/usr/share/pyshared/cogent/maths/simannealingoptimiser.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | #!/usr/bin/env python
"""
Simulated annealing optimiser. Derives from basic optimiser class.
The simulated annealing optimiser is a translation into Python of the fortran
program simman.f authored by Bill Goffe (bgoffe@whale.st.usm.edu). The original
citation is "Global Optimization of Statistical Functions with Simulated
Annealing," Goffe, Ferrier and Rogers, Journal of Econometrics, vol. 60, no. 1/2,
Jan./Feb. 1994, pp. 65-100.
"""
from __future__ import division
import numpy
import random
from collections import deque
from cogent.util import checkpointing
__author__ = "Andrew Butterfield and Peter Maxwell"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Gavin Huttley", "Andrew Butterfield", "Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
class AnnealingSchedule(object):
"""Responsible for the shape of the simulated annealing temperature profile"""
def __init__(self, temp_reduction, initial_temp, temp_iterations, step_cycles):
if initial_temp < 0.0 :
raise ValueError, "Initial temperature not +ve"
self.T = self.initial_temp = initial_temp
self.temp_reduction = temp_reduction
self.temp_iterations = temp_iterations
self.step_cycles = step_cycles
self.dwell = temp_iterations * step_cycles
def checkSameConditions(self, other):
for attr in ['temp_reduction', 'initial_temp', 'temp_iterations', 'step_cycles']:
if getattr(self, attr) != getattr(other, attr):
raise ValueError('Checkpoint file ignored - %s different' % attr)
def roundsToReach(self, T):
from math import log
return int(-log(self.initial_temp/T) / log(self.temp_reduction)) + 1
def cool(self):
self.T = self.temp_reduction * self.T
def willAccept(self, newF, oldF, random_series):
deltaF = newF - oldF
return deltaF >= 0 or random_series.uniform(0.0, 1.0) < numpy.exp(deltaF / self.T)
class AnnealingHistory(object):
"""Keeps the last few results, for convergence testing"""
def __init__(self, sample=4):
self.sample_size = sample
#self.values = deque([None]*sample, sample) Py2.6
self.values = deque([None]*sample)
def note(self, F):
self.values.append(F)
# Next 2 lines not required once above Py2.6 line is uncommented
if len(self.values) > self.sample_size:
self.values.popleft()
def minRemainingRounds(self, tolerance):
last = self.values[-1]
return max([0]+[i+1 for (i,v) in enumerate(self.values)
if v is None or abs(v-last)>tolerance])
class AnnealingState(object):
def __init__(self, X, function, random_series):
self.random_series = random_series
self.NFCNEV = 1
self.VM = numpy.ones(len(X), float)
self.setX(X, function(X))
(self.XOPT, self.FOPT) = (X, self.F)
self.NACP = [0] * len(X)
self.NTRY = 0
def setX(self, X, F):
self.X = numpy.array(X, float)
self.F = F
def step(self, function, accept_test):
# One attempted move in each dimension
X = self.X
self.NTRY += 1
for H in range(len(X)):
self.NFCNEV += 1
current_value = X[H]
X[H] += self.VM[H] * self.random_series.uniform(-1.0, 1.0)
F = function(X)
if accept_test(F, self.F, self.random_series):
self.NACP[H] += 1
self.F = F
if F > self.FOPT:
(self.FOPT, self.XOPT) = (F, X.copy())
else:
X[H] = current_value
def adjustStepSizes(self):
# Adjust velocity in each dimension to keep acceptance ratios near 50%
if self.NTRY == 0:
return
for I in range(len(self.X)):
RATIO = (self.NACP[I]*1.0) / self.NTRY
if RATIO > 0.6:
self.VM[I] *= (1.0 + (2.0 * ((RATIO-0.6)/0.4)))
elif RATIO < 0.4:
self.VM[I] /= (1.0 + (2.0 * ((0.4 - RATIO)/0.4)))
self.NACP[I] = 0
self.NTRY = 0
class AnnealingRun(object):
def __init__(self, function, X, schedule, random_series):
self.history = AnnealingHistory()
self.schedule = schedule
self.state = AnnealingState(X, function, random_series)
self.test_count = 0
def checkFunction(self, function, xopt, checkpointing_filename):
if len(xopt) != len(self.state.XOPT):
raise ValueError(
"Number of parameters in checkpoint file '%s' (%s) " \
"don't match current function (%s)" % (
checkpointing_filename, len(self.state.XOPT), len(xopt)))
# if f(x) != g(x) then f isn't g.
then = self.state.FOPT
now = function(self.state.XOPT)
if not numpy.allclose(now, then, 1e-8):
raise ValueError(
"Function to optimise doesn't match checkpoint file " \
"'%s': F=%s now, %s in file." % (
checkpointing_filename, now, then))
def run(self, function, tolerance, checkpointer, show_remaining):
state = self.state
history = self.history
schedule = self.schedule
est_anneal_remaining = schedule.roundsToReach(tolerance/10) + 3
while True:
min_history_remaining = history.minRemainingRounds(tolerance)
if min_history_remaining == 0:
break
self.save(checkpointer)
remaining = max(min_history_remaining, est_anneal_remaining)
est_anneal_remaining += -1
for i in range(self.schedule.dwell):
show_remaining(remaining + 1 - i/self.schedule.dwell,
state.FOPT, schedule.T, state.NFCNEV)
state.step(function, self.schedule.willAccept)
self.test_count += 1
if self.test_count % schedule.step_cycles == 0:
state.adjustStepSizes()
history.note(state.F)
state.setX(state.XOPT, state.FOPT)
schedule.cool()
self.save(checkpointer, final=True)
return state
def save(self, checkpointer, final=False):
msg = "Number of function evaluations = %d; current F = %s" % \
(self.state.NFCNEV, self.state.FOPT)
checkpointer.record(self, msg, final)
class SimulatedAnnealing(object):
"""Simulated annealing optimiser for bounded functions
"""
def __init__(self, filename=None, interval=None, restore=True):
"""
Set the checkpointing filename and time interval.
Arguments:
- filename: name of the file to which data will be written. If None, no
checkpointing will be done.
- interval: time expressed in seconds
- restore: flag to restore from this filename or not. will be set to 0 after
restoration
"""
self.checkpointer = checkpointing.Checkpointer(filename, interval)
self.restore = restore
def maximise(self, function, xopt, show_remaining,
random_series = None, seed = None,
tolerance = None, temp_reduction = 0.5, init_temp=5.0,
temp_iterations = 5, step_cycles = 20):
"""Optimise function(xopt).
Arguments:
- show_progress: whether the function values are printed as
the optimisation proceeds. Default is True.
- tolerance: the error condition for termination, default is 1E-6
- temp_reduction: the factor by which the annealing
"temperature" is reduced, default is 0.5
- temp_iterations: the number of iterations before a
temperature reduction, default is 5
- step_cycles: the number of cycles after which the step size
is modified, default is 20
Returns optimised parameter vector xopt
"""
if tolerance is None:
tolerance = 1E-6
if len(xopt) == 0:
return xopt
random_series = random_series or random.Random()
if seed is not None:
random_series.seed(seed)
schedule = AnnealingSchedule(
temp_reduction, init_temp, temp_iterations, step_cycles)
if self.restore and self.checkpointer.available():
run = self.checkpointer.load()
run.checkFunction(function, xopt, self.checkpointer.filename)
run.schedule.checkSameConditions(schedule)
else:
run = AnnealingRun(function, xopt, schedule, random_series)
self.restore = False
result = run.run(
function,
tolerance,
checkpointer = self.checkpointer,
show_remaining = show_remaining)
return result.XOPT
|