/usr/share/pyshared/cogent/evolve/coevolution.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 | #!/usr/bin/env python
# Authors: Greg Caporaso (gregcaporaso@gmail.com), Brett Easton, Gavin Huttley
# coevolution.py
""" Description
File created on 03 May 2007.
Functions to perform coevolutionary analyses on
pre-aligned biological sequences. Coevolutionary analyses detect
correlated substitutions between alignment positions. Analyses
can be performed to look for covariation between a pair of
alignment positions, in which case a single 'coevolve score' is
returned. (The nature of this coevolve score is determined by the
method used to detect coevolution.) Alternatively, coevolution can
be calculated between one position and all other positions in an
alignment, in which case a vector of coevolve scores is returned.
Finally, coevolution can be calculated over all pairs of positions
in an alignment, in which case a matrix (usually, but not necessarily,
symmetric) is returned.
The functions providing the core functionality here are:
coevolve_pair: coevolution between a pair of positions (float returned)
coevolve_position: coevolution between a position and all other
positions in the alignment (vector returned)
coevolve_alignment: coevolution between all pairs of positions in an
alignment (matrix returned)
Each of these functions takes a coevolution calculator, an alignment, and
any additional keyword arguments that should be passed to the coevolution
calculator. More information on these functions and how they should be used
is available as executable documentation in coevolution.rst.
The methods provided for calculating coevolution are:
Mutual Information (Shannon 19xx)
Normalized Mutual Information (Martin 2005)
Statistical Coupling Analysis (Suel 2003)
*Ancestral states (Tuffery 2000 -- might not be the best ref,
a better might be Shindyalov, Kolchannow, and Sander 1994, but so far I
haven't been able to get my hands on that one).
*Gctmpca (Yeang 2007)
(Yeang CH, Haussler D. Detecting the coevolution in and
among protein domains. PLoS Computational Biology 2007.)
* These methods require a phylogenetic tree, in addition to an alignment.
Trees are calculated on-the-fly, by neighbor-joining, if not provided.
This file can be applied as a script to calculate a coevolution matrix given
an alignment. For information, run python coevolution.py -h from the command
line.
"""
from __future__ import division
from optparse import make_option
from cPickle import Pickler, Unpickler
from os.path import splitext, basename, exists
from sys import exit
from numpy import zeros, ones, float, put, transpose, array, float64, nonzero,\
abs, sqrt, exp, ravel, take, reshape, mean, tril, nan, isnan, log, e,\
greater_equal, less_equal
from random import shuffle
from cogent.util.misc import parse_command_line_parameters
from cogent.maths.stats.util import Freqs
from cogent.util.array import norm
from cogent.core.sequence import Sequence
from cogent.core.moltype import IUPAC_gap, IUPAC_missing
from cogent.core.profile import Profile
from cogent.core.alphabet import CharAlphabet, Alphabet
from cogent.maths.stats.distribution import binomial_exact
from cogent.maths.stats.special import ROUND_ERROR
from cogent.parse.record import FileFormatError
from cogent.evolve.substitution_model import SubstitutionModel
from cogent import LoadSeqs, LoadTree, PROTEIN, RNA
from cogent.core.tree import TreeError
from cogent.core.alignment import seqs_from_fasta, DenseAlignment
from cogent.parse.newick import TreeParseError
from cogent.parse.record import RecordError
from cogent.app.gctmpca import Gctmpca
from cogent.util.recode_alignment import recode_dense_alignment, \
alphabets, recode_freq_vector, recode_counts_and_freqs, \
square_matrix_to_dict
from cogent.evolve.substitution_model import EmpiricalProteinMatrix
__author__ = "Greg Caporaso"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Greg Caporaso", "Gavin Huttley", "Brett Easton",\
"Sandra Smit", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Greg Caporaso"
__email__ = "gregcaporaso@gmail.com"
__status__ = "Beta"
gDefaultExcludes = ''.join([IUPAC_gap,IUPAC_missing])
gDefaultNullValue = nan
## Mutual Information Analysis
# Mutual Information Calculators
def mi(h1,h2,joint_h):
""" Calc Mutual Information given two entropies and their joint entropy
"""
return h1 + h2 - joint_h
def normalized_mi(h1,h2,joint_h):
""" MI normalized by joint entropy, as described in Martin 2005 """
return mi(h1,h2,joint_h) / joint_h
nmi = normalized_mi
# Other functions used in MI calculations
def join_positions(pos1,pos2):
""" Merge two positions and return as a list of strings
pos1: iterable object containing the first positions data
pos2: iterable object containing the second positions data
Example:
>>> join_positions('ABCD','1234')
['A1', 'B2', 'C3', 'D4']
"""
return [''.join([r1,r2]) for r1,r2 in zip(pos1,pos2)]
def joint_entropy(pos1,pos2):
""" Calculate the joint entroy of a pair of positions """
return Freqs(join_positions(pos1,pos2)).Uncertainty
# Exclude handlers (functions for processing position strings with exclude
# characters)
def ignore_excludes(pos,excludes=gDefaultExcludes):
""" Return position data as-is (results in excludes treated as other chars)
"""
return pos
# Functions for scoring coevolution on the basis of Mutual Information
def mi_pair(alignment,pos1,pos2,h1=None,h2=None,mi_calculator=mi,\
null_value=gDefaultNullValue,excludes=gDefaultExcludes,exclude_handler=None):
""" Calculate mutual information of a pair of alignment positions
alignment: the full alignment object
pos1: index of 1st position in alignment to be compared
(zero-based, not one-based)
pos2: index of 2nd position in alignment to be compared
(zero-based, not one-based)
h1: entropy of pos1, if already calculated (to avoid time to recalc)
h2: entropy of pos2, if already calculated (to avoid time to recalc)
mi_calculator: a function which calculated MI from two entropies and
their joint entropy -- see mi and normalized_mi for examples
null_value: the value to be returned if mi cannot be calculated (e.g.,
if mi_calculator == normalized_mi and joint_h = 0.0)
excludes: iterable objects containing characters that require special
handling -- by default, if a position contains an exclude, null_value
will be returned. For non-default handling, pass an exclude_handler
exclude_handler: a function which takes position data and returns it
with exclude characters processed in someway. Position data should be
an iterable object containing the characters present at each position.
f(position_data,excludes=gDefaultExcludes) -> position_data
"""
positions = alignment.Positions
col1 = positions[pos1]
col2 = positions[pos2]
# Detect and process exclude characters.
# This bit of code is slow, and not necessary if
# exclude_hanlder == ignore_excludes, so I explicitly
# check, and bypass this block if possible.
if exclude_handler != ignore_excludes:
for col in (col1,col2):
states = set(col)
for exclude in excludes:
if exclude in states:
try:
col = exclude_handler(col,excludes)
break
except TypeError:
return null_value
# Calculate entropy of pos1 & pos2, if they weren't passed in.
if not h1:
h1 = Freqs(col1).Uncertainty
if not h2:
h2 = Freqs(col2).Uncertainty
# Calculate the joint entropy of pos1 & pos2
joint_h = joint_entropy(col1,col2)
# Calculate MI using the specified method -- return null_value when
# the specified MI cannot be calculated
# (e.g., mi_calculator=nmi and joint_h=0.0)
try:
result = mi_calculator(h1,h2,joint_h)
if result <= ROUND_ERROR: result = 0.0
except ZeroDivisionError:
result = null_value
return result
def mi_position(alignment,position,\
positional_entropies=None,mi_calculator=mi,null_value=gDefaultNullValue,\
excludes=gDefaultExcludes,exclude_handler=None):
""" Calc mi b/w position and all other positions in an alignment
alignment: the full alignment object
position: the position number of interest -- NOTE: this is the
position index, not the sequenece position (so zero-indexed, not
one-indexed)
positional_entropies: a list containing the entropy of each position in
the alignment -- these can be passed in to avoid recalculating if
calling this function over more than one position (e.g., in
mi_alignment)
mi_calculator: a function which calculated MI from two entropies and
their joint entropy -- see mi and normalized_mi for examples
null_value: the value to be returned if mi cannot be calculated (e.g.,
if mi_calculator == normalized_mi and joint_h = 0.0)
excludes: iterable objects containing characters that require special
handling -- by default, if a position contains an exclude, null_value
will be returned. For non-default handling, pass an exclude_handler
exclude_handler: a function which takes a position and returns it
with exclude characters processed in someway.
"""
aln_length = len(alignment)
# Create result vector
result = zeros(aln_length,float)
# compile positional entropies if not passed in
if positional_entropies == None:
positional_entropies = \
[Freqs(p).Uncertainty for p in alignment.Positions]
# Will want to make a change here so that we don't need to recalculate
# all values when calling from mi_alignment
for i in range(aln_length):
result[i] = mi_pair(alignment,pos1=position,pos2=i,\
h1=positional_entropies[position],h2=positional_entropies[i],\
mi_calculator=mi_calculator,null_value=null_value,excludes=excludes,\
exclude_handler=exclude_handler)
return result
def mi_alignment(alignment,mi_calculator=mi,null_value=gDefaultNullValue,\
excludes=gDefaultExcludes,exclude_handler=None):
""" Calc mi over all position pairs in an alignment
alignment: the full alignment object
mi_calculator: a function which calculated MI from two entropies and
their joint entropy -- see mi and normalized_mi for examples
null_value: the value to be returned if mi cannot be calculated (e.g.,
if mi_calculator == normalized_mi and joint_h = 0.0)
excludes: iterable objects containing characters that require special
handling -- by default, if a position contains an exclude, null_value
will be returned. For non-default handling, pass an exclude_handler
exclude_handler: a function which takes a position and returns it
with exclude characters processed in someway.
"""
aln_length = len(alignment)
# Create result matrix
result = zeros((aln_length,aln_length),float)
# Compile postional entropies for each position in the alignment
# I believe I started using this rather than alignment.uncertainties
# b/c the latter relies on converting a DenseAlignment to an Alignment --
# need to check into this.
positional_entropies = [Freqs(p).Uncertainty for p in alignment.Positions]
# Calculate pairwise MI between position_number and all alignment
# positions, and return the results in a vector.
for i in range(aln_length):
for j in range(i+1):
result[i,j] = mi_pair(alignment,pos1=i,pos2=j,\
h1=positional_entropies[i],h2=positional_entropies[j],\
mi_calculator=mi_calculator,null_value=null_value,\
excludes=excludes,exclude_handler=exclude_handler)
# copy the lower triangle to the upper triangle to make
# the matrix symmetric
ltm_to_symmetric(result)
return result
## End Mutual Information Analysis
## Start Normalized Mutual Information Analysis (Martin 2005)
def normalized_mi_pair(alignment,pos1,pos2,h1=None,h2=None,\
null_value=gDefaultNullValue,excludes=gDefaultExcludes,\
exclude_handler=None):
"""Calc normalized mutual information of a pair of alignment positions
alignment: the full alignment object
pos1: index of 1st position in alignment to be compared
(zero-based, not one-based)
pos2: index of 2nd position in alignment to be compared
(zero-based, not one-based)
h1: entropy of pos1, if already calculated (to avoid time to recalc)
h2: entropy of pos2, if already calculated (to avoid time to recalc)
null_value: the value to be returned if mi cannot be calculated (e.g.,
if mi_calculator == normalized_mi and joint_h = 0.0)
excludes: iterable objects containing characters that require special
handling -- by default, if a position contains an exclude, null_value
will be returned. For non-default handling, pass an exclude_handler
exclude_handler: a function which takes a position and returns it
with exclude characters processed in someway.
