This file is indexed.

/usr/lib/python2.7/dist-packages/PyMca/XASNormalization.py is in pymca 4.7.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# This toolkit is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# PyMca is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMca; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# PyMca follows the dual licensing model of Riverbank's PyQt and cannot be
# used as a free plugin for a non-free program.
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license
# is a problem for you.
#############################################################################*/
__author__ = "V.A. Sole - ESRF Software Group"
__doc__ = """This set of routines performs normalization of X-ray absorption
spectra for qualitative/preliminary analysis. For state-of-the-art XAS you
should take a look at dedicated and well-tested packages like IFEFFIT or
Viper/XANES dactyloscope """

import numpy
from PyMca import SpecfitFuns
from PyMca import SGModule
from PyMca.Gefit import LeastSquaresFit
DEBUG = 0
if DEBUG:
    from pylab import *

def polynom(parameter_list, x):
    if hasattr(x, 'shape'):
        output = numpy.zeros(x.shape)
    else:
        output = 0.0
    for i in range(len(parameter_list)):
        output += parameter_list[i] * pow(x, i)
    return output

def polynomDerivative(parameter_list, parameter_index, x):
    return pow(x, parameter_index)

def victoreen(parameter_list, x):
    return parameter_list[0] * pow(x, -3) + parameter_list[1] * pow(x, -4)

def victoreenDerivative(parameter_list, parameter_index, x):
    if parameter_index == 0:
        return pow(x, -3)
    else:
        return pow(x, -4)

def modifiedVictoreen(parameter_list, x):
    return parameter_list[0] * pow(x, -3) + parameter_list[1]

def modifiedVictoreenDerivative(parameter_list, parameter_index, x):
    if parameter_index == 0:
        return pow(x, -3)
    else:
        return numpy.ones(x.shape, dtype=numpy.float)

def estimateXANESEdge(spectrum, energy=None, full=False):
    if energy is None:
        x = numpy.arange(len(spectrum)).astype(numpy.float)
    else:
        x = numpy.array(energy, dtype=numpy.float, copy=True)
    y = numpy.array(spectrum, dtype=numpy.float, copy=True)

    # make sure data are sorted
    idx = energy.argsort(kind='mergesort')
    x = numpy.take(energy, idx)
    y = numpy.take(spectrum, idx)

    # make sure data are strictly increasing
    delta = x[1:] - x[:-1]
    dmin = delta.min()
    dmax = delta.max()
    if delta.min() <= 1.0e-10:
        # force data are strictly increasing
        # although we do not consider last point
        idx = numpy.nonzero(delta>0)[0]
        x = numpy.take(x, idx)
        y = numpy.take(y, idx)
        delta = None

    sortedX = x
    sortedY = y

    # use a regularly spaced spectrum
    if dmax != dmin:
        # choose the number of points or deduce it from
        # the input data length?
        nchannels = 2 * len(spectrum)
        xi = numpy.linspace(x[1], x[-2], nchannels).reshape(-1, 1)
        x.shape = -1
        y.shape = -1
        y = SpecfitFuns.interpol([x], y, xi, y.min())
        x = xi
        x.shape = -1
        y.shape = -1

    # take the first derivative
    npoints = 7
    xPrime = x[npoints:-npoints]
    yPrime = SGModule.getSavitzkyGolay(y, npoints=npoints, degree=2, order=1)
    
    # get the index at maximum value
    iMax = numpy.argmax(yPrime)

    # get the center of mass
    w = 2 * npoints
    selection = yPrime[iMax-w:iMax+w+1]
    edge = (selection * xPrime[iMax-w:iMax+w+1]).sum(dtype=numpy.float)/\
           selection.sum(dtype=numpy.float)

    if full:
        # return intermediate information
        return edge, sortedX, sortedY, xPrime, yPrime
    else:
        # return the corresponding x value
        return edge
        
def getRegionsData(x0, y0, regions, edge=0.0):
    """
    x - 1D array
    y - 1D array of the same dimension as x
    regions - List of (xmin, xmax) values defining the regions.
    edge - Supplied edge energy
           The default is 0. That means regions are absolute energies.
           The actual regions are defined as (xmin + edge, xmin + edge)
    """
    # take a view of the data
    x = x0[:]
    y = y0[:]
    
    x.shape = -1
    y.shape = -1
    
    i = 0
    for region in regions:
        xmin = region[0] + edge
        xmax = region[1] + edge
        toidx = numpy.nonzero((x >= xmin) & (x <= xmax))[0]
        if i == 0:
            i = 1
            idx = toidx
        else:
            idx = numpy.concatenate((idx, toidx), axis=0)

    xOut = numpy.take(x, idx)
    yOut = numpy.take(y, idx)

    if len(x0.shape) == 1:
        xOut.shape = -1
        yOut.shape = -1
    elif x0.shape[0] == 1:
        xOut.shape = 1, -1
        yOut.shape = 1, -1
    else:
        xOut.shape = -1, 1
        yOut.shape = -1, 1

