/usr/share/pyshared/cogent/parse/stockholm.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | #!/usr/bin/env python
"""Provides a parser for Stockholm format files.
"""
from string import strip
from cogent.parse.record import RecordError
from cogent.parse.record_finder import DelimitedRecordFinder
from cogent.parse.clustal import ClustalParser
from cogent.core.sequence import RnaSequence as Rna
from cogent.core.sequence import ProteinSequence as Protein
from cogent.core.moltype import BYTES
from cogent.core.info import Info
from cogent.struct.rna2d import WussStructure
from cogent.util.transform import trans_all,keep_chars
from cogent.core.alignment import Alignment, DataError, SequenceCollection
from collections import defaultdict
__author__ = "Jeremy Widmann"
__copyright__ = "Copyright 2007-2008, The Cogent Project"
__credits__ = ["Jeremy Widmann"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Jeremy Widmann"
__email__ = "jeremy.widmann@colorado.edu"
__status__ = "Development"
def is_empty_or_html(line):
"""Return True for HTML line and empty (or whitespace only) line.
line -- string
The Stockholm adaptor that retrieves records inlcudes two HTML tags in
the record. These lines need to be ignored in addition to empty lines.
"""
if line.startswith('<pre') or line.startswith('</pre'):
return True
return (not line) or line.isspace()
Sequence = BYTES.Sequence
StockholmFinder = DelimitedRecordFinder('//', ignore=is_empty_or_html)
def load_from_clustal(data, seq_constructor=Sequence, strict=True,gap_char='-'):
recs=[(name, seq_constructor(seq.replace('.',gap_char), )) for name, seq in\
ClustalParser(data, strict)]
lengths = [len(i[1]) for i in recs]
if lengths and max(lengths) == min(lengths):
return Alignment(recs, MolType=BYTES)
else:
return SequenceCollection(recs, MolType=BYTES)
_gf_field_names = {'AC':'AccessionNumber',\
'ID':'Identification',\
'DE':'Description',\
'AU':'Author',\
'SE':'AlignmentSource',\
'SS':'StructureSource',\
'BM':'BuildMethod',\
'SM':'SearchMethod',\
'GA':'GatheringThreshold',\
'TC':'TrustedCutoff',\
'NC':'NoiseCutoff',\
'TP':'FamilyType',\
'SQ':'Sequences',\
'DC':'DatabaseComment',\
'DR':'DatabaseReference',\
'RC':None,\
'RN':'ReferenceNumber',\
'RM':'MedlineRef',\
'RT':None,\
'RA':None,\
'RL':None,\
'PI':'PreviousIdentifications',\
'KW':'Keywords',\
'CC':'Comment',\
'NE':'PfamAccession',\
'NL':'Location',\
'WK':'WikipediaLink',\
'CL':'Clan',\
'MB':'Membership',\
'NH':'NewHampshire',\
'TN':'TreeID',
'FT':'Feature'}
_gs_field_names = {'AC':'AccessionNumber',\
'DE':'Description',\
'DR':'DatabaseReference',\
'OS':'Organism',\
'OC':'OrganismClassification',\
'BP':'BasePair'}
_gr_field_names = {'SS':'SecondaryStructure',\
'SA':'SurfaceAccessibility',\
'TM':'TransMembrane',\
'PP':'PosteriorProbability',\
'LI':'LigandBinding',\
'AS':'ActiveSite',\
'pAS':'ASPfam',\
'sAS':'ASSwissProt',\
'IN':'Intron',\
'RF':'ReferenceAnnotation'}
_gc_field_names = {'SS_cons':'ConsensusSecondaryStructure',\
'SA':'SurfaceAccessibility',\
'TM':'TransMembrane',\
'PP':'PosteriorProbability',\
'LI':'LigandBinding',\
'AS':'ActiveSite',\
'pAS':'ASPfam',\
'sAS':'ASSwissProt',\
'IN':'Intron',\
'RF':'ReferenceAnnotation'}
def GfToInfo(gf_lines,strict=True):
"""Returns a dict constructed from the GF lines.
gf_lines is a list of lines that contain per-file annotation.