"""
return mi_pair(alignment,pos1,pos2,h1=h1,h2=h2,mi_calculator=nmi,\
null_value=null_value,excludes=excludes,\
exclude_handler=exclude_handler)
nmi_pair = normalized_mi_pair
def normalized_mi_position(alignment,position,positional_entropies=None,\
null_value=gDefaultNullValue,excludes=gDefaultExcludes,\
exclude_handler=None):
""" Calc normalized mi b/w position and all other positions in an alignment
alignment: the full alignment object
position: the position number of interest -- NOTE: this is the
position index, not the sequenece position (so zero-indexed, not
one-indexed)
positional_entropies: a list containing the entropy of each position in
the alignment -- these can be passed in to avoid recalculating if
calling this function over more than one position (e.g., in
mi_alignment)
null_value: the value to be returned if mi cannot be calculated (e.g.,
if mi_calculator == normalized_mi and joint_h = 0.0)
excludes: iterable objects containing characters that require special
handling -- by default, if a position contains an exclude, null_value
will be returned. For non-default handling, pass an exclude_handler
exclude_handler: a function which takes a position and returns it
with exclude characters processed in someway.
"""
return mi_position(alignment,position,\
positional_entropies=positional_entropies,\
mi_calculator=nmi,null_value=null_value,excludes=excludes,\
exclude_handler=exclude_handler)
nmi_position = normalized_mi_position
def normalized_mi_alignment(alignment,null_value=gDefaultNullValue,\
excludes=gDefaultExcludes,exclude_handler=None):
""" Calc normalized mi over all position pairs in an alignment
alignment: the full alignment object
null_value: the value to be returned if mi cannot be calculated (e.g.,
if mi_calculator == normalized_mi and joint_h = 0.0)
excludes: iterable objects containing characters that require special
handling -- by default, if a position contains an exclude, null_value
will be returned. For non-default handling, pass an exclude_handler
exclude_handler: a function which takes a position and returns it
with exclude characters processed in someway.
"""
return mi_alignment(alignment=alignment,mi_calculator=normalized_mi,\
null_value=null_value,excludes=excludes,\
exclude_handler=exclude_handler)
nmi_alignment = normalized_mi_alignment
## End Normalized Mutual Information Analysis
## Start Statistical coupling analysis (SCA) (Suel 2003)
class SCAError(Exception):
pass
# PROTEIN's alphabet contains U, so redefining the alphabet for now
# rather than use PROTEIN.Alphabet. May want to revist this decision...
AAGapless = CharAlphabet('ACDEFGHIKLMNPQRSTVWY')
default_sca_alphabet = AAGapless
#AAGapless = PROTEIN.Alphabet
#Dictionary of mean AA-frequencies in all natural proteins
#Compiled by Rama Ranganathan from 36,498 unique eukaryotic proteins
#from the Swiss-Prot database
protein_dict = {
'A': 0.072658,
'C': 0.024692,
'D': 0.050007,
'E': 0.061087,
'F': 0.041774,
'G': 0.071589,
'H': 0.023392,
'I': 0.052691,
'K': 0.063923,
'L': 0.089093,
'M': 0.02315,
'N': 0.042931,
'P': 0.052228,
'Q': 0.039871,
'R': 0.052012,
'S': 0.073087,
'T': 0.055606,
'V': 0.063321,
'W': 0.01272,
'Y': 0.032955,
}
default_sca_freqs = protein_dict
def freqs_to_array(f,alphabet):
"""Takes data in freqs object and turns it into array.
f = dict or Freqs object
alphabet = Alphabet object or just a list that specifies the order
of things to appear in the resulting array
"""
return array([f.get(i,0) for i in alphabet])
def get_allowed_perturbations(counts, cutoff, alphabet, num_seqs=100):
"""Returns list of allowed perturbations as characters
count: Profile object of raw character counts at each position
num_seqs: number of sequences in the alignment
cutoff: minimum number of sequences in the subalignment (as fraction
of the total number of seqs in the alignment.
A perturbation is allowed if the subalignment of sequences that
contain the specified char at the specified position is larger
that the cutoff value * the total number of sequences in the alignment.
"""
result = []
abs_cutoff = cutoff * num_seqs
for char,count in zip(alphabet,counts):
if count >= abs_cutoff:
result.append(char)
return result
def probs_from_dict(d,alphabet):
""" Convert dict of alphabet char probabilities to list in alphabet's order
d: probabilities of observing each character in alphabet (dict indexed
by char)
alphabet: the characters in the alphabet -- provided for list order.
Must iterate over the ordered characters in the alphabet (e.g., a list
of characters or an Alphabet object)
"""
return array([d[c] for c in alphabet])
def freqs_from_aln(aln,alphabet,scaled_aln_size=100):
"""Return the frequencies in aln of chars in alphabet's order
aln: the alignment object
alphabet: the characters in the alphabet -- provided for list order.
Must iterate over the ordered characters in the alphabet (e.g., a list
of characters or an Alphabet object)
scaled_aln_size: the scaled number of sequences in the alignment. The
original SCA implementation treats all alignments as if they contained
100 sequences when calculating frequencies and probabilities. 100 is
therefore the default value.
*Warning: characters in aln that are not in alphabet are silently
ignored. Is this the desired behavior?
Need to combine this function with get_position_frequences (and renamed
that one to be more generic) since they're doing the same thing now.
"""
alphabet_as_indices = array([aln.Alphabet.toIndices(alphabet)]).transpose()
aln_data = ravel(aln.ArrayPositions)
return (alphabet_as_indices == aln_data).sum(1) * \
(scaled_aln_size/len(aln_data))
def get_positional_frequencies(aln,position_number,alphabet,\
scaled_aln_size=100):
"""Return the freqs in aln[position_number] of chars in alphabet's order
aln: the alignment object
position_number: the index of the position of interest in aln
(note: zero-based alignment indexing)
alphabet: the characters in the alphabet -- provided for list order.
Must iterate over the ordered characters in the alphabet (e.g., a list
of characters or an Alphabet object)
scaled_aln_size: the scaled number of sequences in the alignment. The
original SCA implementation treats all alignments as if they contained
100 sequences when calculating frequencies and probabilities. 100 is
therefore the default value.
*Warning: characters in aln that are not in alphabet are silently
ignored. Is this the desired behavior?
"""
alphabet_as_indices = array([aln.Alphabet.toIndices(alphabet)]).transpose()
position_data = aln.ArrayPositions[position_number]
return (alphabet_as_indices == position_data).sum(1) * \
(scaled_aln_size/len(position_data))
def get_positional_probabilities(pos_freqs,natural_probs,scaled_aln_size=100):
"""Get probs of observering the freq of each char given it's natural freq
In Suel 2003 supplementary material, this step is defined as:
"... each element is the binomial probability of observing each
amino acid residue at position j given its mean frequency in
all natural proteins."
This function performs the calculate for a single position.
pos_freqs: the frequencies of each char in the alphabet at a
position-of-interest in the alignment (list of floats, typically
output of get_positional_frequencies)
natural_probs: the natural probabilities of observing each char
in the alphabet (list of floats: typically output of probs_from_dict)
scaled_aln_size: the scaled number of sequences in the alignment. The
original SCA implementation treats all alignments as if they contained
100 sequences when calculating frequencies and probabilities. 100 is
therefore the default value.
Note: It is critical that the values in pos_freqs and natural_probs are
in the same order, which should be the order of chars in the alphabet.
"""
results = []
for pos_freq,natural_prob in zip(pos_freqs,natural_probs):
try:
results.append(\
binomial_exact(pos_freq,scaled_aln_size,natural_prob))
# Because of the scaling of alignments to scaled_aln_size, pos_freq is
# a float rather than an int. So, if a position is perfectly conserved,
# pos_freq as a float could be greater than scaled_aln_size.
# In this case I cast it to an int. I don't like this alignment
# scaling stuff though.
except ValueError, e:
results.append(binomial_exact(int(pos_freq),\
scaled_aln_size,natural_prob))
return array(results)
def get_subalignments(aln,position,selections):
""" returns subalns w/ seq[pos] == selection for each in selections
aln: an alignment object
position: int in alignment to be checked for each perturbation
selections: characters which must be present at seq[pos] for
seq to be in subalignment
Note: This method returns a list of subalignments corresponding
to the list of selections. So, if you specify selections as
['A','G'], you would get two subalignments back -- the first
containing sequences with 'A' at position, and the second
containing sequences with 'G' at position. If you want all
sequences containing either 'A' or 'G', merge the resulting
subalignments.
"""
result = []
for s in aln.Alphabet.toIndices(selections):
seqs_to_keep = nonzero(aln.ArraySeqs[:,position] == s)[0]
result.append(aln.getSubAlignment(seqs=seqs_to_keep))
return result
def get_dg(position_probs,aln_probs):
""" Return delta_g vector
position_probs: the prob of observing each alphabet chars frequency in
the alignment position-of-interest, given it's background frequency
in all proteins (list of floats, typically the output of
get_positional_probabilities)
aln_probs: the prob of observing each alphabet chars frequency in the
full alignment, given it's background frequency (list of floats)
"""
results = []
for position_prob,aln_prob in zip(position_probs,aln_probs):
results.append(log(position_prob/aln_prob))
return array(results)
def get_dgg(all_dgs,subaln_dgs,scaled_aln_size=100):
"""Return delta_delta_g value
all_dgs: the dg vector for a position-of-interest in the alignment
(list of floats, typically the output of get_dg)
subaln_dgs: the dg vector for a sub-alignment of the position-of-
interest in the alignment (list of floats, typically the output
of get_dg applied to a sub-alignment)
scaled_aln_size: the scaled number of sequences in the alignment. The
original SCA implementation treats all alignments as if they contained
100 sequences when calculating frequencies and probabilities. 100 is
therefore the default value.
* There are two weird issues in this function with respect to the
desciption of the algorithm in the Suel 2003 supplementary material.
In order to get the values presented in their GPCR paper, we need to
(1) divide the euclidian norm by the scaled_aln_size, and then (2)
multiply the result by e.
** IT IS CRITICAL TO UNDERSTAND WHY
WE NEED TO APPLY THESE STEPS BEFORE PUBLISHING ANYTHING THAT USES
THIS CODE.**
* A possible reason for the mysterious e scaling is that we are
misinterpreting what they mean when they say ddg is 'the magnitude of
this difference vector.' We are assuming they are referring to the
Euclidian norm, but until I see their code, I can't be sure about
this.
"""
return norm(all_dgs - subaln_dgs)/scaled_aln_size * e
def sca_pair(alignment,pos1,pos2,cutoff,\
position_freqs=None,position_probs=None,dgs=None,perturbations=None,\
scaled_aln_size=100,null_value=gDefaultNullValue,return_all=False,\
alphabet=default_sca_alphabet,background_freqs=default_sca_freqs):
""" Calculate statistical coupling b/w a pair of alignment columns
alignment: full alignment object
pos1: the first position used to probe for statistical coupling
(subalignments will be generated based on allowed perturbations
at this position) -- int, zero-based indexing into alignment
pos2: the second position used to probe for statistical coupling
-- int, zero-based indexing into alignment
cutoff: the percentage of sequences that must contain a specific
char at a specific pos1 to result in an allowed sub-alignment.
(According to the Ranganathan papers, this should be the value
determined by their 3rd criteria.)
position_freqs: if precalculated, a matrix containing the output
of get_positional_frequencies for each position in the alignment.