    return xOut, yOut

def XASNormalization(spectrum,
                     energy=None,
                     edge=None,
                     pre_edge_regions=None,
                     post_edge_regions=None,
                     algorithm='polynomial',
                     algorithm_parameters=None):
    if algorithm not in SUPPORTED_ALGORITHMS:
        raise ValueError("Unsupported algorithm %s" % algorithm)
    if energy is None:
        energy = numpy.arange(len(spectrum))
    if edge in [None, 'Auto']:
        edge = estimateXANESEdge(spectrum, energy=energy)

    if pre_edge_regions is None:
        # divide pre-edge zone in 4 regions and take the 3rd?
        if edge < 200:
            # data assumed to be in keV
            pre_edge_regions = [[-0.4, -0.05]]
        else:
            # data assumend to be in eV
            pre_edge_regions = [[-400., -50.]]

    if post_edge_regions is None:
        #divide post-edge by 20 and leave out the first one?
        if edge < 200:
            # data assumed to be in keV
            post_edge_regions = [[0.020, energy.max()-edge]]
        else:
            # data assumend to be in eV
            post_edge_regions = [[20., energy.max()-edge]]

    return SUPPORTED_ALGORITHMS[algorithm](spectrum,
                                           energy,
                                           edge,
                                           pre_edge_regions,
                                           post_edge_regions,
                                           parameters=algorithm_parameters)

def XASPolynomialNormalization(spectrum,
                             energy,
                             edge=None,
                             pre_edge_regions=None,
                             post_edge_regions=None,
                             parameters=None):
    if edge in [None, 'Auto']:
        edge = estimateXANESEdge(spectrum, energy=energy)
    if parameters is None:
        parameters = {}
    pre_edge_order = parameters.get('pre_edge_order', 1)
    post_edge_order = parameters.get('post_edge_order', 3)

    xPre, yPre = getRegionsData(energy, spectrum, pre_edge_regions, edge=edge)
    xPost, yPost = getRegionsData(energy, spectrum, post_edge_regions, edge=edge)

    # get the proper pre-edge function to be used
    pre_edge_function = polynom
    if pre_edge_order in [0, 'Constant']:
        pre_edge_order = 0
    elif pre_edge_order in [1, 'Linear']:
        pre_edge_order = 1
    elif pre_edge_order in [2, 'Parabolic']:
        pre_edge_order = 2
    elif pre_edge_order in [3, 'Cubic']:
        pre_edge_order = 3
    elif pre_edge_order in [-1, 'Victoreen']:
        pre_edge_order = -1
        pre_edge_function = victoreen
    elif pre_edge_order in [-2, 'Modif. Victoreen']:
        pre_edge_order = -2
        pre_edge_function = modifiedVictoreen
    else:
        # case of arriving with a 4th order polynom, for instance
        pass

    # calculate pre-edge
    if pre_edge_order == 0:
        prePol = [yPre.mean()]
    elif pre_edge_order > 0:
        p = numpy.arange(pre_edge_order + 1).astype(numpy.float)
        prePol = LeastSquaresFit(pre_edge_function, p,
                                 xdata=xPre, ydata=yPre,
                                 model_deriv=polynomDerivative,
                                 weightflag=0, linear=1)[0]
    elif pre_edge_order == -1:
        p = numpy.array([1.0, 1.0])
        prePol = LeastSquaresFit(pre_edge_function, p,
                                 xdata=xPre, ydata=yPre,
                                 model_deriv=victoreenDerivative,
                                 weightflag=0, linear=1)[0]
    elif pre_edge_order == -2:
        p = numpy.array([1.0, 1.0])
        prePol = LeastSquaresFit(pre_edge_function, p,
                                 xdata=xPre, ydata=yPre,
                                 model_deriv=modifiedVictoreenDerivative,
                                 weightflag=0, linear=1)[0]

    # get the proper post-edge function to be used
    post_edge_function = polynom
    if post_edge_order in [0, 'Constant']:
        post_edge_order = 0
    elif post_edge_order in [1, 'Linear']:
        post_edge_order = 1
    elif post_edge_order in [2, 'Parabolic']:
        post_edge_order = 2
    elif post_edge_order in [3, 'Cubic']:
        post_edge_order = 3
    elif post_edge_order in [-1, 'Victoreen']:
        post_edge_order = -1
        post_edge_function = victoreen
    elif post_edge_order in [-2, 'Modif. Victoreen']:
        post_edge_order = -2
        post_edge_function = modifiedVictoreen
    else:
        # case of arriving with a 4th order polynom, for instance
        pass

