This file is indexed.

/usr/lib/python2.7/dist-packages/PyMca/py_nnma/nnma.py is in pymca 4.7.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
#encoding:latin-1
import numpy as np

try:    
    import scipy.sparse as sp
    has_sparse = True
    is_sparse = lambda A: isinstance(A, sp.spmatrix)

except ImportError:
    has_sparse = False
    is_sparse = lambda A: False

import math


__doc__ = """

py_nnma:  python modules for nonnegative matrix approximation (NNMA)

(c) 2009 Uwe Schmitt, uschmitt@mineway.de

NNMA minimizes  dist(Y, A X)

       where:  Y >= 0,  m x n
               A >= 0,  m x k
               X >= 0,  n x k

               k < min(m,n)

     dist(A,B) can be || A - B ||_fro 
                   or   KL(A,B)


This moudule provides the following functions:

    NMF, NMFKL, SNMF, RRI, ALS, GDCLS, GDCLS_L1, FNMAI, FNMAI_SPARSE,
    NNSC and FastHALS

The common parameters when calling such a function are:

    input:

            Y           --   the matrix for decomposition, maybe dense 
                             from numpy or sparse from scipy.sparse 
                             package

            k           --   number of componnets to estimate

            Astart 
            Xstart      --   matrices to start iterations. Maybe None
                             for using random start matrices.

            eps         --   termination swell value

            maxcount    --   max number of iterations to be performed

            verbose     --   if False: produce no output durint interations
                             if integer: give all 'verbose' itetations some
                             output about current state of iterations

    output:

            A, X        --   result matrices of algorithm 
            
            obj         --   value of objective function of last iteration

            count       --   number of iterations done

            converged   --   flag: indicates if iterations stoped within 
                             max number of iterations

The following extra parameters exist depending on algorithm:

    RRI      :  damping parameter 'psi' (default: 1e-12)

    SNMF     :  sparsity parameter 'sparse_par' (default: 0)

    ALS      :  regularization parameter 'regul' for stabilizing iterations
                (default value 0). needed if objective value jitters.
 
    GCDLS    :  'regul' for l2-smoothness of X (default 0)

    GDCLS_L1 :  'regul' for l1-smoothness of X (default 0)

    FNMAI    :  'stabil' for stabilizing algorithm (default value 1e-12)
                'alpha'  for stepsize  (default value 0.1)
                'tau'    for number of inner iterations (default value 2)

    FNMAI_SPARSE : as FNMAI plus
                'regul'  for l1-smoothness of X (default 0)

    NNSC     :  'alpha'       for stepsize of gradient update of A
                'sparse_par'  for sparsity

#############################################################################

Copyright (c) 2009 Uwe Schmitt, uschmitt@mineway.de

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

    * Redistributions of source code must retain the above copyright
    * notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
    * copyright notice, this list of conditions and the following
    * disclaimer in the documentation and/or other materials provided
    * with the distribution.  Neither the name of the <ORGANIZATION>
    * nor the names of its contributors may be used to endorse or
    * promote products derived from this software without specific
    * prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


This module is based on:

    - Daniel D. Lee and H. Sebastian Seung:

          "Algorithms for non-negative matrix factorization", 
          in Advances in Neural Information Processing 13 
          (Proc. NIPS*2000) MIT Press, 2001.

          "Learning the parts of objects by non-negative matrix
           factorization",
          Nature, vol. 401, no. 6755, pp. 788-791, 1999.

    - A. Cichocki and A-H. Phan:

          "Fast local algorithms for large scale Nonnegative Matrix and
           Tensor Factorizations",
          IEICE Transaction on Fundamentals,
          in print March 2009.

    - P. O. Hoyer

          "Non-negative Matrix Factorization with sparseness
           constraints", 
          Journal of Machine Learning Research, vol. 5, pp. 1457-1469,
          2004.