This will typically be used only when sca_pair is called from
sca_position, and these values are therefore pre-calculated.
position_probs: if precalculated, a matrix containing the output
of get_positional_probabilities for each position in the alignment.
This will typically be used only when sca_pair is called from
sca_position, and these values are therefore pre-calculated.
dgs: if precalculated, a matrix containing the output
of get_dg for each position in the alignment.
This will typically be used only when sca_pair is called from
sca_position, and these values are therefore pre-calculated.
perturbations: if precalculated, a matrix containing the output
of get_allowed_perturbations for each position in the alignment.
This will typically be used only when sca_pair is called from
sca_position, and these values are therefore pre-calculated.
scaled_aln_size: the scaled number of sequences in the alignment. The
original SCA implementation treats all alignments as if they contained
100 sequences when calculating frequencies and probabilities. 100 is
therefore the default value.
null_value: the value which should be returned if SCA cannot or
should not be calculated (e.g., no allowed perturbations or
pos1==pos2, respectively).
return_all: if cutoff <= 0.50, it is possible that there will be more
than one allowed_perturbation per position. In these cases, either all
of the values could be returned (return_all=True) or the max of the
values can be returned (return_all=False, default). If you'd like one
value, but not the max, wrap this function with return_all=True, and
handle the return value as desired.
alphabet: an ordered iterable object containing the characters in the
alphabet. For example, this can be a CharAlphabet object, a list,
or a string.
**IMPORTANT NOTE: SCA, unlike (all?) other methods implemented here,
requires the full alignment, even to calculate coupling between just
a pair of positions. Because frequencies of characters in the full
alignment are compared with frequencies at each position, you cannot
simply pull out two columns of the alignment, and pass them to this
function as a subalignment. Your results would differ from calculating
coupling of the same positions with the full alignment. For example:
sca_pair(aln,10,20,0.85) != \
sca_pair(aln.takePositions([10,20]),0,1,0.85)
"""
num_positions = len(alignment)
num_seqs = alignment.getNumSeqs()
# Calculate frequency distributions
natural_probs = probs_from_dict(background_freqs,alphabet)
aln_freqs = freqs_from_aln(alignment,alphabet,scaled_aln_size)
aln_probs = get_positional_probabilities(\
aln_freqs,natural_probs,scaled_aln_size)
# get positional frequencies
if position_freqs:
pos1_freqs = position_freqs[pos1]
pos2_freqs = position_freqs[pos2]
else:
pos1_freqs = get_positional_frequencies(alignment,pos1,\
alphabet,scaled_aln_size)
pos2_freqs = get_positional_frequencies(alignment,pos2,\
alphabet,scaled_aln_size)
# get positional probability vectors ("... each element is the binomial
# probability of observing each amino acid residue at position j given its
# mean frequency in all natural proteins." Suel 2003 supplementary
# material)
if position_probs:
pos2_probs = position_probs[pos2]
else:
pos2_probs = get_positional_probabilities(pos2_freqs,\
natural_probs,scaled_aln_size)
# get statistical energies for pos2 in full alignment
if dgs:
pos2_dg = dgs[pos2]
else:
pos2_dg = get_dg(pos2_probs,aln_probs)
# determine allowed perturbations
if perturbations:
allowed_perturbations = perturbations[pos1]
else:
allowed_perturbations = \
get_allowed_perturbations(pos1_freqs,cutoff,alphabet,scaled_aln_size)
# should we do something different here on return_all == True?
if not allowed_perturbations: return null_value
# generate the subalignments which contain each allowed
# perturbation residue at pos1
subalignments = get_subalignments(alignment,pos1,allowed_perturbations)
# calculate ddg for each allowed perturbation
ddg_values = []
for subalignment in subalignments:
# Calculate dg for the subalignment
subaln_freqs = freqs_from_aln(subalignment,alphabet,scaled_aln_size)
subaln_probs = get_positional_probabilities(\
subaln_freqs,natural_probs,scaled_aln_size)
subaln_pos2_freqs = get_positional_frequencies(\
subalignment,pos2,alphabet,scaled_aln_size)
subaln_pos2_probs = get_positional_probabilities(\
subaln_pos2_freqs,natural_probs,scaled_aln_size)
subaln_dg = get_dg(subaln_pos2_probs,subaln_probs)
ddg_values.append(get_dgg(pos2_dg,subaln_dg,scaled_aln_size))
if return_all:
return zip(allowed_perturbations,ddg_values)
else:
return max(ddg_values)
def sca_position(alignment,position,cutoff,\
position_freqs=None,position_probs=None,dgs=None,\
perturbations=None,scaled_aln_size=100,\
null_value=gDefaultNullValue,return_all=False,\
alphabet=default_sca_alphabet,background_freqs=default_sca_freqs):
""" Calculate statistical coupling b/w a column and all other columns
alignment: full alignment object
position: the position of interest to probe for statistical coupling
(subalignments will be generated based on allowed perturbations
at this position) -- int, zero-based indexing into alignment
cutoff: the percentage of sequences that must contain a specific
char at a specific pos1 to result in an allowed sub-alignment.
(According to the Ranganathan papers, this should be the value
determined by their 3rd criteria.)
position_freqs: if precalculated, a matrix containing the output
of get_positional_frequencies for each position in the alignment.
This will typically be used only when sca_position is called from
sca_alignment, and these values are therefore pre-calculated.
position_probs: if precalculated, a matrix containing the output
of get_positional_probabilities for each position in the alignment.
This will typically be used only when sca_position is called from
sca_alignment, and these values are therefore pre-calculated.
dgs: if precalculated, a matrix containing the output
of get_dg for each position in the alignment.
This will typically be used only when sca_position is called from
sca_alignment, and these values are therefore pre-calculated.
perturbations: if precalculated, a matrix containing the output
of get_allowed_perturbations for each position in the alignment.
This will typically be used only when sca_position is called from
sca_alignment, and these values are therefore pre-calculated.
scaled_aln_size: the scaled number of sequences in the alignment. The
original SCA implementation treats all alignments as if they contained
100 sequences when calculating frequencies and probabilities. 100 is
therefore the default value.
null_value: the value which should be returned if SCA cannot or
should not be calculated (e.g., no allowed perturbations or
pos1==pos2, respectively).
return_all: if cutoff <= 0.50, it is possible that there will be more
than one allowed_perturbation per position. In these cases, either all
of the values could be returned (return_all=True) or the max of the
values can be returned (return_all=False, default). If you'd like one
value, but not the max, wrap this function with return_all=True, and
handle the return value as desired.
alphabet: an ordered iterable object containing the characters in the
alphabet. For example, this can be a CharAlphabet object, a list,
or a string.
"""
num_seqs = alignment.getNumSeqs()
natural_probs = probs_from_dict(background_freqs,alphabet)
aln_freqs = freqs_from_aln(alignment,alphabet,scaled_aln_size)
aln_probs = get_positional_probabilities(\
aln_freqs,natural_probs,scaled_aln_size)
if not position_freqs:
position_freqs = []
for i in range(len(alignment)):
position_freqs.append(\
get_positional_frequencies(\
alignment,i,alphabet,scaled_aln_size))
if not position_probs:
position_probs = []
for i in range(len(alignment)):
position_probs.append(get_positional_probabilities(\
position_freqs[i],natural_probs,scaled_aln_size))
if not dgs:
dgs = []
for i in range(len(alignment)):
dgs.append(get_dg(position_probs[i],aln_probs))
if not perturbations:
perturbations = []
for i in range(len(alignment)):
perturbations.append(get_allowed_perturbations(\
position_freqs[i],cutoff,alphabet,scaled_aln_size))
result = []
for i in range(len(alignment)):
result.append(sca_pair(alignment,position,i,cutoff,\
position_freqs=position_freqs,position_probs=position_probs,\
dgs=dgs,perturbations=perturbations,\
scaled_aln_size=scaled_aln_size,null_value=null_value,\
return_all=return_all,alphabet=alphabet,\
background_freqs=background_freqs))
return array(result)
def sca_alignment(alignment,cutoff,null_value=gDefaultNullValue,\
scaled_aln_size=100,return_all=False,alphabet=default_sca_alphabet,\
background_freqs=default_sca_freqs):
""" Calculate statistical coupling b/w all columns in alignment
alignment: full alignment object
cutoff: the percentage of sequences that must contain a specific
char at a specific pos1 to result in an allowed sub-alignment.
(According to the Ranganathan papers, this should be the value
determined by their 3rd criteria.)
scaled_aln_size: the scaled number of sequences in the alignment. The
original SCA implementation treats all alignments as if they contained
100 sequences when calculating frequencies and probabilities. 100 is
therefore the default value.
null_value: the value which should be returned if SCA cannot or
should not be calculated (e.g., no allowed perturbations or
pos1==pos2, respectively).
return_all: if cutoff <= 0.50, it is possible that there will be more
than one allowed_perturbation per position. In these cases, either all
of the values could be returned (return_all=True) or the max of the
values can be returned (return_all=False, default). If you'd like one
value, but not the max, wrap this function with return_all=True, and
handle the return value as desired.
alphabet: an ordered iterable object containing the characters in the
alphabet. For example, this can be a CharAlphabet object, a list,
or a string.
"""
num_seqs = alignment.getNumSeqs()
natural_probs = probs_from_dict(background_freqs,alphabet)
aln_freqs = freqs_from_aln(alignment,alphabet,scaled_aln_size)
aln_probs = get_positional_probabilities(\
aln_freqs,natural_probs,scaled_aln_size)
# get all positional frequencies
position_freqs = []
for i in range(len(alignment)):
position_freqs.append(\
get_positional_frequencies(alignment,i,alphabet,scaled_aln_size))
# get all positional probabilities
position_probs = []
for i in range(len(alignment)):
position_probs.append(get_positional_probabilities(\
position_freqs[i],natural_probs,scaled_aln_size))
# get all delta_g vectors
dgs = []
for i in range(len(alignment)):
dgs.append(get_dg(position_probs[i],aln_probs))
# get all allowed perturbations
perturbations = []
for i in range(len(alignment)):
perturbations.append(get_allowed_perturbations(\
position_freqs[i],cutoff,alphabet,scaled_aln_size))
result = []
for i in range(len(alignment)):
result.append(sca_position(alignment,i,cutoff,\
position_freqs=position_freqs,position_probs=position_probs,\
dgs=dgs,perturbations=perturbations,\
scaled_aln_size=scaled_aln_size,null_value=null_value,\
return_all=return_all,alphabet=alphabet,\
background_freqs=background_freqs))
return array(result)
## End statistical coupling analysis
## Start Resampled Mutual Information Analysis
# (developed by Hutley and Easton, and first published in
# Caporaso et al., 2008)
def make_weights(freqs, n):
"""Return the weights for replacement states for each possible character.
We compute the weight as the normalized frequency of the replacement state
divided by 2*n."""
freqs.normalize()
char_prob = freqs.items()
weights = []
for C,P in char_prob:
alts = Freqs([(c, p) for c, p in char_prob if c!=C])
alts.normalize()
alts = Freqs([(c,w/(2*n)) for c,w in alts.items()])
weights += [(C, alts)]
return weights
def calc_pair_scale(seqs, obs1, obs2, weights1, weights2):
"""Return entropies and weights for comparable alignment.
A comparable alignment is one in which, for each paired state ij, all
alternate observable paired symbols are created. For instance, let the
symbols {A,C} be observed at position i and {A,C} at position j. If we
observe the paired types {AC, AA}. A comparable alignment would involve
replacing an AC pair with a CC pair."""
