", anchorslist)
            result=SpecfitFuns.subac(ysmooth,
                                  self._fitConfiguration['fit']['stripconstant'],
                                  niter,
                                  self._fitConfiguration['fit']['stripwidth'],
                                  anchorslist)
            if niter > 1000:
                #make sure to get something smooth
                result = SpecfitFuns.subac(result,
                                  self._fitConfiguration['fit']['stripconstant'],
                                  500,1,
                                  anchorslist)
            else:
                #make sure to get something smooth but with less than
                #500 iterations
                result = SpecfitFuns.subac(result,
                                  self._fitConfiguration['fit']['stripconstant'],
                                  int(self._fitConfiguration['fit']['stripwidth']*2),
                                  1,
                                  anchorslist)
        else:
            if DEBUG:
                print("NO STRIP, NO SNIP")
            result     = numpy.zeros(ysmooth.shape, numpy.float) + min(ysmooth)

        return result

    def _getSmooth(self, x, y): 
        f=[0.25,0.5,0.25]
        try:
            if hasattr(y, "shape"):
                if len(y.shape) > 1:
                    result=SpecfitFuns.SavitskyGolay(numpy.ravel(y).astype(numpy.float), 
                                    self._fitConfiguration['fit']['stripfilterwidth'])
                else:                                
                    result=SpecfitFuns.SavitskyGolay(numpy.array(y).astype(numpy.float), 
                                    self._fitConfiguration['fit']['stripfilterwidth'])
            else:
                result=SpecfitFuns.SavitskyGolay(numpy.array(y).astype(numpy.float),
                                    self._fitConfiguration['fit']['stripfilterwidth'])
        except:
            err = sys.exc_info()[1]
            raise ValueError("Unsuccessful Savitsky-Golay smoothing: %s" % err)
            result=numpy.array(y).astype(numpy.float)
        if len(result) > 1:
            result[1:-1]=numpy.convolve(result,f,mode=0)
            result[0]=0.5*(result[0]+result[1])
            result[-1]=0.5*(result[-1]+result[-2])
        return result

    def fit(self):
        if self._y0 is None:
            self._setStatus("No data to be fitted")
            return
        self.estimate()
        self.startFit()
        return self.getResult()

    def estimate(self):
        self._fitResult = None
        if self._y0 is None:
            self._setStatus("No data to be fitted")
            return
        self._setStatus("Estimate started")
        backgroundDict  = {'parameters':[]}
        fitFunctionDict = {'parameters':[]}
        backgroundParameters, backgroundConstraints = [], [[],[],[]]
        backgroundFunction = self.getBackgroundFunction() 
        if self._fitConfiguration['fit']['background_flag']:
            if backgroundFunction not in [None, "None", "NONE"]:
                backgroundParameters, backgroundConstraints =\
                                      self.estimateBackground()
                backgroundDict = self._fitConfiguration['functions']\
                              [backgroundFunction]
        self._setStatus("Background estimation finished")
        functionParameters, functionConstraints = [], [[],[],[]]
        fitFunction = self._fitConfiguration['fit']['fit_function']
        if self._fitConfiguration['fit']['function_flag']:
            if fitFunction not in [None, "None", "NONE"]:
                functionParameters, functionConstraints=\
                                    self.estimateFunction()
                fitFunctionDict = self._fitConfiguration['functions']\
                                      [fitFunction]
        if DEBUG:
            print("ESTIMATION parameters  = ",functionParameters)
            print("ESTIMATION constraints = ",functionConstraints)
        self._setStatus("Fit function estimation finished")

        #estimations are made
        #Check if there can be conflicts between parameter names
        #because they can have same names in the background and
        #in the fit function
        conflict = False
        for parname in backgroundDict['parameters']:
            if parname in fitFunctionDict['parameters']:
                conflict = True
                break

        #build the parameter names
        self.final_theory=[]
        nBasePar   = len(backgroundDict['parameters'])
        nActualPar = len(backgroundParameters)
        self.__nBackgroundParameters = nActualPar
        if nActualPar:
            for i in range(nActualPar):
                parname = backgroundDict['parameters'][i%nBasePar]
                if conflict:
                    parname = "Bkg_"+parname
                if nBasePar < nActualPar:
                    parname = parname + ("_%d" % (1+int(i/nBasePar)))
                self.final_theory.append(parname)

        nBasePar   = len(fitFunctionDict['parameters'])
        nActualPar = len(functionParameters)
        if nActualPar:
            for i in range(nActualPar):
                parname = fitFunctionDict['parameters'][i%nBasePar]
                if nBasePar < nActualPar:
                    parname = parname + ("_%d" % (1+int(i/nBasePar)))
                self.final_theory.append(parname)