    - Dongmin Kim, Suvrit Sra,Inderjit S. Dhillon:

           "Fast Newton-type Methods for the Least Squares Nonnegative Matrix
           Approximation Problem" 
           SIAM Data Mining (SDM), Apr. 2007 
          

    - Ngoc-Diep Ho:

        dissertation from
        http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-06052008-235205/

"""

#
# helper functions for handling sparse and dense matrices from numpy 
# and scipy.sparse
#
def divide_sparse_matrix(A, by):

    assert isinstance(A, sp.spmatrix), "wrong format"

    A = A.tocoo()
    A.data /= by[A.row, A.col]
    return A

def divide_matrix(A, by):

    if is_sparse(A):
        return divide_sparse_matrix(A, by)
    elif isinstance(A, np.ndarray):
        return A / by
    else:
        raise TypeError("wrong matrix format %s" % type(A))

def dot(A, B):

    if is_sparse(A) and is_sparse(B):
        return (A*B).todense()
    elif is_sparse(A):
        return A*B
    elif is_sparse(B):
        return (B.transpose() * A.T).T
    else:
        return np.dot(A, B)

def diff(A, B):
    E = A - B
    # if A is sparse E is np.matrix 
    # if A is dense  E is np.ndarray
    # so: convert np.matrix to np.ndarray if needed:
    if isinstance(E, np.matrix):
        return E.A
    return E

def flatten(A):

    if is_sparse(A):
        return A.todense().flatten().A
    else:
        return A.flatten()

def frob_norm(A):
    if is_sparse(A):
        return math.sqrt( (A.data**2).sum())
    else:
        return np.linalg.norm(A)

def transpose(A):

    if is_sparse(A):
        return  sp.csr_matrix(A.transpose())
    else:
        return A.T

def get_scaling_vector(A, p=1.0):

    if is_sparse(A):
        dd = ((A**p).tocsc().sum(axis=0).A)**(1.0/p)
    else:
        dd = ((A**p).sum(axis=0))**(1.0/p)
    return dd

def coerced(Y):

    # csr is faster for matrix-vector or matrix-matrix products
    if is_sparse(Y):

        if isinstance(Y, sp.csc_matrix):
            YT = sp.csr_matrix(Y.T)
            Y  = sp.csr_matrix(Y)

        elif isinstance(Y, sp.csr_matrix):
            YT = sp.csr_matrix(Y.T)

    elif isinstance(Y, np.ndarray):
        YT = Y.T

    return Y, YT

#
#    building blocks for nnma algorithms
##


def GradA(Y, YT, A, X, **param):
    """ dPhi(Y, A, X) / dA  with  Phi(Y, A, X) = || Y - A X ||_fro """

    XXT = np.dot(X, X.T)
    return np.dot(A, XXT) - dot(Y, X.T)


def GradX(Y, YT ,A, X, **param):
    """ dPhi(Y, A, X) / dX  with  Phi(Y, A, X) = || Y - A X ||_fro """

    ATA = np.dot(A.T, A)
    return np.dot(ATA, X) - dot(A.T, Y)

def GradA_step(Y, YT, A, X, **param):

    alpha = param.get("alpha", 1e-3)
    A = A - alpha * GradA(Y, YT, A, X, **param)
    #A /= np.sqrt((A*A).sum(axis=0))
    A[A<0] = 0
    return A

def GradX_step(Y, YT, A, X, **param):

    alpha = param.get("alpha", 1e-6)
    X = X - alpha * GradX(Y, YT, A, X, **param)
    X[X<0] = 0
    return X

def A_mult_update_kl_div(Y, YT, A, X, **param):
    """ update A for minimization of KL(Y || A X) """

    AX = np.dot(A, X)
    Y_by_AX = divide_matrix(Y, 1e-9+AX)
    F = dot(Y_by_AX, X.T) / X.sum(axis=1).T
    return A*F

def X_mult_update_kl_div(Y, YT, A, X, **param):
    """ update V for minimization of KL(Y || A X) """

    AX = np.dot(A, X)
    Y_by_AX = divide_matrix(Y, 1e-9+AX)

    F = dot(transpose(Y_by_AX), A).T
    return X* (F.T / A.sum(axis=0)).T

def A_mult_update(Y, YT, A, X, **param):
    """ Lee and Sung multiplicative update """

    AXXT = np.dot(A, np.dot(X, X.T))
    F = dot(Y, X.T)/(1e-9 + AXXT)
    return A*F

def X_mult_update(Y, YT, A, X, **param):
    """ Lee and Sung multiplicative update """

