This file is indexed.

/usr/lib/python2.7/dist-packages/PyMca/linalg.py is in pymca 4.7.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy

# Linear Least Squares

def lstsq(a, b, rcond=None, sigma_b=None, weight=False,
          uncertainties=True, covariances=False, digested_output=False):
    """
    Return the least-squares solution to a linear matrix equation.

    Solves the equation `a x = b` by computing a vector `x` that
    minimizes the Euclidean 2-norm `|| b - a x ||^2`.  The equation may
    be under-, well-, or over- determined (i.e., the number of
    linearly independent rows of `a` can be less than, equal to, or
    greater than its number of linearly independent columns).  If `a`
    is square and of full rank, then `x` (but for round-off error) is
    the "exact" solution of the equation.

    Parameters
    ----------
    a : array_like, shape (M, N)
        "Model" matrix.
    b : array_like, shape (M,) or (M, K)
        Ordinate or "dependent variable" values. If `b` is two-dimensional,
        the least-squares solution is calculated for each of the `K` columns
        of `b`.
    sigma_b : uncertainties on the b values

    weight: 0 - No data weighting.
                If required, uncertainties will be calculated using either the
                supplied experimental uncertainties or an experimental
                uncertainty of 1 for each data point.
            1 - Statistical weight.
                Weighted fit using the supplied experimental uncertainties or the
                square root of the b values.

    uncertainties: If False, no uncertainties will be calculated unless the covariance
                matrix is requested.

    covariances: If True, an array of covariance matrix/matrices will be returned.

    digested_output: If True, returns a dictionnary with explicit keys

    Returns
    -------
    x : ndarray, shape (N,) or (N, K)
        Least-squares solution.  The shape of `x` depends on the shape of
        `b`.

    uncertainties: ndarray, shape (N,) or (N, K)

    covariances: ndarray, shape (N, N) or (K, N, N)

    Examples
    --------
    Fit a line, ``y = mx + c``, through some noisy data-points:

    >>> x = np.array([0, 1, 2, 3])
    >>> y = np.array([-1, 0.2, 0.9, 2.1])

    By examining the coefficients, we see that the line should have a
    gradient of roughly 1 and cut the y-axis at, more or less, -1.

    We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
    and ``p = [[m], [c]]``.  Now use `lstsq` to solve for `p`:

    >>> A = np.vstack([x, np.ones(len(x))]).T
    >>> A
    array([[ 0.,  1.],
           [ 1.,  1.],
           [ 2.,  1.],
           [ 3.,  1.]])

    >>> m, c = np.linalg.lstsq(A, y)[0]
    >>> print m, c
    1.0 -0.95

    Plot the data along with the fitted line:

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x, y, 'o', label='Original data', markersize=10)
    >>> plt.plot(x, m*x + c, 'r', label='Fitted line')
    >>> plt.legend()
    >>> plt.show()

    """

    a = numpy.array(a, dtype=numpy.float, copy=False)
    b = numpy.array(b, dtype=numpy.float, copy=False)
    a_shape = a.shape
    b_shape = b.shape
    original = b_shape
    if len(a_shape) != 2:
        raise ValueError("Model matrix must be two dimensional")
    if len(b_shape) == 1:
        b.shape = b_shape[0], 1
        b_shape = b.shape

    m  = a.shape[0]
    n  = a.shape[1]

    if m != b.shape[0]:
        raise ValueError('Incompatible dimensions between A and b matrices')

    fastest = False
    if sigma_b is not None:
        # experimental uncertainties provided these are the ones to use (if any)
        w = numpy.abs(numpy.array(sigma_b, dtype=numpy.float, copy=False))
        w = w + numpy.equal(w, 0)
        w.shape = b_shape
    elif weight == 0:
        # we have an unweighted fit with no uncertainties
        # assume all the uncertainties equal to 1
        fastest = True
        w = numpy.ones(b.shape, numpy.float)
    else:
        # "statistical" weight
        # we are asked to somehow weight the data but no uncertainties provided        
        # assume the uncertainties are the square root of the b values ...
        w = numpy.sqrt(numpy.abs(b))
        w = w + numpy.equal(w, 0)

    if covariances:
        covarianceMatrix = numpy.zeros((b_shape[1], n, n), numpy.float)

    if not weight:
        # no weight is applied
        # get the SVD decomposition of the A matrix
        U, s, V = numpy.linalg.svd(a, full_matrices=False)

        if rcond is None:
            s_cutoff = n * numpy.finfo(numpy.float).eps
        else:
            s_cutoff = rcond * s[0]
        s[s < s_cutoff] = numpy.inf
        