# scale is calculated as the product of mi from col1 with alternate
# characters. This means the number of states is changed by swapping
# between the original and selected alternate, calculating the new mi
pair_freqs = Freqs(seqs)
weights1 = dict(weights1)
weights2 = dict(weights2)
scales = []
for a, b in pair_freqs.keys():
weights = weights1[a]
pr = a+b
pair_freqs -= [pr]
obs1 -= a
# make comparable alignments by mods to col 1
for c, w in weights.items():
new_pr = c+b
pair_freqs += [new_pr]
obs1 += c
entropy = mi(obs1.Uncertainty, obs2.Uncertainty,\
pair_freqs.Uncertainty)
scales += [(pr, entropy, w)]
pair_freqs -= [new_pr]
obs1 -= c
obs1 += a
# make comparable alignments by mods to col 2
weights = weights2[b]
obs2 -= b
for c, w in weights.items():
new_pr = a+c
pair_freqs += [new_pr]
obs2 += c
entropy = mi(obs1.Uncertainty, obs2.Uncertainty,\
pair_freqs.Uncertainty)
scales += [(pr, entropy, w)]
obs2 -= c
pair_freqs -= [new_pr]
obs2 += b
pair_freqs += [pr]
return scales
def resampled_mi_pair(alignment, pos1, pos2, weights=None,
excludes=gDefaultExcludes, exclude_handler=None,
null_value=gDefaultNullValue):
"""returns scaled mutual information for a pair.
Arguments:
- alignment: Alignment instance
- pos1, pos2: alignment positions to be assessed
- weights: Freq objects of weights for pos1, pos2
- excludes: states to be excluded.
"""
positions = list(alignment.Positions)
col1 = positions[pos1]
col2 = positions[pos2]
seqs = [''.join(p) for p in zip(col1, col2)]
for col in (col1,col2):
states = {}.fromkeys(col)
for exclude in excludes:
if exclude in states:
try:
col = exclude_handler(col,excludes)
break
except TypeError:
return null_value
excludes = excludes or []
num = len(seqs)
col1 = Freqs(col1)
col2 = Freqs(col2)
seq_freqs = Freqs(seqs)
if weights:
weights1, weights2 = weights
else:
weights1 = make_weights(col1.copy(), num)
weights2 = make_weights(col2.copy(), num)
entropy = mi(col1.Uncertainty, col2.Uncertainty,
seq_freqs.Uncertainty)
scales = calc_pair_scale(seqs, col1, col2, weights1, weights2)
scaled_mi = 1-sum([w * seq_freqs[pr] for pr, e, w in scales \
if entropy <= e])
return scaled_mi
def resampled_mi_position(alignment, position, positional_entropies=None,
excludes=gDefaultExcludes, exclude_handler=None,
null_value=gDefaultNullValue):
aln_length = len(alignment)
result = zeros(aln_length,float)
positional_entropies = positional_entropies or alignment.uncertainties()
for i in range(aln_length):
result[i] = resampled_mi_pair(alignment, pos1=position, pos2=i,
excludes=excludes,
exclude_handler=exclude_handler,
null_value=null_value)
return result
def resampled_mi_alignment(alignment, excludes=gDefaultExcludes,
exclude_handler=None, null_value=gDefaultNullValue):
"""returns scaled mutual information for all possible pairs."""
aln_length = len(alignment)
result = zeros((aln_length,aln_length),float)
positional_entropies = alignment.uncertainties()
for i in range(aln_length):
result[i] = resampled_mi_position(alignment=alignment, position=i,
positional_entropies=positional_entropies,
excludes=excludes, exclude_handler=exclude_handler,
null_value=null_value)
return result
## End Resampled Mutual Information Analysis
## Begin ancestral_states analysis
def get_ancestral_seqs(aln, tree, sm = None, pseudocount=1e-6, optimise=True):
""" Calculates ancestral sequences by maximum likelihood
Arguments:
- sm: a SubstitutionModel instance. If not provided, one is
constructed from the alignment Alphabet
- pseudocount: unobserved sequence states must not be zero, this value
is assigned to sequence states not observed in the alignment.
- optimise: whether to optimise the likelihood function.
Note: for the sake of reduced alphabets, we calculate the
substitution model from the alignment. This also appears
to be what what described in Tuffery 2000, although they're
not perfectly clear about it.
"""
sm = sm or SubstitutionModel(aln.Alphabet, recode_gaps=True)
lf = sm.makeLikelihoodFunction(tree,sm.motif_probs)
lf.setAlignment(aln, motif_pseudocount=pseudocount)
if optimise:
lf.optimise(local=True)
return DenseAlignment(lf.likelyAncestralSeqs(),MolType=aln.MolType)
def ancestral_state_alignment(aln,tree,ancestral_seqs=None,\
null_value=gDefaultNullValue):
ancestral_seqs = ancestral_seqs or get_ancestral_seqs(aln,tree)
result = []
for i in range(len(aln)):
row = [null_value] * len(aln)
for j in range(i+1):
row[j] = ancestral_state_pair(\
aln,tree,i,j,ancestral_seqs,null_value)
result.append(row)
return ltm_to_symmetric(array(result))
def ancestral_state_position(aln,tree,position,\
ancestral_seqs=None,null_value=gDefaultNullValue):
ancestral_seqs = ancestral_seqs or get_ancestral_seqs(aln,tree)
result = []
for i in range(len(aln)):
result.append(ancestral_state_pair(\
aln,tree,position,i,ancestral_seqs,null_value))
return array(result)
def ancestral_state_pair(aln,tree,pos1,pos2,\
ancestral_seqs=None,null_value=gDefaultNullValue):
"""
"""
ancestral_seqs = ancestral_seqs or get_ancestral_seqs(aln,tree)
ancestral_names_to_seqs = \
dict(zip(ancestral_seqs.Names,ancestral_seqs.ArraySeqs))
distances = tree.getDistances()
tips = tree.getNodeNames(tipsonly=True)
# map names to nodes (there has to be a built-in way to do this
# -- what is it?)
nodes = dict([(n,tree.getNodeMatchingName(n)) for n in tips])
# add tip branch lengths as distance b/w identical tips -- this is
# necessary for my weighting step, where we want correlated changes
# occuring on a single branch to be given the most weight
distances.update(dict([((n,n),nodes[n].Length) for n in nodes]))
result = 0
names_to_seqs = dict(zip(aln.Names,aln.ArraySeqs))
for i in range(len(tips)):
org1 = tips[i]
seq1 = names_to_seqs[org1]
for j in range(i,len(tips)):
org2 = tips[j]
seq2 = names_to_seqs[org2]
ancestor = nodes[org1].lastCommonAncestor(nodes[org2]).Name
if ancestor == org1 == org2:
# we're looking for correlated change along a
# single branch
ancestral_seq = ancestral_names_to_seqs[\
nodes[org1].ancestors()[0].Name]
else:
# we're looking for correlated change along different
# branches (most cases)
ancestral_seq = ancestral_names_to_seqs[ancestor]
# get state of pos1 in org1, org2, and ancestor
org1_p1 = seq1[pos1]
org2_p1 = seq2[pos1]
ancestor_p1 = ancestral_seq[pos1]
# if pos1 has changed in both organisms since their lca,
# this is a position of interest
if org1_p1 != ancestor_p1 and org2_p1 != ancestor_p1:
# get state of pos2 in org1, org2, and ancestor
org1_p2 = seq1[pos2]
org2_p2 = seq2[pos2]
ancestor_p2 = ancestral_seq[pos2]
# if pos2 has also changed in both organisms since their lca,
# then we add a count for a correlated change
if org1_p2 != ancestor_p2 and org2_p2 != ancestor_p2:
# There are a variety of ways to score. The simplest is
# to increment by one, which seems to be what was done
# in other papers.) This works well, but in a quick test
# (alpha helices/myoglobin with several generally
# high scoring alphabets) weighting works better. A more
# detailed analysis is in order.
#result += 1
# Now I weight based on distance so
# changes in shorter time are scored higher than
# in longer time. (More ancient changes
# are more likely to be random than more recent changes,
# b/c more time has passed for the changes to occur in.)
# This gives results
# that appear to be better under some circumstances,
# and at worst, about the same as simply incrementing
# by 1.
result += (1/distances[(org1,org2)])
# Another one to try might involve discounting the score
# for a pair when one changes and the other doesn't.
return result
## End ancestral_states analysis
## Begin Gctmpca method (Yeang et al., 2007)
def build_rate_matrix(count_matrix,freqs,aa_order='ACDEFGHIKLMNPQRSTVWY'):
epm = EmpiricalProteinMatrix(count_matrix,freqs)
word_probs = array([freqs[aa] for aa in aa_order])
num = word_probs.shape[0]
mprobs_matrix = ones((num,num), float)*word_probs
return epm.calcQ(word_probs, mprobs_matrix)
def create_gctmpca_input(aln,tree):
""" Generate the four input files as lists of lines. """
new_tree = tree.copy()
seqs1 = []
seq_names = []
seq_to_species1 = []
seqs1.append(' '.join(map(str,[aln.getNumSeqs(),len(aln)])))
constant_name_length = max(map(len,aln.Names))
for n in aln.Names:
name = ''.join([n] + ['.']*(constant_name_length - len(n)))
new_tree.getNodeMatchingName(n).Name = name
seqs1.append(' '.join([name,str(aln.getGappedSeq(n))]))
seq_names.append(name)
seq_to_species1.append('\t'.join([name,name]))
seqs1.append('\n')
seq_names.append('\n')
seq_to_species1.append('\n')
return seqs1, [str(new_tree),'\n'], seq_names, seq_to_species1
def parse_gctmpca_result_line(line):
fields = line.strip().split()
return int(fields[0]) - 1, int(fields[1]) - 1, float(fields[2])
def parse_gctmpca_result(f,num_positions):
m = array([[gDefaultNullValue]*num_positions]*num_positions)
for line in list(f)[1:]:
pos1, pos2, score = parse_gctmpca_result_line(line)
try:
m[pos1,pos2] = m[pos2,pos1] = score
except IndexError:
raise ValueError, \
"%d, %d out of range -- invalid num_positions?" % (pos1, pos2)
return m
def gctmpca_pair(aln,tree,pos1,pos2,epsilon=None,priors=None,sub_matrix=None,\
null_value=gDefaultNullValue,debug=False):
seqs1, tree1, seq_names, seq_to_species1 = create_gctmpca_input(aln,tree)
if aln.MolType == PROTEIN: mol_type = 'protein'
elif aln.MolType == RNA: mol_type = 'rna'
else: raise ValueError, 'Unsupported mol type, must be PROTEIN or RNA.'
gctmpca = Gctmpca(HALT_EXEC=debug)
data = {'mol_type':mol_type,'seqs1':seqs1,'tree1':tree1,\
'seq_names':seq_names, 'seq_to_species1':seq_to_species1,\
'species_tree':tree1, 'char_priors':priors, \
'sub_matrix':sub_matrix,'single_pair_only':1,'epsilon':epsilon,\
'pos1':str(pos1),'pos2':str(pos2)}
r = gctmpca(data)
try:
# parse the first line and return the score as a float
result = float(parse_gctmpca_result_line(list(r['output'])[1])[2])
except IndexError:
# There is no first line, so insignificant score
result = null_value
# clean up the temp files
r.cleanUp()
return result
def gctmpca_alignment(aln,tree,epsilon=None,priors=None,\
sub_matrix=None,null_value=gDefaultNullValue,debug=False):
seqs1, tree1, seq_names, seq_to_species1 = create_gctmpca_input(aln,tree)
if aln.MolType == PROTEIN: mol_type = 'protein'
elif aln.MolType == RNA: mol_type = 'rna'
else: raise ValueError, 'Unsupported mol type, must be PROTEIN or RNA.'