    ATAX = np.dot(np.dot(A.T, A),X)
    ATY  = dot(YT, A).T
    F = ATY/(1e-9 + ATAX)
    return X*F

def X_mult_update_nnsc(Y, YT, A, X, **param):
    """ Lee and Sung multiplicative update """

    regul=param.get("sparse_par", 1e-9)
    ATAX = np.dot(np.dot(A.T, A),X)
    ATY  = dot(YT, A).T
    F = ATY/(regul + ATAX)
    return X*F

def A_inexact_lsq_update(Y, YT, A, X, **param):
    """ ALS fixed point update """

    regul=param.get("regul", 0.0)

    XXT = np.dot(X, X.T)
    YXT = dot(Y, X.T)
    A =  np.dot(YXT,  np.linalg.pinv(XXT + regul*np.eye(XXT.shape[0])))
    A[A<0] = 0
    return A

def X_inexact_lsq_update(Y, YT, A, X, **param):
    """ ALS fixed point update """

    regul=param.get("regul", 0.0)

    ATA = np.dot(A.T, A)
    ATY  = dot(YT, A).T
    X = np.dot(np.linalg.pinv(ATA + regul*np.eye(ATA.shape[0])), ATY)
    X[X<0] = 0
    return X

def X_inexact_lsq_update_l1regul(Y, YT, A, X, **param):
    """ ALS fixed point update with L1 regularization for X """

    regul=param.get("regul", 0.0)
    ATA = np.dot(A.T, A)
    ATY  = dot(YT, A).T
    X = np.dot(np.linalg.pinv(ATA+1e-12*np.eye(ATA.shape[0])),ATY-regul)
    X[X<0] = 0
    return X

def FNMAI_A_update(Y, YT, A, X, **param):
    """ FNMAI (Kim et al) update for A """

    stabil=param.get("stabil", 1e-12)
    alpha=param.get("alpha", 0.1)
    tau=param.get("tau", 2)
    k = A.shape[1]
    a = max(1e-9, stabil)

    for _ in range(tau):
        G = GradA(Y, YT, A, X)
        Iplus = (A==0) & (G>0)
        G[Iplus] = 0

        G = np.dot(G, np.linalg.pinv(np.dot(X,X.T)+a*np.eye(k)))
        G[Iplus] = 0
        A -= alpha*G
        A[A<0] = 0
    return A
    
def FNMAI_X_update(Y, YT, A, X, **param):
    """ FNMAI (Kim et al) update for V """

    stabil=param.get("stabil", 1e-12)
    alpha=param.get("alpha", 0.1)
    tau=param.get("tau", 2)
    k = A.shape[1]
    a = max(1e-9, stabil)

    for _ in range(tau):
        G = GradX(Y, YT, A, X)
        Iplus = (X==0) & (G>0)
        G[Iplus] = 0

        G = np.dot(np.linalg.pinv(np.dot(A.T,A)+a*np.eye(k)), G)
        G[Iplus] = 0
        X -= alpha*G
        X[X<0] = 0
    return X

def FastHALS_X_update(Y, YT, A, X, **param):
    W = dot(YT, A)
    V = dot(A.T, A)
    k = A.shape[1]
    for i in range(k):
        xi = X[i,:]
        xi += W[:,i]-dot(X.T, V[:,i])
        xi[xi<0] = 0
        X[i,:] = xi
    return X

def FastHALS_A_update(Y, YT, A, X, **param):
    P = dot(Y, X.T)
    Q = dot(X, X.T)
    k = A.shape[1]
    for i in range(k):
        ai = A[:,i]
        ai = ai*Q[i,i] + P[:,i]-dot(A, Q[:,i])
        ai[ai<0] = 0
        ai /= np.linalg.norm(ai)
        A[:,i] = ai
        
    return A

#
# All NNMA algorithms have the same structure which is implemented 
# in AlgorunnerTemplate
#

class AlgorunnerTemplate(object):

    def frob_dist(self, Y, A, X):
        """ frobenius distance between Y and A X """
        return np.linalg.norm(Y - np.dot(A,X)) 

    def kl_divergence(self, Y, A, X):
        """ kullbach leibler divergence D(Y | A X) """
        AXvec = np.dot(A, X).flatten()
        Yvec = flatten(Y)

        return (Yvec*np.log(Yvec/AXvec)-Yvec+AXvec).sum()

    dist = frob_dist # default case

    def init_factors(self, Y, k,  A=None, X=None):
        """ generate start matrices U, V """

        m, n = Y.shape

        # sample start matrices
        if A is None: 
            A = np.random.rand(m,k)
        elif isinstance(A, np.matrix):
            A = A.A
        if X is None: 
            X = np.random.rand(k,n)
        elif isinstance(X, np.matrix):
            X = X.A