        CONS=['FREE',
            'POSITIVE',
            'QUOTED',
            'FIXED',
            'FACTOR',
            'DELTA',
            'SUM',
            'IGNORE']
        self.paramlist=[]
        param          = self.final_theory
        j=0
        i=0
        k=0
        xmin=self._x.min()
        xmax=self._x.max()
        #print "xmin = ",xmin,"xmax = ",xmax
        for pname in self.final_theory:
            if i < len(backgroundParameters):
                self.paramlist.append({'name':pname,
                        'estimation':backgroundParameters[i],
                        'group':0,
                        'code':CONS[int(backgroundConstraints[0][i])],
                        'cons1':backgroundConstraints[1][i],
                        'cons2':backgroundConstraints[2][i],
                        'fitresult':0.0,
                        'sigma':0.0,
                        'xmin':xmin,
                        'xmax':xmax})
                i=i+1
            else:
                if (j % len(fitFunctionDict['parameters'])) == 0:
                    k=k+1
                if (CONS[int(functionConstraints[0][j])] == "FACTOR") or \
                   (CONS[int(functionConstraints[0][j])] == "DELTA"):
                        functionConstraints[1][j] = functionConstraints[1][j] +\
                                                    len(backgroundParameters)
                self.paramlist.append({'name':pname,
                       'estimation':functionParameters[j],
                       'group':k,
                       'code':CONS[int(functionConstraints[0][j])],
                       'cons1':functionConstraints[1][j],
                       'cons2':functionConstraints[2][j],
                       'fitresult':0.0,
                       'sigma':0.0,
                       'xmin':xmin,
                       'xmax':xmax})
                j=j+1
        self._setStatus("Estimate finished")
        return self.paramlist

    def _setStatus(self, status):
        self.__status = status

    def getStatus(self):
        return self.__status

    def estimateBackground(self):
        fname = self.getBackgroundFunction()
        if fname is None:
            return [],[[],[],[]]
        ddict = self._fitConfiguration['functions'][fname]
        estimateFunction = ddict['estimate']
        
        if estimateFunction is None:
            parameters = []
            constraints = [[],[],[]]
            if ddict['configuration']['estimation'] is not None:
                estimation = ddict['configuration']['estimation']
                defaultPar = estimation['parameters']
                for parameter in defaultPar:
                    parameters.append(estimation[parameter]['estimation'])
                    constraints[0].append(estimation[parameter]['code'])
                    constraints[1].append(estimation[parameter]['cons1'])
                    constraints[2].append(estimation[parameter]['cons2'])
            else:
                defaultPar = ddict['parameters']
                for parameter in defaultPar:
                    parameters.append(0.0)
                    constraints[0].append(0)
                    constraints[1].append(0)
                    constraints[2].append(0)
            return parameters, constraints
        parameters, constraints = estimateFunction(self._x, self._y, self._z)
        return parameters, constraints

    def estimateFunction(self):
        self._z = self._getStripBackground()
        fname = self.getFitFunction()
        if fname is None:
            return [],[[],[],[]]
        ddict = self._fitConfiguration['functions'][fname]
        estimateFunction = ddict['estimate']
        if estimateFunction is None:
            parameters = []
            constraints = [[],[],[]]
            if ddict['configuration']['estimation'] is not None:
                estimation = ddict['configuration']['estimation']
                defaultPar = estimation['parameters']
                for parameter in defaultPar:
                    parameters.append(estimation[parameter]['estimation'])
                    constraints[0].append(estimation[parameter]['code'])
                    constraints[1].append(estimation[parameter]['cons1'])
                    constraints[2].append(estimation[parameter]['cons2'])
            else:
                defaultPar = ddict['parameters']
                for parameter in defaultPar:
                    parameters.append(0.0)
                    constraints[0].append(0)
                    constraints[1].append(0)
                    constraints[2].append(0)
            return parameters, constraints
        parameters, constraints = estimateFunction(self._x * 1,
                                                   self._y * 1,
                                                   self._z * 1)
        return parameters, constraints

    def startFit(self):
        if self._y0 is None:
            self._setStatus("No data to be fitted")
            return
        self._setStatus("Fit started")
        param_list = self.final_theory
        length      = len(param_list)
        param_val   = []
        param_constrains   = [[],[],[]]
        flagconstrained=0
        for param in self.paramlist:
            #print param['name'],param['group'],param['estimation']
            param_val.append(param['estimation'])
            if (param['code'] != 'FREE') & (param['code'] != 0) & \
               (param['code'] != 0.0) :
                flagconstrained=1
            param_constrains [0].append(param['code'])
            param_constrains [1].append(param['cons1'])
            param_constrains [2].append(param['cons2'])

        #weight handling
        if self._fitConfiguration['fit']['weight'] in ["NO Weight", 0]:
            weightflag = 0
        else:
            weightflag = 1
        if DEBUG:
            print("STILL TO HANDLE DERIVATIVES")
        model_deriv = self.modelFunctionDerivative
        if self._fitConfiguration['fit']['strip_flag']:
            y = self._y - self._z
        else:
            y = self._y
        self._fitResult = None
        if not flagconstrained:
            param_constrains = []
        if DEBUG:
            result = Gefit.LeastSquaresFit(self.modelFunction,param_val,
                    xdata=self._x,
                    ydata=y,
                    sigmadata=self._sigma,
                    constrains=param_constrains,
                    weightflag=weightflag,
                    model_deriv=model_deriv,
                    fulloutput=True)
        else:
            try:
                result = Gefit.LeastSquaresFit(self.modelFunction,param_val,
                        xdata=self._x,
                        ydata=y,
                        sigmadata=self._sigma,
                        constrains=param_constrains,
                        weightflag=weightflag,
                        model_deriv=model_deriv,
                        fulloutput=True)
            except:
                text = sys.exc_info()[1]
                if type(text) is not type(" "): 
                    text = text.args
                    if len(text):
                        text = text[0]
                    else:
                        text = ''
                self._setStatus('Fit error : %s' %text)
                raise