        # and get the parameters
        s.shape = -1
        dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
        parameters = numpy.dot(dummy, numpy.dot(U.T, b))
        parameters.shape = n, b.shape[1]
        if uncertainties or covariances:
            # get the uncertainties
            #(in the no-weight case without experimental uncertainties,
            # the uncertainties on the data points are ignored and the
            # uncertainty on the fitted parameters are independent of the input data!!!!)
            if fastest:
                # This is correct for all weights equal to 1
                _covariance = numpy.dot(dummy, dummy.T)
                sigmapar = numpy.sqrt(numpy.diag(_covariance))
                sigmapar = numpy.outer(sigmapar, numpy.ones(b_shape[1]))
                sigmapar.shape = n, b_shape[1]
                if covariances:
                    covarianceMatrix[:] = _covariance
            elif covariances:
                # loop in order not to use potentially big matrices
                # but calculates the covariance matrices
                # It only makes sense if the covariance matrix is requested
                sigmapar = numpy.zeros((n, b_shape[1]), numpy.float)
                for k in range(b_shape[1]):
                    pseudoData = numpy.eye(b_shape[0]) * w[:, k]
                    tmpTerm = numpy.dot(dummy, numpy.dot(U.T, pseudoData))
                    _covariance[:, :] = numpy.dot(tmpTerm, tmpTerm.T)
                    sigmapar[:, k] = numpy.sqrt(numpy.diag(_covariance))
                    covarianceMatrix[k] = _covariance
            else:
                # loop in order not to use potentially big matrices
                # but not calculating the covariance matrix
                d = numpy.zeros(b.shape, numpy.float)
                sigmapar = numpy.zeros((n, b_shape[1]))
                for k in range(b_shape[0]):
                    d[k] = w[k]
                    sigmapar += (numpy.dot(dummy, numpy.dot(U.T, d))) ** 2
                    d[k] = 0.0
                sigmapar[:, :] = numpy.sqrt(sigmapar)
    else:
        parameters = numpy.zeros((n, b_shape[1]), numpy.float)
        sigmapar = numpy.zeros((n, b_shape[1]), numpy.float)
        for i in range(b_shape[1]):
            tmpWeight = w[:, i:i+1]
            tmpData = b[:, i:i+1] / tmpWeight
            A = a / tmpWeight
            U, s, V = numpy.linalg.svd(A, full_matrices=False)
            if rcond is None:
                s_cutoff = n * numpy.finfo(numpy.float).eps
            else:
                s_cutoff = rcond * s[0]
            s[s < s_cutoff] = numpy.inf
            s.shape = -1
            dummy = numpy.dot(V.T, numpy.eye(n)*(1./s))
            parameters[:, i:i+1] = numpy.dot(dummy, numpy.dot(U.T, tmpData))
            if uncertainties or covariances:
                # get the uncertainties
                _covariance = numpy.dot(dummy, dummy.T)
                sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance))
                if covariances:
                    covarianceMatrix[i] = _covariance

    if len(original) == 1:
        parameters.shape = -1
    if covariances:
        sigmapar.shape = parameters.shape
        if len(original) == 1:
            covarianceMatrix.shape = parameters.shape[0], parameters.shape[0] 
        result = [parameters, sigmapar, covarianceMatrix]
    elif uncertainties:
        sigmapar.shape = parameters.shape
        result = [parameters, sigmapar]
    else:
        result = [parameters]

    if digested_output:
        ddict = {}
        ddict['parameters'] = result[0]
        if len(result) > 1:
            ddict['uncertainties'] = result[1]
        elif covariances:
            ddict['covariances'] = result[2]
        return ddict
    else:
        return result
        