gctmpca = Gctmpca(HALT_EXEC=debug)
data = {'mol_type':mol_type,'seqs1':seqs1,'tree1':tree1,\
'seq_names':seq_names, 'seq_to_species1':seq_to_species1,\
'species_tree':tree1, 'char_priors':priors, \
'sub_matrix':sub_matrix,'single_pair_only':0,'epsilon':epsilon}
r = gctmpca(data)
result = parse_gctmpca_result(r['output'],len(aln))
r.cleanUp()
return result
## End Yeang method
### Methods for running coevolutionary analyses on sequence data.
method_abbrevs_to_names = {'mi':'Mutual Information',\
'nmi':'Normalized Mutual Information',\
'sca':'Statistical Coupling Analysis',\
'an':'Ancestral States',\
'rmi':'Resampled Mutual Information',
'gctmpca':'Haussler/Yeang Method'}
## Method-specific error checking functions
# Some of the coevolution algorithms require method-specific input validation,
# but that code isn't included in the alrogithm-specific functions (e.g.
# sca_alignment,
# sca_pair) because those are sometimes run many times. For example,
# sca_alignment makes many calls to sca_pair, so we can't have sca_pair
# perform validation every time it's called. My solution is to have the
# coevolve_* functions perform the input validation, and recommend that
# users always perform analyses via these functions. So, in the above example,
# the user would access sca_alignment via coevolve_alignment('sca', ...). Since
# sca_alignment makes calls to sca_pair, not coevolve_pair, the input
# validation
# is only performed once by coevolve_alignment.
def sca_input_validation(alignment,**kwargs):
"""SCA specific validations steps """
# check that all required parameters are present in kwargs
required_parameters = ['cutoff']
# users must provide background frequencies for MolTypes other
# than PROTEIN -- by default, protein background frequencies are used.
if alignment.MolType != PROTEIN:
required_parameters.append('background_freqs')
for rp in required_parameters:
if rp not in kwargs:
raise ValueError, 'Required parameter was not provided: ' + rp
# check that the value provided for cutoff is valid (ie. between 0 and 1)
if not 0.0 <= kwargs['cutoff'] <= 1.0:
raise ValueError, 'Cutoff must be between zero and one.'
# check that the set of chars in alphabet and background_freqs are
# identical
try:
alphabet = kwargs['alphabet']
except KeyError:
# We want to use the PROTEIN alphabet minus the U character for
# proteins since we don't have a background frequency for U
if alignment.MolType == PROTEIN: alphabet = AAGapless
else: alphabet = alignment.MolType.Alphabet
try:
background_freqs = kwargs['background_freqs']
except KeyError:
background_freqs = default_sca_freqs
validate_alphabet(alphabet,background_freqs)
def validate_alphabet(alphabet,freqs):
"""SCA validation: ValueError if set(alphabet) != set(freqs.keys())
"""
alphabet_chars = set(alphabet)
freq_chars = set(freqs.keys())
if alphabet_chars != freq_chars:
raise ValueError, \
"Alphabet and background freqs must contain identical sets of chars."
def ancestral_states_input_validation(alignment,**kwargs):
"""Ancestral States (AS) specific validations steps """
# check that all required parameters are present in kwargs
required_parameters = ['tree']
for rp in required_parameters:
if rp not in kwargs:
raise ValueError, 'Required parameter was not provided: ' + rp
# validate the tree
validate_tree(alignment,kwargs['tree'])
# if ancestral seqs are provided, validate them. (If calculated on the fly,
# we trust them.)
if 'ancestral_seqs' in kwargs:
validate_ancestral_seqs(alignment,kwargs['tree'],\
kwargs['ancestral_seqs'])
def validate_ancestral_seqs(alignment,tree,ancestral_seqs):
"""AS validation: ValueError if incompatible aln, tree, & ancestral seqs
Incompatibility between the alignment and the ancestral_seqs is
different sequence lengths. Incompatbility between the tree and
the ancestral seqs is imperfect overlap between the names of the
ancestors in the tree and the ancestral sequence names.
"""
if len(alignment) != len(ancestral_seqs):
raise ValueError,\
"Alignment and ancestral seqs are different lengths."
# is there a better way to get all the ancestor names? why doesn't
# tree.ancestors() do this?
edges = set(tree.getNodeNames()) - set(tree.getTipNames())
seqs = set(ancestral_seqs.getSeqNames())
if edges != seqs:
raise ValueError, \
"Must be ancestral seqs for all edges and root in tree, and no more."
def validate_tree(alignment,tree):
"""AS validation: ValueError if tip and seq names aren't same
"""
if set(tree.getTipNames()) != set(alignment.getSeqNames()):
raise ValueError, \
"Tree tips and seqs must have perfectly overlapping names."
## End method-specific error checking functions
## General (opposed to algorithm-specific) validation functions
def validate_position(alignment,position):
"""ValueError if position is outside the range of the alignment """
if not 0 <= position < len(alignment):
raise ValueError, \
"Position is outside the range of the alignment: " + str(position)
def validate_alignment(alignment):
"""ValueError on ambiguous alignment characters"""
bad_seqs = []
for name, ambiguous_pos in \
alignment.getPerSequenceAmbiguousPositions().items():
if ambiguous_pos: bad_seqs.append(name)
if bad_seqs:
raise ValueError, 'Ambiguous characters in sequences: %s' \
% '; '.join(map(str,bad_seqs))
def coevolve_alignments_validation(method,alignment1,alignment2,\
min_num_seqs,max_num_seqs,**kwargs):
""" Validation steps required for intermolecular coevolution analyses
"""
valid_methods_for_different_moltypes = {}.fromkeys(\
[mi_alignment,nmi_alignment,resampled_mi_alignment])
if (alignment1.MolType != alignment2.MolType) and \
method not in valid_methods_for_different_moltypes:
raise AssertionError, "Different MolTypes only supported for %s" %\
' '.join(map(str,valid_methods_for_different_moltypes.keys()))
alignment1_names = \
set([n.split('+')[0].strip() for n in alignment1.Names])
alignment2_names = \
set([n.split('+')[0].strip() for n in alignment2.Names])
if 'tree' in kwargs:
tip_names = \
set([n.split('+')[0].strip() \
for n in kwargs['tree'].getTipNames()])
assert alignment1_names == alignment2_names == tip_names,\
"Alignment and tree sequence names must perfectly overlap"
else:
# no tree passed in
assert alignment1_names == alignment2_names,\
"Alignment sequence names must perfectly overlap"
# Determine if the alignments have enough sequences to proceed.
if alignment1.getNumSeqs() < min_num_seqs:
raise ValueError, "Too few sequences in merged alignment: %d < %d" \
% (alignment1.getNumSeqs(), min_num_seqs)
# Confirm that min_num_seqs <= max_num_seqs
if max_num_seqs and min_num_seqs > max_num_seqs:
raise ValueError, \
"min_num_seqs (%d) cannot be greater than max_num_seqs (%d)." \
% (min_num_seqs, max_num_seqs)
## End general validation functions
## Start alignment-wide intramolecular coevolution analysis
# coevolve alignment functions: f(alignment,**kwargs) -> 2D array
coevolve_alignment_functions = \
{'mi': mi_alignment,'nmi': normalized_mi_alignment,\
'rmi': resampled_mi_alignment,'sca': sca_alignment,\
'an':ancestral_state_alignment,'gctmpca':gctmpca_alignment}
def coevolve_alignment(method,alignment,**kwargs):
""" Apply coevolution method to alignment (for intramolecular coevolution)
method: f(alignment,**kwargs) -> 2D array of coevolution scores
alignment: alignment object for which coevolve scores should be
calculated
**kwargs: parameters to be passed to method()
"""
# Perform method specific validation steps
if method == sca_alignment: sca_input_validation(alignment,**kwargs)
if method == ancestral_state_alignment:
ancestral_states_input_validation(alignment,**kwargs)
validate_alignment(alignment)
return method(alignment,**kwargs)
## End alignment-wide intramolecular coevolution analysis
## Start intermolecular coevolution analysis
# Mapping between coevolve_alignment functions and coevolve_pair functions.
# These are used in coevolve_alignments, b/c under some circumstance the
# alignment function is used, and under other circumstance the pair
# function is used, but the user shouldn't have to know anything about
# that.
coevolve_alignment_to_coevolve_pair = \
{mi_alignment: mi_pair,normalized_mi_alignment: normalized_mi_pair,\
resampled_mi_alignment: resampled_mi_pair, sca_alignment: sca_pair,\
ancestral_state_alignment:ancestral_state_pair}
def merge_alignments(alignment1,alignment2):
""" Append alignment 2 to the end of alignment 1
This function is used by coevolve_alignments to merge two alignments
so they can be evaluated by coevolve_alignment.
"""
result = {}
# Created maps from the final seq ids (i.e., seq id before plus) to the
# seq ids in the original alignments
aln1_name_map = \
dict([(n.split('+')[0].strip(),n) for n in alignment1.Names])
aln2_name_map = \
dict([(n.split('+')[0].strip(),n) for n in alignment2.Names])
try:
for merged_name,orig_name in aln1_name_map.items():
result[merged_name] = alignment1.getGappedSeq(orig_name) +\
alignment2.getGappedSeq(aln2_name_map[merged_name])
except ValueError: # Differing MolTypes
for merged_name,orig_name in aln1_name_map.items():
result[merged_name] =\
Sequence(alignment1.getGappedSeq(orig_name)) +\
Sequence(alignment2.getGappedSeq(aln2_name_map[merged_name]))
except KeyError,e:
raise KeyError, 'A sequence identifier is in alignment2 ' +\
'but not alignment1 -- did you filter out sequences identifiers' +\
' not common to both alignments?'
return LoadSeqs(data=result,aligned=DenseAlignment)
def n_random_seqs(alignment,n):
"""Given alignment, return n random seqs in a new alignment object.
This function is used by coevolve_alignments.
"""
seq_names = alignment.Names
shuffle(seq_names)
return alignment.takeSeqs(seq_names[:n])
def coevolve_alignments(method,alignment1,alignment2,\
return_full=False,merged_aln_filepath=None,min_num_seqs=2,\
max_num_seqs=None,sequence_filter=n_random_seqs,**kwargs):
""" Apply method to a pair of alignments (for intermolecular coevolution)
method: the *_alignment function to be applied
alignment1: alignment of first molecule (DenseAlignment)
alignment2: alignment of second molecule (DenseAlignment)
return_full: if True, returns intra- and inter-molecular
coevolution data in a square matrix (default: False)
merged_aln_filepath: if provided, will write the merged
alignment to file (useful for running post-processing filters)
min_num_seqs: the minimum number of sequences that should be
present in the merged alignment to perform the analysis
(default: 2)
max_num_seqs: the maximum number of sequences to include
in an analysis - if the number of sequences exceeds
max_num_seqs, a random selection of max_num_seqs will be
used. This is a time-saving step as too many sequences can
slow things down a lot. (default: None, any number of
sequences is allowed)
sequence_filter: function which takes an alignment and an int
and returns the int number of sequences from the alignment in
a new alignment object (defualt: util.n_random_seqs(alignment,n))
if None, a ValueError will be raised if there are more than
max_num_seqs
This function allows for calculation of coevolve scores between
pairs of alignments. The results are returned in a rectangular
len(alignment1) x len(alignment2) matrix.