Fields that can occur multiple times in a header are stored in a list.
Fields that (should) occur only once are stored as a single value
Comments are joined by ' ' to one field.
Fields concerning the references are ignored, except for MedLine ID.
"""
# construct temporary dictionary containing all original information
initial_info = {}
for line in gf_lines:
line = line.strip()
if not line:
continue
try:
init,feature,content = line.split(None,2)
if not init == '#=GF':
raise RecordError
except:
if strict:
raise RecordError, "Failed to extract feature and content " +\
"information from line %s"%(line)
else:
continue
if feature in ['BM','DR','RM','CC','FT']:
if feature in initial_info:
initial_info[feature].append(content.strip())
else:
initial_info[feature] = [content.strip()]
else:
initial_info[feature] = content.strip()
# transform initial dict into final one
# throw away useless information; group information
final_info={}
for key in initial_info.keys():
name = _gf_field_names.get(key,key)
if name == 'Comment':
value = ' '.join(initial_info[key])
else:
value = initial_info[key]
final_info[name] = value
return final_info
def GcToInfo(gc_lines,strict=True):
"""Returns a dict constructed from the GC lines.
gc_lines is a list of lines that contain per column annotation.
Fields that (should) occur only once are stored as a single value
"""
# construct temporary dictionary containing all original information
initial_info = defaultdict(list)
for line in gc_lines:
line = line.strip()
if not line:
continue
try:
init,feature,content = line.split(None,2)
if not init == '#=GC':
raise RecordError
except:
if strict:
raise RecordError, "Failed to extract feature and content " +\
"information from line %s"%(line)
else:
continue
initial_info[feature].append(content.strip())
# transform initial dict into final one
# throw away useless information; group information
final_info={}
for key in initial_info.keys():
name = _gc_field_names.get(key,key)
value = initial_info[key]
final_info[name] = ''.join(value)
return final_info
def GsToInfo(gs_lines,strict=True):
"""Returns a dict constructed from the GS lines.
gs_lines is a list of lines that contain per-sequence annotation.
Fields that can occur multiple times in a header are stored in a list.
Fields that (should) occur only once are stored as a single value
"""
# construct temporary dictionary containing all original information
initial_info = {}
for line in gs_lines:
line = line.strip()
if not line:
continue
try:
init,seqname,feature,content = line.split(None,3)
if not init == '#=GS':
raise RecordError
except:
if strict:
raise RecordError, "Failed to extract feature and content " +\
"information from line %s"%(line)
else:
continue
if feature in ['DE','DR','BP']:
if feature in initial_info:
initial_info[feature][seqname].append(content.strip())
else:
initial_info[feature]= {seqname:[content.strip()]}
elif feature not in initial_info:
initial_info[feature]= {seqname:content.strip()}
else:
initial_info[feature][seqname]=content.strip()
# transform initial dict into final one
# throw away useless information; group information
final_info={}
for key in initial_info.keys():
name = _gs_field_names.get(key,key)
value = initial_info[key]
final_info[name] = value
return final_info
def GrToInfo(gr_lines,strict=True):
"""Returns a dict constructed from the GR lines.
gr_lines is a list of lines that contain per-sequence AND per-Column
annotation.
Fields that can occur multiple times in a header are stored in a list.