def getModelMatrixFromFunction(model_function, dummy_parameters, xdata, derivative=None):
    nPoints = xdata.size
    nParameters = len(dummy_parameters)
    modelMatrix = numpy.zeros((nPoints, nParameters) , numpy.float)
    pwork = dummy_parameters * 1
    for i in range(len(dummy_parameters)):
        fitparam = dummy_parameters[i]
        if derivative is None:
            delta = (pwork[i] + numpy.equal(fitparam, 0.0)) * 0.00001
            pwork[i] = fitparam + delta
            f1 = model_function(pwork, xdata)
            pwork[i] = fitparam - delta
            f2 = model_function(pwork, xdata)
            help0 = (f1-f2) / (2.0 * delta)
            pwork[i] = fitparam
        else:
            help0 = derivative(pwork, i, xdata)
        help0.shape = -1
        modelMatrix[:, i] = help0
    return modelMatrix

def modelFunction(p, x):
    return p[0] + (p[1] + p[2] * x) * x

def test1():
    x = numpy.arange(10000.)
    x.shape = -1, 1
    y = modelFunction([100., 50., 4.], x)
    A = getModelMatrixFromFunction(modelFunction, [0.0, 0.0, 0.0], x)
    parameters, uncertainties = lstsq(A, y, uncertainties=True, weight=False)
    print("Expected = 100., 50., 4.")
    print("Obtained = %f, %f, %f" % (parameters[0], parameters[1], parameters[2]))

def test2():
    import time
    try:
        from PyMca import Gefit
        GEFIT = True
        def f(p, x):
            return p[1] * x + p[0]
    except:
        GEFIT = False
    data = "0 0.8214 0.1 1 2.8471 0.3 2 4.852 0.5 3 7.5347 0.7 4 10.2464 0.9 5 10.2707 1.1 6 12.8011 1.3 7 13.7108 1.5 8 17.8501 1.7 9 15.3667 1.9 10 19.3933 2.1"
    data = numpy.array([float(x) for x in data.split()])
    data.shape = -1, 3

    # the model matrix for a straight line
    A = numpy.ones((data.shape[0],2), numpy.float)
    A[:, 1] = data[:, 0]
    print("Unweighted results:")
    t0 = time.time()
    y =  numpy.ones((data.shape[0], 1000), numpy.float) * data[:, 1:2]
    sigmay =  numpy.ones((data.shape[0], 1000), numpy.float) * data[:, 2:3]
    parameters, uncertainties = lstsq(A, y, #sigma_b=sigmay, #sigma_b=numpy.ones(sigmay.shape),
                                      uncertainties=True, weight=False)
    print("Elapsed = %f" % (time.time() - t0))
    print("Parameters    = %f, %f" % (parameters[0,100], parameters[1, 100]))
    print("Uncertainties = %f, %f" % (uncertainties[0,100], uncertainties[1, 100]))
    if GEFIT:
        t0 = time.time()
        for i in range(y.shape[1]):
            parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0],
                                                xdata=data[:,0],
                                                ydata=data[:,1],
                                                sigmadata=data[:,2],
                                                weightflag=0,
                                                linear=1)
        print("Elapsed = %f" % (time.time() - t0))
        print("Gefit results:")
        print("Parameters    = %f, %f" % (parameters[0], parameters[1]))
        print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1]))
                                                
    print("Mathematica results:")
    print("Parameters    = %f, %f" % (1.57043, 1.78945))
    print("Uncertainties = %f, %f" % (0.68363, 0.11555))

    print("Weighted results")
    t0 = time.time()
    #parameters, uncertainties = lstsq(A, data[:, 1], sigma_b=data[:,2],
    parameters, uncertainties = lstsq(A, y, sigma_b=numpy.outer(data[:,2], numpy.ones((1000, 1))),
                                      uncertainties=True, weight=True)
    print("Elapsed = %f" % (time.time() - t0))
    print("Parameters    = %f, %f" % (parameters[0, 100], parameters[1, 100]))
    print("Uncertainties = %f, %f" % (uncertainties[0, 100], uncertainties[1, 100]))    
    if GEFIT:
        parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0],
                                                xdata=data[:,0],
                                                ydata=data[:,1],
                                                sigmadata=data[:,2],
                                                weightflag=1,
                                                linear=1)
        print("Gefit results:")
        print("Parameters    = %f, %f" % (parameters[0], parameters[1]))
        print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1]))

    print("Mathematica results:")
    print("Parameters    = %f, %f" % (0.843827, 1.97982))
    print("Uncertainties = %f, %f" % (0.092449, 0.07262))

    return data

if __name__ == "__main__":
    test1()
    test2()