        self._fitResult = {}
        self._fitResult['fit_function'] = self.getFitFunction()
        self._fitResult['background_function'] = self.getBackgroundFunction()
        self._fitResult['fittedvalues'] = result[0]
        self._fitResult['chisq']        = result[1]
        self._fitResult['sigma_values'] = result[2]
        self._fitResult['niter']        = result[3]
        self._fitResult['lastdeltachi'] = result[4]
        self._fitResult['n_background_parameters'] = self.__nBackgroundParameters
        if DEBUG:
            print("Found parameters = ", self._fitResult['fittedvalues'])
        i=0
        self._fitResult['parameters'] = []
        for param in self.paramlist:
           if param['code'] != 'IGNORE':
              self._fitResult['parameters'].append(param['name'])  
              param['fitresult'] = result[0][i]
              param['sigma']= result[2][i]
           i = i + 1
        self._setStatus("Fit finished")           
        return result

    def modelFunction(self, pars, t):
        result = 0.0 * t

        nb = self.__nBackgroundParameters
        if nb:
            result += self._fitConfiguration['functions'][self.getBackgroundFunction()]\
                      ['function'](pars[0:nb], t)
        if len(self.paramlist) > nb:
            result += self._fitConfiguration['functions'][self.getFitFunction()]\
                      ['function'](pars[nb:], t)
        return result

    def numericDerivative(self, f, parameters, index, x):
        """
        numericDerivative(self, f, parameters, index, x)
        calculates the numeric derivate of f(parameters, x) respect
        to the parameter indexed by the given index
        """
        #numeric derivative
        x=numpy.array(x)
        delta = (parameters[index] + numpy.equal(parameters[index],0.0)) * 0.00001

        #make a copy of the parameters
        newpar = parameters * 1
        newpar[index] = parameters[index] + delta
        f1 = f(newpar, x)
        newpar[index] = parameters[index] - delta
        f2 = f(newpar, x)
        return (f1-f2) / (2.0 * delta)

    def modelFunctionDerivative(self, pars, index, x):
        return self.numericDerivative(self.modelFunction, pars, index, x)

    def getResult(self, configuration=False):
        #print " get results to be implemented"
        ddict = {}
        ddict['result'] = self._fitResult
        if configuration:
            ddict['configuration'] = self.getConfiguration()
        return ddict        

    def _evaluateBackground(self, x=None):
        if x is None:
            x = self._x
        pars = self._fitResult['fittedvalues']
        nb = self.__nBackgroundParameters
        if nb:
            y = self._fitConfiguration['functions'][self.getBackgroundFunction()]\
                      ['function'](pars[:nb], x)
            
        else:
            y = numpy.zeros(x.shape, numpy.float)
        if self._fitConfiguration['fit']['strip_flag']:
            #If the x is not self._x, how to add the strip?
            try:
                y += self._z
            except:
                print("Cannot add strip background")
        return y

    def _evaluateFunction(self, x=None):
        if x is None:
            x = self._x
        pars = self._fitResult['fittedvalues']
        nb = self.__nBackgroundParameters
        if len(self.paramlist) > nb:
            return self._fitConfiguration['functions'][self.getFitFunction()]\
                      ['function'](pars[nb:], x)
        else:
            return numpy.zeros(x.shape, numpy.float)

    def evaluateDefinedFunction(self, x=None):
        if x is None:
            x = self._x
        y = self._evaluateBackground(x)
        y += self._evaluateFunction(x)
        return y 

def test():
    from PyMca import SpecfitFunctions
    a=SpecfitFunctions.SpecfitFunctions()
    x = numpy.arange(1000).astype(numpy.float)
    p1 = numpy.array([1500,100.,50.0])
    p2 = numpy.array([1500,700.,50.0])
    y = a.gauss(p1, x)+1
    y = y + a.gauss(p2,x)

    fit = SimpleFit()
    fit.importFunctions(SpecfitFunctions)
    fit.setFitFunction('Gaussians')
    #fit.setBackgroundFunction('Gaussians')
    #fit.setBackgroundFunction('Constant')
    fit.setData(x, y)
    fit.fit()
    print("Expected parameters 1500,100.,50.0, 1500,700.,50.0")
    from PyMca import PyMcaQt as qt
    from PyMca import Parameters
    a = qt.QApplication(sys.argv)
    qt.QObject.connect(a,qt.SIGNAL("lastWindowClosed()"),a,qt.SLOT("quit()"))
    w =Parameters.Parameters()
    w.fillfromfit(fit.paramlist)
    w.show()
    a.exec_()

if __name__=="__main__":
    DEBUG = 1
    test()