        # scale A, X with alpha such that || Y - alpha AX ||_fro is 
        # minimized

        AX = np.dot(A,X).flatten()
        # alpha = < Y.flatten(), AX.flatten() > / < AX.flatten(),AX.flatten() >
        if is_sparse(Y):
            # can we improve this confirming memory usage ????
            alpha = np.diag(dot(Y, np.dot(A,X).T)).sum()/np.dot(AX, AX)
        else:
            alpha = np.dot(Y.flatten(), AX)/np.dot(AX,AX)

        A /= math.sqrt(alpha)
        X /= math.sqrt(alpha)

        return A, X

    param_update = None  # default, may be overidden by method which
                         # adapts parametes from iteration to iteration

    def __call__(self, Y, k, A=None, X=None, eps=1e-5, 
                 maxcount=1000, verbose=False, **param):

        """ basic template for NNMA iterations """

        m, n = Y.shape

        if k<1 or k>m or k>n:
            raise ValueError("number k of components is invalid")

        Y, YT = coerced(Y)

        A, X = self.init_factors(Y, k, A, X)

        count = 0
        obj_old = 1e99

        param = param.copy()

        # works for sparse and for dense matrices:
        # calculate frobenius norm of Y
        nrm_Y = frob_norm(Y)

        while True:

            A, X = self.update(Y, YT, A, X, **param)

            if np.any(np.isnan(A)) or np.any(np.isinf(A)) or \
               np.any(np.isnan(X)) or np.any(np.isinf(X)):

                if verbose:
                    print("RESTART")
                A, X = self.init_factors(Y, k)
                count = 0
            
            count += 1

            # relative distance which is independeant to scaling of A
            obj = self.dist(Y, A, X) / nrm_Y

            delta_obj = obj-obj_old
            if verbose:
                # each 'verbose' iterations report about actual state 
                if count % verbose == 0:
                    print("count=%6d obj=%E d_obj=%E" %(count, obj, 
                                                        delta_obj))

            if count >= maxcount: break 
            # delta_obj should be "almost negative" and small enough:
            if -eps < delta_obj <= 1e-12:
                break

            obj_old = obj
            if self.param_update is not None:
                self.param_update(param)

        if verbose:
            print("FINISHED:")
            print("count=%6d obj=%E d_obj=%E" %(count, obj, delta_obj))

        return A, X,  obj, count, count < maxcount


#
# Most NNMA algorithms have global updates of U and V which can be
# combined with the following base class:
#

class FactorizedNNMA(AlgorunnerTemplate):

    def __init__(self, update_A, update_X, param_update = None):
        self.update_A = update_A
        self.update_X = update_X
        self.param_update = param_update

    def update(self, Y,  YT, A, X,  **param):

        A = self.update_A(Y, YT, A, X, **param)
        X = self.update_X(Y, YT, A, X, **param)

        return A, X

class SNMF_(AlgorunnerTemplate):

    """
    W. Liu, N. Zheng, and X. Lu.:
    "Non-negative matrix factorization for visual coding". In Proc. IEEE Int.
    Conf. on Acoustics, Speech and Signal Processing (ICASSP�2003), 2003
    """

    # use kullbach-level distance
    dist = AlgorunnerTemplate.kl_divergence

    def update(self, Y, YT, A, X, **param):

        sparse_par = param.get("sparse_par", 0.0)

        A /= A.sum(axis=0)+1e-9
        AX = np.dot(A, X)

        Y_by_AX = divide_matrix(Y, 1e-9+AX)

        X *= dot(Y_by_AX.T, A).T / (1.0 + sparse_par)

        AX = np.dot(A, X)
        Y_by_AX = divide_matrix(Y, 1e-9+AX)
        F = dot(Y_by_AX, X.T) / ( X.T.sum(axis=0) + 1e-9)
        A *= F

        return A, X

class RRI_(AlgorunnerTemplate):

    """
    Runtime optimisations from Cichocki applied to
    Damped rank one residual iteration from Ngoc-Diep Ho.
    """
    
    def update(self, Y, YT, A, X,  **param):