There are some complications involved in preparing alignments for
this function, because it needs to be obvious how to associate the
putative interacting sequences. For example, if looking for
interactions between mammalian proteins A and B, sequences are
required from the same sets of species, and it must be apparant how
to match the sequences that are most likely to be involved in
biologically meaningful interactions. This typically means matching
the sequences of proteins A&B that come from the same species. In
other words, interaction of T. aculeatus proteinA and
H. sapien proteinB likely don't form a biologically relevant
interaction, because the species are so diverged.
Matching of sequences is performed via the identifiers, but it is
the responsibility of the user to correctly construct the sequence
identifiers before passing the alignments (and tree, if applicable)
to this function. To faciliate matching sequence identifiers, but not
having to discard the important information already present in a
sequence identifier obtained from a database such as KEGG or RefSeq,
sequence identifiers may contain a plus symbol (+). The characters
before the + are used to match sequences between the alignments and
tree. The characters after the + are ignored by this function. So, a
good strategy is to make the text before the '+' a taxonomic
identifier and leave the text after the '+' as the original sequence
identifier. For example, your sequence/tip names could look like:
alignment1: 'H. sapien+gi|123', 'T. aculeatus+gi|456'
alignment2: 'T. aculeatus+gi|999', 'H. sapien+gi|424'
tree: 'T. aculeatus+gi|456', 'H. sapien'
If there is no plus, the full sequence identifier will be used for the
matching (see H. sapien in tree). The order of sequences in the
alignments is not important. Also note that we can't split on a colon,
as would be convenient for pulling sequences from KEGG, because colons
are special characters in newick.
A WORD OF WARNING ON SEQUENCE IDENTIFIER CONSTRUCTION:
A further complication is that in some cases, an organism will have
multiple copies of proteins involved in a complex, but proteinA from
locus 1 will not form a functional comples with proteinB from locus 2.
An example of this is the three T6SSs in P. aeuroginosa. Make sure
this is handled correctly when building your sequence identifiers!
Sequence identifiers are used to match the sequences which are
suspected to form a functional complex, which may not simply mean
sequences from the same species.
"""
# Perform general validation step
coevolve_alignments_validation(method,\
alignment1,alignment2,min_num_seqs,max_num_seqs,**kwargs)
# Append alignment 2 to the end of alignment 1 in a new alignment object
merged_alignment = merge_alignments(alignment1,alignment2)
validate_alignment(merged_alignment)
if max_num_seqs and merged_alignment.getNumSeqs() > max_num_seqs:
try:
merged_alignment = sequence_filter(merged_alignment,max_num_seqs)
except TypeError:
raise ValueError, "Too many sequences for covariation analysis."
# If the user provided a filepath for the merged alignment, write it to
# disk. This is sometimes useful for post-processing steps.
if merged_aln_filepath:
merged_aln_file = open(merged_aln_filepath,'w')
merged_aln_file.write(merged_alignment.toFasta())
merged_aln_file.close()
if return_full:
# If the user requests the full result matrix (inter and intra
# molecular coevolution data), call coevolve_alignment on the
# merged alignment. Calling coevolve_alignment ensures that
# the correct validations are performed, rather than directly
# calling method.
result = coevolve_alignment(method,merged_alignment,**kwargs)
return result
## Note: we only get here if the above if statement comes back False,
## i.e., if we only want the intermolecular coevolution and don't care
## about the intramolecular coevolution.
# Get the appropriate method (need the pair method,
# not the alignment method)
try:
method = coevolve_alignment_to_coevolve_pair[method]
except KeyError:
# may have passed in the coevolve_pair function, so just
# continue -- will fail (loudly) soon enough if not.
pass
# Cache the alignment lengths b/c we use them quite a bit, and build
# the result object to be filled in.
len_alignment1 = len(alignment1)
len_alignment2 = len(alignment2)
result = array([[gDefaultNullValue]*len_alignment1]*len_alignment2)
# Some of the methods run much faster if relevant data is computed once,
# and passed in -- that is done here, but there is a lot of repeated code.
# I'm interested in suggestions for how to make this block of code more
# compact (e.g., can I be making better use of kwargs?).
if method == mi_pair or method == nmi_pair or method == normalized_mi_pair:
positional_entropies = \
[Freqs(p).Uncertainty for p in merged_alignment.Positions]
for i in range(len_alignment1):
for j in range(len_alignment2):
result[j,i] = \
method(merged_alignment,j+len_alignment1,i,\
h1=positional_entropies[j+len_alignment1],\
h2=positional_entropies[i],**kwargs)
elif method == ancestral_state_pair:
# Perform method-specific validations so we can safely work
# directly with method rather than the coevolve_pair wrapper,
# and thereby avoid validation steps on each call to method.
ancestral_states_input_validation(merged_alignment,**kwargs)
ancestral_seqs = get_ancestral_seqs(merged_alignment,kwargs['tree'])
for i in range(len_alignment1):
for j in range(len_alignment2):
result[j,i] = \
method(aln=merged_alignment,\
pos1=j+len_alignment1,pos2=i,\
ancestral_seqs=ancestral_seqs,**kwargs)
else:
# Perform method-specific validations so we can safely work
# directly with method rather than the coevolve_pair wrapper,
# and thereby avoid validation steps on each call to method.
if method == sca_pair: sca_input_validation(merged_alignment,**kwargs)
for i in range(len_alignment1):
for j in range(len_alignment2):
result[j,i] = \
method(merged_alignment,j+len_alignment1,i,**kwargs)
return result
## End intermolecular coevolution analysis
## Start positional coevolution analysis
# coevolve position functions: f(alignment,position,**kwargs) -> 1D array
coevolve_position_functions = \
{'mi': mi_position,'nmi': normalized_mi_position,\
'rmi': resampled_mi_position,'sca': sca_position,\
'an':ancestral_state_position}
def coevolve_position(method,alignment,position,**kwargs):
""" Apply provided coevolution method to a column in alignment
method: f(alignment,position,**kwargs) -> array of coevolution scores
alignment: alignment object for which coevolve scores should be
calculated (DenseAlignment)
position: position of interest for coevolution analysis (int)
**kwargs: parameters to be passed to method()
"""
# Perform method-specific validation steps
if method == sca_position: sca_input_validation(alignment,**kwargs)
if method == ancestral_state_position:
ancestral_states_input_validation(alignment,**kwargs)
# Perform general validation steps
validate_position(alignment,position)
validate_alignment(alignment)
# Perform the analysis and return the result vector
return method(alignment,position=position,**kwargs)
## End positional coevolution analysis
## Start pairwise coevolution analysis
# coevolve pair functions: f(alignment,pos1,pos2,**kwargs) -> float
coevolve_pair_functions = \
{'mi': mi_pair,'nmi': normalized_mi_pair,\
'rmi': resampled_mi_pair,'sca': sca_pair,\
'an':ancestral_state_pair,'gctmpca':gctmpca_pair}
def coevolve_pair(method,alignment,pos1,pos2,**kwargs):
""" Apply provided coevolution method to columns pos1 & pos2 of alignment
method: f(alignment,pos1,pos2,**kwargs) -> coevolution score
alignment: alignment object for which coevolve score should be
calculated (DenseAlignment)
pos1, pos2: positions to evaluate coevolution between (int)
**kwargs: parameters to be passed to method()
"""
# Perform method-specific validation steps
if method == sca_pair: sca_input_validation(alignment,**kwargs)
if method == ancestral_state_pair:
ancestral_states_input_validation(alignment,**kwargs)
# Perform general validation steps
validate_position(alignment,pos1)
validate_position(alignment,pos2)
validate_alignment(alignment)
# Perform the analysis and return the result score
return method(alignment,pos1=pos1,pos2=pos2,**kwargs)
## End pairwise coevolution analysis
### End methods for running coevolutionary analyses on sequence data
## Coevolution matrix filters: the following functions are used as
## post-processing filters for coevolution result matrices.
def filter_threshold_based_multiple_interdependency(aln,coevolution_matrix,
threshold=0.95,max_cmp_threshold=1,cmp_function=greater_equal,\
intermolecular_data_only=False):
"""Filters positions with more than max_cmp_threshold scores >= threshold
This post-processing filter is based on the idea described in:
"Using multiple interdependency to separate functional from
phylogenetic correlations in protein alignments"
Tillier and Lui, 2003
The idea is that when a position achieved a high covariation score
with many other positions, the covariation is more likely to arise
from the phylogeny than from coevolution. They illustrate that this
works in their paper, and I plan to test it with my alpha-helix-based
analysis. Note that you can change cmp_function to change whether
you're looking for high values to indicate covarying positions
(cmp_function=greater_equal, used for most coevolution algorithms) or
low values to indicate covarying positions (cmp_function=less_equal,
used, e.g., for p-value matrices).
aln: alignment used to generate the coevolution matrix -- this
isn't actually used, but is required to maintain the same interface
as other post-processing filters. Pass None if that's more convenient.
coevolution_matrix: the 2D numpy array to be filtered. This should
be a rectangular matrix for intermoelcular coevolution data (in which
case intermolecular_data_only must be set to True) or a symmetric
square matrix (when intermolecular_data_only=False)
threshold: the threshold coevolution score that other scores should be
compared to
max_cmp_threshold: the max number of scores that are allowed to be
True with respect to cmp_function and threshold (e.g., the max number
of positions that may be greater than the threhsold) before setting
all values associated that position to gDefaultNullValue (default: 1)
cmp_function: the function that compares each score in
coevolution_matrix to threshold (default: ge (greater than)) -
function should return True if the score is one that your looking
(e.g. score >= threshold) or False otherwise
intermolecular_data_only: True if coevolution_matrix is a rectangular
matrix representing an intermolecular coevolution study, and False
if the matrix is a symmetric square matrix
NOTE: IF intermolecular_data_only == True, coevolution_matrix MUST BE
SYMMETRIC, NOT LOWER TRIANGULAR OR OTHERWISE NON-SYMMETRIC!!
"""
# Determine which rows need to be filtered (but don't filter them
# right away or subsequent counts could be off)
filtered_rows = []
for row_n in range(coevolution_matrix.shape[0]):
count_cmp_threshold = 0
for v in coevolution_matrix[row_n,:]:
if v != gDefaultNullValue and cmp_function(v,threshold):
count_cmp_threshold += 1
if count_cmp_threshold > max_cmp_threshold:
filtered_rows.append(row_n)
break
# if the matrix is not symmetric, determine which cols need to be filtered
if intermolecular_data_only:
filtered_cols = []
for col_n in range(coevolution_matrix.shape[1]):
count_cmp_threshold = 0
for v in coevolution_matrix[:,col_n]:
if v != gDefaultNullValue and cmp_function(v,threshold):
count_cmp_threshold += 1
if count_cmp_threshold > max_cmp_threshold:
filtered_cols.append(col_n)
break
# filter the rows and cols in a non-symmetric matrix
for row_n in filtered_rows:
coevolution_matrix[row_n,:] = gDefaultNullValue
for col_n in filtered_cols:
coevolution_matrix[:,col_n] = gDefaultNullValue
else:
# filter the rows and cols in a symmetric matrix
for row_n in filtered_rows:
coevolution_matrix[row_n,:] =\
coevolution_matrix[:,row_n] = gDefaultNullValue
# return the result
return coevolution_matrix
def is_parsimony_informative(column_freqs,minimum_count=2,\
minimum_differences=2,ignored=gDefaultExcludes,strict=False):
"""Return True is aln_position is parsimony informative
column_freqs: dict of characters at alignmnet position mapped
to their counts -- this is the output of call alignment.columnFreqs()
minimum_count: the minimum number of times a character must show up
for it to be acceptable (default: 2)
minimum_differences: the minimum number of different characters
that must show up at the alignment position (default: 2)
ignored: characters that should not be counted toward
minimum_differences (default are exclude characters)
strict: if True, requires that all amino acids showing up at least
once at the alignment position show up at least minimum_counts
times, rather than only requiring that minimum_differences
amino acids show up minimum_counts times. (default: False)
The term parsimony informative comes from Codoner, O'Dea,
and Fares 2008, Reducing the false positive rate in the non-
parametric analysis of molecular coevolution. In the paper
they find that if positions which don't contain at least two
different amino acids, and where each different amino acid doesnt
show up at least twice each are ignored (i.e., treated as though
there is not enough information) the positive predictive value
(PPV) and sensitivity (SN) increase on simulated alignments. They
term this quality parsimony informative.