    # calculate post-edge
    baseLine = pre_edge_function(prePol, xPost)
    if post_edge_order == 0:
        # just take the average
        postPol = [(yPost-baseLine).mean()]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))/postPol[0]
    elif post_edge_order > 0:
        p = numpy.arange(post_edge_order + 1).astype(numpy.float)
        postPol = LeastSquaresFit(post_edge_function, p,
                                  xdata=xPost,
                                  ydata=yPost-baseLine,
                                  model_deriv=polynomDerivative,
                                  weightflag=0, linear=1)[0]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                             /post_edge_function(postPol, energy)
    elif post_edge_order == -1:
        p = numpy.array([1.0, 1.0])
        postPol = LeastSquaresFit(post_edge_function, p,
                                  xdata=xPost,
                                  ydata=yPost-baseLine,
                                  model_deriv=victoreenDerivative,
                                  weightflag=0, linear=1)[0]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                             /post_edge_function(postPol, energy)
    elif post_edge_order == -2:
        p = numpy.array([1.0, 1.0])
        postPol = LeastSquaresFit(post_edge_function, p,
                                  xdata=xPost,
                                  ydata=yPost-baseLine,
                                  model_deriv=modifiedVictoreenDerivative,
                                  weightflag=0, linear=1)[0]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                             /post_edge_function(postPol, energy)
    jump = post_edge_function(postPol, edge)
    if DEBUG:
        plot(energy, spectrum, 'o')
        plot(xPre, pre_edge_function(prePol, xPre), 'r')
        plot(xPost, post_edge_function(postPol, xPost)+pre_edge_function(prePol, xPost), 'y')
        show()
    return energy, normalizedSpectrum, edge, jump, pre_edge_function, prePol, post_edge_function, postPol

def XASVictoreenNormalization(spectrum,
                              energy,
                              edge=None,
                              pre_edge_regions=None,
                              post_edge_regions=None,
                              parameters=None):

    if edge in [None, 'Auto']:
        edge = estimateXANESEdge(spectrum, energy=energy)

    if parameters is None:
        parameters = {}

    xPre, yPre = getRegionsData(energy, spectrum, pre_edge_regions)
    xPost, yPost = getRegionsData(energy, spectrum, post_edge_regions)


    pre_edge_order = parameters.get('pre_edge_order', 1)
    post_edge_order = parameters.get('post_edge_order', 1)
    if pre_edge_order in [1, -1, 'Victoreen']:
        pre_edge_function = victoreen
    else:
        pre_edge_function = modifiedVictoreen

    if post_edge_order in [1, -1, 'Victoreen']:
        post_edge_function = victoreen
    else:
        post_edge_function = modifiedVictoreen

    p = numpy.array([1.0, 1.0])
    prePol = LeastSquaresFit(pre_edge_function, p, xdata=xPre, ydata=yPre,
                                 weightflag=0, linear=1)[0]    
    postPol = LeastSquaresFit(post_edge_function, p,
                              xdata=xPost,
                              ydata=yPost-pre_edge_function(prePol, xPost),
                              weightflag=0, linear=1)[0]
    normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                         /post_edge_function(postPol, energy)
    if DEBUG:
        print("VICTOREEN")
        plot(energy, spectrum, 'o')
        plot(xPre, pre_edge_function(prePol, xPre), 'r')
        plot(xPost,
             post_edge_function(postPol, xPost)+pre_edge_function(prePol, xPost), 'y')
        show()
    return energy, normalizedSpectrum, edge       

SUPPORTED_ALGORITHMS = {"polynomial":XASPolynomialNormalization,
                        "victoreen": XASVictoreenNormalization}

if __name__ == "__main__":
    import sys
    from PyMca import specfilewrapper as specfile
    import time
    sf = specfile.Specfile(sys.argv[1])
    scan = sf[0]
    data = scan.data()
    energy = data[0, :]
    spectrum = data[1, :]
    n = 100
    t0 = time.time()
    for i in range(n):
        edge = estimateXANESEdge(spectrum+i, energy=energy)
    print("EDGE ELAPSED = ", (time.time() - t0)/float(n))
    print("EDGE = %f"  % edge)
    if DEBUG:
        n = 1
    else:
        n = 100
    t0 = time.time()
    for i in range(n):
        nEne0, nSpe0 = XASNormalization(spectrum+i, energy,
                                        edge=edge,
                                        algorithm='polynomial',
                                        algorithm_parameters={'pre_edge_order':0,
                                                              'post_edge_order':0})[0:2]
    print("ELAPSED 0 = ", (time.time() - t0)/float(n))
    t0 = time.time()
    for i in range(n):
        nEneP, nSpeP = XASNormalization(spectrum+i,
                                        energy,
                                        edge=edge,
                                        algorithm='polynomial',
                                        algorithm_parameters={'pre_edge_order':1,
                                                              'post_edge_order':2})[0:2]
    print("ELAPSED Poly = ", (time.time() - t0)/float(n))
    t0 = time.time()
    for i in range(n):
        nEneV, nSpeV = XASNormalization(spectrum+i,
                                        energy,
                                        edge=edge,
                                        algorithm='polynomial',
                                        algorithm_parameters={'pre_edge_order':'Victoreen',
                                                              'post_edge_order':'Victoreen'})[0:2]
    print("ELAPSED Victoreen = ", (time.time() - t0)/float(n))
    if DEBUG:
        #plot(energy, spectrum, 'b')
        plot(nEne0, nSpe0, 'k', label='Polynomial')
        plot(nEneP, nSpeP, 'b', label='Polynomial')
        plot(nEneV, nSpeV, 'r', label='Victoreen')
        show()