        E = diff(Y, np.dot(A,X))

        psi = param.get("psi", 1e-12)

        for j in range(A.shape[1]):

            aj = A[:,j]
            xj = X[j,:]

            Rt =  E + np.outer(aj, xj)

            xj = np.dot(Rt.T, aj)+psi*xj
            xj[xj<0]= 0

            fac = np.linalg.norm(aj)**2
            xj /= fac+psi

            aj = np.dot(Rt, xj)+psi*aj
            aj[aj<0]= 0

            fac = np.linalg.norm(xj)**2
            aj /= fac+psi

            A[:,j] = aj
            X[j,:] = xj

            E = Rt - np.outer(aj, xj)

        return A, X


#
# create  algorithms objects
#

SNMF     = SNMF_()
RRI      = RRI_()

# classical algorithme with frobenius norm for calculating 
# objective function
NMF      = FactorizedNNMA(A_mult_update, X_mult_update)

# classical algorithme with kl divergence or calculating 
# objective function
NMFKL    = FactorizedNNMA(A_mult_update_kl_div, X_mult_update_kl_div)


# Stabilized alternating least sqaures with decreasing regularization
# from Cichocki et al.

def regul_dec(param):
    param["regul"] = param.get("regul", 0)* .9

ALS      = FactorizedNNMA(A_inexact_lsq_update, X_inexact_lsq_update, 
                          regul_dec)
# GDCLS from 
# "Document clustering using nonnegative matrix factorization"
# Information Processing and Management
# Volume 42 ,  Issue 2  (March 2006) t
# Pages: 373 - 386  ,
GDCLS    = FactorizedNNMA(A_mult_update, X_inexact_lsq_update)

#Fast Newton-type Method from Kim et al
FNMAI    = FactorizedNNMA(FNMAI_A_update, FNMAI_X_update)


# own algorithms for approximation of Y ~ A X

# replace l2-regularisation when updating X by l1-regularization 
# for getting spare coordinates
GDCLS_L1 = FactorizedNNMA(A_mult_update, X_inexact_lsq_update_l1regul)

# replace FNMAI_X_update by l1 regulraized least squares update 
FNMAI_SPARSE = FactorizedNNMA(FNMAI_A_update, \
                              X_inexact_lsq_update_l1regul)

# Hoyers sparse coding algorithm
NNSC = FactorizedNNMA(GradA_step, X_mult_update_nnsc)

# FastHALS from Cichocki and Phan
FastHALS = FactorizedNNMA(FastHALS_A_update, FastHALS_X_update)

if __name__ == "__main__":

    # test all routines !

    param = dict(alpha=.1, tau=2, regul=1e-2, sparse_par=1e-1, psi=1e-3)

    nc = 10
    B = np.random.rand(30,nc)
    C = np.random.rand(nc,20)
    A = np.dot(B, C)

    import sys, time

    def run(name, routine, verbose=0):
        print("run %12s" % name,)
        sys.stdout.flush()
        start = time.time()
        X,Y,obj,count,converged = routine(A, 10, eps=5e-5, verbose=verbose, 
                                          maxcount=1000, **param) 
        print("obj = %E  count=%5d  converged=%d  TIME=%.2f secs" % \
                     (obj,count, converged, time.time()-start))
    
    print("\nTEST WITH DENSE MATRIX\n")

    run("NNSC", NNSC, verbose=0)
    run("FNMAI_SPARSE", FNMAI_SPARSE)
    run("FNMAI", FNMAI)
    run("GDCLS_L1", GDCLS_L1)
    run("GDCLS", GDCLS)
    run("ALS", ALS)
    run("NMFKL", NMFKL)
    run("NMF", NMF)
    run("RRI", RRI)
    run("FastHALS", FastHALS)
    run("SNMF", SNMF)


    if has_sparse:
        print("\nTEST WITH SPARSE MATRIX\n")
        A = sp.csc_matrix(A)

        run("NNSC", NNSC, verbose=0)
        run("FNMAI_SPARSE", FNMAI_SPARSE)
        run("FNMAI", FNMAI)
        run("GDCLS_L1", GDCLS_L1)
        run("GDCLS", GDCLS)
        run("ALS", ALS)
        run("NMFKL", NMFKL)
        run("NMF", NMF)
        run("RRI", RRI)
        run("FastHALS", FastHALS)
        run("SNMF", SNMF)