I implemented this as a filter, but include some generalization.
To determine if a column in an alignment is parsimony informative
in the exact manner described in Codoner et al., the following
parameter settings are required:
minimum_count = 2 (default)
minimum_differences = 2 (default)
strict = True (default is False)
To generalize this function, minimum_count and minimum_differences
can be passed in so at least minimum_differences different amino
acids must show up, and each amino acid must show up at least
minimum_count times.
In additional variation, strict=False can be passed requiring
that only minimum_differences number of amino acids show up at least
minimum_counts times (opposed to requiring that ALL amino acids show
up minimum_counts times). This is the default behavior.
By default, the default exclude characters (- and ?) don't count.
"""
if ignored:
for e in ignored:
try:
del column_freqs[e]
except KeyError:
pass
if len(column_freqs) < minimum_differences: return False
count_gte_minimum = 0
for count in column_freqs.values():
# if not strict, only minimum_differences of the counts
# must be greater than or equal to minimum_count, so
# count those occurrences (this is different than the
# exact technique presented in Codoner et al.)
if count >= minimum_count:
count_gte_minimum += 1
# if strict, all counts must be greater than minimum_count
# so return False here if we find one that isn't. This is how
# the algorithm is described in Codoner et al.
elif strict:
return False
return count_gte_minimum >= minimum_differences
def filter_non_parsimony_informative(aln,coevolution_matrix,\
null_value=gDefaultNullValue,minimum_count=2,minimum_differences=2,\
ignored=gDefaultExcludes,intermolecular_data_only=False,strict=False):
""" Replaces scores in coevolution_matrix with null_value for positions
which are not parsimony informative.
See is_parsimony_informative doc string for definition of
parsimony informative.
aln: the input alignment used to generate the coevolution matrix;
if the alignment was recoded, this should be the recoded alignment.
coevolution_matrix: the result matrix
null_value: the value to place in positions which are not
parsimony informative
"""
if intermolecular_data_only:
len_aln1 = coevolution_matrix.shape[1]
column_frequencies = aln.columnFreqs()
for i in range(len(column_frequencies)):
if not is_parsimony_informative(column_frequencies[i],minimum_count,\
minimum_differences,ignored,strict):
if not intermolecular_data_only:
coevolution_matrix[i,:] = coevolution_matrix[:,i] = null_value
else:
try:
coevolution_matrix[:,i] = null_value
except IndexError:
coevolution_matrix[i-len_aln1,:] = null_value
def make_positional_exclude_percentage_function(excludes,max_exclude_percent):
""" return function to identify aln positions with > max_exclude_percent
"""
excludes = {}.fromkeys(excludes)
def f(col):
exclude_count = 0
for c in col:
if c in excludes:
exclude_count += 1
return exclude_count / len(col) > max_exclude_percent
return f
def filter_exclude_positions(aln,coevolution_matrix,\
max_exclude_percent=0.1,null_value=gDefaultNullValue,\
excludes=gDefaultExcludes,intermolecular_data_only=False):
""" Assign null_value to positions with > max_exclude_percent excludes
aln: the DenseAlignment object
coevolution_matrix: the 2D numpy array -- this will be modified
max_exclude_percent: the maximimu percent of characters that
may be exclude characters in any alignment position (column).
if the percent of exclude characters is greater than this value,
values in this position will be replaced with null_value
(default = 0.10)
null_value: the value to be used as null (default: gDefaultNullValue)
excludes: the exclude characters (default: gDefaultExcludes)
intermolecular_data_only: True if the coevolution result
matrix contains only intermolecular data (default: False)
"""
# construct the function to be passed to aln.getPositionIndices
f = make_positional_exclude_percentage_function(\
excludes,max_exclude_percent)
# identify the positions containing too many exclude characters
exclude_positions = aln.getPositionIndices(f)
# replace values from exclude_positions with null_value
if not intermolecular_data_only:
# if working with intramolecular data (or inter + intra molecular data)
# this is easy
for p in exclude_positions:
coevolution_matrix[p,:] = coevolution_matrix[:,p] = null_value
else:
# if working with intermolecular data only, this is more complicated --
# must convert from alignment positions to matrix positions
len_aln1 = coevolution_matrix.shape[1]
for p in exclude_positions:
try:
coevolution_matrix[:,p] = null_value
except IndexError:
coevolution_matrix[p-len_aln1,:] = null_value
## Functions for archiving/retrieiving coevolve results
#### These functions are extremely general -- should they go
#### somewhere else, or should I be using pre-existing code?
def pickle_coevolution_result(coevolve_result,out_filepath='output.pkl'):
""" Pickle coevolve_result and store it at output_filepath
coevolve_result: result from a coevolve_* function (above); this can
be a float, an array, or a 2D array (most likely it will be one of the
latter two, as it will usually be fast enough to compute a single
coevolve value on-the-fly.
out_filepath: path where the pickled result should be stored
"""
try:
p = Pickler(open(out_filepath,'w'))
except IOError:
err = "Can't access filepath. Do you have write access? " + \
out_filepath
raise IOError,err
p.dump(coevolve_result)
def unpickle_coevolution_result(in_filepath):
""" Read in coevolve_result from a pickled file
in_filepath: filepath to unpickle
"""
try:
u = Unpickler(open(in_filepath))
except IOError:
err = \
"Can't access filepath. Does it exist? Do you have read access? "+\
in_filepath
raise IOError,err
return u.load()
def coevolution_matrix_to_csv(coevolve_matrix,out_filepath='output.csv'):
""" Write coevolve_matrix as csv file at output_filepath
coevolve_result: result from a coevolve_alignment function (above);
this should be a 2D numpy array
out_filepath: path where the csv result should be stored
"""
try:
f = open(out_filepath,'w')
except IOError:
err = "Can't access filepath. Do you have write access? " + \
out_filepath
raise IOError,err
f.write('\n'.join([','.join([str(v) for v in row]) \
for row in coevolve_matrix]))
f.close()
def csv_to_coevolution_matrix(in_filepath):
""" Read a coevolution matrix from a csv file
in_filepath: input filepath
"""
try:
f = open(in_filepath)
except IOError:
err = \
"Can't access filepath. Does it exist? Do you have read access? "+\
in_filepath
raise IOError,err
result = []
for line in f:
values = line.strip().split(',')
result.append(map(float,values))
return array(result)
## End functions for archiving/retrieiving coevolve results
## Start functions for analyzing the results of a coevolution run.
def identify_aln_positions_above_threshold(coevolution_matrix,threshold,\
aln_position,null_value=gDefaultNullValue):
""" Returns the list of alignment positions which achieve a
score >= threshold with aln_position.
Coevolution matrix should be symmetrical or you
may get weird results -- scores are pulled from the row describing
aln_position.
"""
coevolution_scores = coevolution_matrix[aln_position]
results = []
for i in range(len(coevolution_scores)):
s = coevolution_scores[i]
if s != null_value and s >= threshold:
results.append(i)
return results
def aln_position_pairs_cmp_threshold(coevolution_matrix,\
threshold,cmp_function,null_value=gDefaultNullValue,\
intermolecular_data_only=False):
""" Returns list of position pairs with score >= threshold
coevolution_matrix: 2D numpy array
threshold: value to compare matrix positions against
cmp_function: function which takes a value and theshold
and returns a boolean (e.g., ge(), le())
null_value: value representing null scores -- these are
ignored
intermolecular_data_only: True if the coevolution result
matrix contains only intermolecular data (default: False)
"""
if not intermolecular_data_only:
assert coevolution_matrix.shape[0] == coevolution_matrix.shape[1],\
"Non-square matrices only supported for intermolecular-only data."
results = []
# compile the matrix positions with cmp(value,threshold) == True
for i,row in enumerate(coevolution_matrix):
for j,value in enumerate(row):
if value != null_value and cmp_function(value,threshold):
results.append((i,j))
# if working with intermolecular data only, need to convert
# matrix positions to alignment positions
if intermolecular_data_only:
# convert matrix positions to alignment positions
adjustment = coevolution_matrix.shape[1]
results = [(j,i+adjustment) for i,j in results]
return results
def aln_position_pairs_ge_threshold(coevolution_matrix,\
threshold,null_value=gDefaultNullValue,\
intermolecular_data_only=False):
"""wrapper function for aln_position_pairs_cmp_threshold """
return aln_position_pairs_cmp_threshold(\
coevolution_matrix,threshold,greater_equal,null_value,intermolecular_data_only)
def aln_position_pairs_le_threshold(coevolution_matrix,\
threshold,null_value=gDefaultNullValue,\
intermolecular_data_only=False):
"""wrapper function for aln_position_pairs_cmp_threshold """
return aln_position_pairs_cmp_threshold(\
coevolution_matrix,threshold,less_equal,\
null_value,intermolecular_data_only)
def count_cmp_threshold(m,threshold,cmp_function,null_value=gDefaultNullValue,\
symmetric=False,ignore_diagonal=False):
""" Returns a count of the values in m >= threshold, ignoring nulls.
m: coevolution matrix (numpy array)
thresold: value to compare against scores in matrix (float)
cmp_function: function used to compare value to threshold
(e.g., greater_equal, less_equal)
"""
total_non_null = 0
total_hits = 0
if not symmetric:
if ignore_diagonal:
values = [m[i,j] \
for i in range(m.shape[0]) \
for j in range(m.shape[1]) \
if i != j]
else:
values = m.flat
else:
if ignore_diagonal:
# has to be a better way to do this... tril doesn't work b/c it
# sets the upper triangle to zero -- if i could get it to set
# that to null_value, and then apply flat, that'd be fine.
#values = tril(m,-1)
values = [m[i,j] for i in range(len(m)) for j in range(i)]
else:
#values = tril(m)
values = [m[i,j] for i in range(len(m)) for j in range(i+1)]
if isnan(null_value):
def is_not_null_value(v):
return not isnan(v)
else:
def is_not_null_value(v):
return isnan(v) or v != null_value
for value in values:
if is_not_null_value(value):
total_non_null += 1
if cmp_function(value, threshold):
total_hits += 1
return total_hits, total_non_null
def count_ge_threshold(m,threshold,null_value=gDefaultNullValue,\
symmetric=False,ignore_diagonal=False):
"""wrapper function for count_cmp_threshold """
return count_cmp_threshold(m,threshold,greater_equal,null_value,\
symmetric,ignore_diagonal)
def count_le_threshold(m,threshold,null_value=gDefaultNullValue,\
symmetric=False,ignore_diagonal=False):
"""wrapper function for count_cmp_threshold """
return count_cmp_threshold(m,threshold,less_equal,null_value,\
symmetric,ignore_diagonal)
def ltm_to_symmetric(m):
""" Copies values from lower triangle to upper triangle"""
assert m.shape[0] == m.shape[1], \
"Making matrices symmetric only supported for square matrices"
for i in range(len(m)):
for j in range(i):
m[j,i] = m[i,j]
return m
## End functions for analyzing the results of a coevolution run
## Script functionality
def build_coevolution_matrix_filepath(input_filepath,\
output_dir='./',method=None,alphabet=None,parameter=None):
""" Build filepath from input filename, output dir, and list of suffixes
input_filepath: filepath to be used for generating the output
filepath. The path and the final suffix will be stripped to
get the 'base' filename.
output_dir: the path to append to the beginning of the base filename
method: string indicating method that should be appended to filename
alphabet: string indicating an alphabet recoding which should be
appended to filename, or None
parameter: parameter that should be appended to the filename,
or None (ignored if method doesn't require parameter)
Examples:
>>> build_coevolution_matrix_filepath(\
'./p53.fasta','/output/path','mi','charge')
/output/path/p53.charge.mi
>>> build_coevolution_matrix_filepath(\
'./p53.new.fasta','/output/path','mi','charge')
/output/path/p53.new.charge.mi
>>> build_coevolution_matrix_filepath(\
'./p53.fasta','/output/path','sca','charge',0.75)
/output/path/p53.charge.sca_75
"""
if method == 'sca':
try:
cutoff_str = str(parameter)
point_index = cutoff_str.rindex('.')
method = '_'.join([method,cutoff_str[point_index+1:point_index+4]])
except ValueError:
raise ValueError, 'Cutoff must be provided when method == \'sca\''
elif method == 'gctmpca':
try:
epsilon_str = str(parameter)
point_index = epsilon_str.rindex('.')
method = '_'.join([method,epsilon_str[point_index+1:point_index+4]])
except ValueError:
raise ValueError, 'Epsilon must be provided when method == \'gctmpca\''
suffixes = filter(None,[alphabet,method])
# strip path
try:
result = input_filepath[input_filepath.rindex('/')+1:]
except ValueError:
result = input_filepath
# strip final suffix
try:
result = result[:result.rindex('.')]
except ValueError:
pass
# append output path
if output_dir.endswith('/'):
result = ''.join([output_dir,result])
else:
result = ''.join([output_dir,'/',result])
# append output suffixes
result = '.'.join(filter(None,[result]+suffixes))
return result
def parse_coevolution_matrix_filepath(filepath):
""" Parses a coevolution matrix filepath into constituent parts.
Format is very specific. Will only work on filenames such as:
path/alignment_identifier.alphabet_id.method.pkl
path/alignment_identifier.alphabet_id.method.csv
This format is the recommended naming convention for coevolution
matrices. To ensure filepaths compatible with this function, use
cogent.evolve.coevolution.build_coevolution_matrix_filepath to build
the filepaths for your coevolution matrices.
Examples:
parse_coevolution_matrix_filepath('pkls/myosin_995.a1_4.nmi.pkl')
=> ('myosin_995', 'a1_4', 'nmi')
parse_coevolution_matrix_filepath('p53.orig.mi.csv')
=> ('p53','orig','mi')
"""
filename = basename(filepath)
fields = filename.split('.')
try:
alignment_id = fields[0]
alphabet_id = fields[1]
method_id = fields[2]
extension = fields[3]
except IndexError:
raise ValueError,\
'output filepath not in parsable format: %s. See doc string for format definition.' % filepath
return (alignment_id,alphabet_id,method_id)
script_info = {}
script_info['brief_description'] = ""
script_info['script_description'] = ""
script_info['script_usage'] = [("","","")]
script_info['output_description']= ""
script_info['required_options'] = [\
# Example required option
make_option('-i','--alignment_fp',help='the input alignment'),
]
script_info['optional_options'] = [\
make_option('-t','--tree_fp',
help='the input tree [default: %default]',
default=None),
make_option('-f','--force',action='store_true',\
dest='force',help='Force overwrite of any existing files '+\
'[default: %default]',
default=False),
make_option('--ignore_excludes',action='store_true',
dest='ignore_excludes',help='exclude_handler=ignore_excludes '+\
'[default: %default]',default=False),
make_option('-d','--delimited_output',action='store_true',
dest='delimited_output',help='store result matrix as csv file '+\
'instead of pkl file [default: %default]',default=False),
make_option('-m','--method_id',action='store',
type='choice',dest='method_id',help='coevolve method to apply '+\
'[default: %default]',default='nmi',
choices=coevolve_alignment_functions.keys()),
make_option('-c','--sca_cutoff',action='store',
type='float',dest='sca_cutoff',help='cutoff to apply when method'+\
' is SCA (-m sca) [default: %default]',default=0.8),
make_option('-e','--epsilon',action='store',
type='float',dest='epsilon',help='epsilon, only used when method'+\
' is Haussler/Yeang (-m gctmpca) [default: %default]',default=0.7),
make_option('-o','--output_dir',action='store',
type='string',dest='output_dir',help='directory to store pickled '+\
'result matrix (when -p is specified) [default: %default]',
default='./'),
make_option('-a','--alphabet_id',action='store',
dest='alphabet_id',type='choice',
help='name of alphabet to reduce to [default: %default (i.e., full)]',
default='orig',choices=alphabets.keys())
]
script_info['version'] = __version__
def main():
option_parser, opts, args =\
parse_command_line_parameters(**script_info)
verbose = opts.verbose
force = opts.force
method_id = opts.method_id
output_dir = opts.output_dir
sca_cutoff = opts.sca_cutoff
epsilon = opts.epsilon
alphabet_id = opts.alphabet_id
delimited_output = opts.delimited_output
alignment_filepath = opts.alignment_fp
tree_filepath = opts.tree_fp
# error checking related to the alignment
try:
aln = LoadSeqs(alignment_filepath,MolType=PROTEIN,alignment=DenseAlignment)
except IndexError:
option_parser.error('Must provide an alignment filepath.')
except (RecordError,FileFormatError):
option_parser.error(
"Error parsing alignment: %s" % alignment_filepath)
except IOError:
option_parser.error(\
"Can't access alignment file: %s" % alignment_filepath)
# error checking related to the newick tree
if tree_filepath == None:
if (opts.method_id == 'gctmpca' or opts.method_id == 'an'):
option_parser.error(\
'Tree-based method, but no tree. Provide a newick formatted tree.')
else:
try:
tree = LoadTree(tree_filepath)
except TreeParseError:
option_parser.error(\
"Error parsing tree: %s" % tree_filepath)
except IOError:
option_parser.error(\
"Can't access tree file: %s" % tree_filepath)
# Error checking related to exclude handling
if opts.ignore_excludes and opts.method_id not in ('mi','nmi'):
option_parser.error(\
'Ignoring exclude (i.e., gap) characters currently only supported for MI and NMI.')
if delimited_output:
output_file_extension = 'csv'
else:
output_file_extension = 'pkl'
# Load the data and parameters specified by the user.
coevolve_alignment_function = coevolve_alignment_functions[method_id]
alphabet_def = alphabets[alphabet_id]
aln = LoadSeqs(alignment_filepath,moltype=PROTEIN,aligned=DenseAlignment)
if tree_filepath != None:
tree = LoadTree(tree_filepath)
if opts.ignore_excludes:
exclude_handler = ignore_excludes
else:
exclude_handler = None
# Recode the alignment in the specified reduced-state alphabet.
recoded_aln = recode_dense_alignment(aln,alphabet_def=alphabet_def)
# Perform some preliminary steps before starting the analysis. This is
# done here, rather than in the block below, to allow for some work
# with the pickle filepath before starting the analysis. The trade-off
# is that the coevolution method is checked twice (here and below), but
# since this main block is run relatively infrequently, this is not
# noticeably less efficient.
if method_id == 'sca':
# requires prior amino acid frequencies -- recode them
# to reflect the reduced-state alphabet
background_freqs = \
recode_freq_vector(alphabet_def,default_sca_freqs)
output_filepath = ''.join([\
build_coevolution_matrix_filepath(alignment_filepath,\
output_dir,method_id,alphabet_id,sca_cutoff),\
'.',output_file_extension])
elif method_id == 'gctmpca':
# uses DSO78 data -- recode it to reflect the
# reduced-state alphabet
recoded_counts, recoded_freqs = \
recode_counts_and_freqs(alphabet_def)
recoded_q = square_matrix_to_dict(\
build_rate_matrix(recoded_counts,recoded_freqs))
output_filepath = ''.join([\
build_coevolution_matrix_filepath(alignment_filepath,\
output_dir,method_id,alphabet_id,epsilon),\
'.',output_file_extension])
else:
output_filepath = ''.join([\
build_coevolution_matrix_filepath(alignment_filepath,\
output_dir,method_id,alphabet_id),\
'.',output_file_extension])
# Check for existence of output file -- we want to find this out
# before generating the result matrix so we don't overwrite it
# (since that can take a while). If the user specified -f to
# force file overwriting, skip this step.
if not force and exists(output_filepath):
print 'Output file already exists:', output_filepath
print 'Remove, rename, or specify -f to force overwrite.'
exit(-1)
# If the user specified -v, print some information to stdout. Otherwise
# only error messages are displayed (via stderr).
if verbose:
print 'Input alignment: %s' % alignment_filepath
try:
print 'Input tree: %s' % tree_filepath
except IndexError:
pass
print 'Output matrix filepath: %s' % output_filepath
if alphabet_id != 'orig':
print 'Alphabet reduction: %s' % alphabet_id
else:
print "No alphabet reduction (alphabet_id = 'orig')."
if method_id == 'sca':
print 'Coevolution method: sca, cutoff=%f' % sca_cutoff
elif method_id == 'gctmpca':
print 'Coevolution method: gctmpca, epsilon=%f' % epsilon
else:
print 'Coevolution method: %s' % method_id
if exclude_handler == ignore_excludes:
print \
'Exclude (i.e., gap) character handling: gaps treated as other characters.'
else:
print \
'Exclude (i.e., gap) character handling: columns with gaps = null value'
# Perform the coevolutionary analysis. This can take a while.
if coevolve_alignment_function == sca_alignment:
alphabet = ''.join([c[0] for c in alphabet_def])
matrix = coevolve_alignment(coevolve_alignment_function,recoded_aln,\
cutoff=sca_cutoff,background_freqs=background_freqs,\
alphabet=alphabet)
elif coevolve_alignment_function == gctmpca_alignment:
matrix = coevolve_alignment(coevolve_alignment_function,\
recoded_aln,tree=tree,sub_matrix=recoded_q,priors=recoded_freqs,\
epsilon=epsilon)
elif coevolve_alignment_function == ancestral_state_alignment:
matrix = coevolve_alignment(\
coevolve_alignment_function,recoded_aln,tree=tree)
else:
matrix = coevolve_alignment(coevolve_alignment_function,recoded_aln,\
exclude_handler=exclude_handler)
# Write the coevolution matrix to disk in the requested format
if delimited_output:
coevolution_matrix_to_csv(matrix,output_filepath)
else:
pickle_coevolution_result(matrix,output_filepath)
if __name__ == "__main__":
main()
|