Fields that (should) occur only once are stored as a single value
"""
# construct temporary dictionary containing all original information
initial_info = defaultdict(dict)
for line in gr_lines:
line = line.strip()
if not line:
continue
try:
init,seqname,feature,content = line.split(None,3)
if not init == '#=GR':
raise RecordError
except:
if strict:
raise RecordError, "Failed to extract feature and content " +\
"information from line %s"%(line)
else:
continue
if feature not in initial_info:
initial_info[feature][seqname]=[]
elif seqname not in initial_info[feature]:
initial_info[feature][seqname]=[]
initial_info[feature][seqname].append(content.strip())
# transform initial dict into final one
# throw away useless information; group information
final_info={}
for feature in initial_info.keys():
name = _gr_field_names.get(feature,feature)
value = initial_info[feature]
for k,v in value.items():
value[k]=''.join(v)
final_info[name] = value
return final_info
AllToInfo = {'GF':GfToInfo,'GC':GcToInfo,'GS':GsToInfo,'GR':GrToInfo}
def is_gf_line(line):
"""Returns True if line is a GF line"""
return line.startswith('#=GF')
def is_gc_line(line):
"""Returns True if line is a GC line"""
return line.startswith('#=GC')
def is_gs_line(line):
"""Returns True if line is a GS line"""
return line.startswith('#=GS')
def is_gr_line(line):
"""Returns True if line is a GR line"""
return line.startswith('#=GR')
def is_seq_line(line):
"""Returns True if line is a sequence line"""
return bool(line) and (not line[0].isspace()) and \
(not line.startswith('#')) and (not line.startswith('//'))
def is_structure_line(line):
"""Returns True if line is a structure line"""
return line.startswith('#=GC SS_cons ')
def MinimalStockholmParser(infile,strict=True,seq_constructor=Rna):
"""Yield successive records as (gf, gc, gs, gr, sequences, structure).
gf is a list of GF lines
gc is a list of GC lines
gs is a list of GS lines
gr is a list of GR lines
sequences is an Alignment object. Sequences are Rna objects keyed by the
original labels in the database.
structure is a WussStructure
"""
for record in StockholmFinder(infile):
gf = []
gc = []
gs = []
gr = []
sequences = []
structure = []
for line in record:
if is_gf_line(line):
gf.append(line.strip())
elif is_gc_line(line):
gc.append(line.strip())
if is_structure_line(line):
structure.append(line)
elif is_gs_line(line):
gs.append(line.strip())
elif is_gr_line(line):
gr.append(line.strip())
elif is_seq_line(line):
sequences.append(line)
else:
continue
#sequence and structure are required.
#for example when looking at the stockholm format of just one family
if not sequences:
if strict:
error = 'Found record with missing element(s): '
if not sequences:
error += 'sequences'
raise RecordError, error
else:
continue
#join all sequence parts together, construct label
try:
new_seqs = load_from_clustal(sequences,strict=strict,
seq_constructor=seq_constructor)
sequences = new_seqs
except (DataError, RecordError), e:
if strict:
raise RecordError, str(e)
else:
continue
#construct the structure
if structure:
try:
res = load_from_clustal(structure, strict=strict, gap_char='.')
assert len(res.NamedSeqs) == 1 #otherwise multiple keys
structure = res.NamedSeqs['#=GC SS_cons']
except (RecordError, KeyError, AssertionError), e:
if strict:
raise RecordError,\
"Can't parse structure of family"
structure = None
yield {'GF':gf, 'GC':gc, 'GS':gs, 'GR':gr}, sequences, structure
def StockholmParser(lines, seq_constructor=Rna, info_constructor_dict=\
AllToInfo,struct_constructor=WussStructure,strict=True):
"""Yields (family_info, sequences, structure).
Treats lines as a stream of Stockholm records.
Family_info is the general information about the alignment.
Sequences is an Alignment object. Each sequence has its own Info
object with Genbank ID etc. Sequences are keyed by the original
label in the database.
Structure is the consensus structure of the alignment, in Wuss format
"""
for annotation, alignment, structure in MinimalStockholmParser\
(lines,strict=strict,seq_constructor=seq_constructor):
family_info = {}
if strict:
for k,v in annotation.items():
label_constructor = info_constructor_dict[k]
try:
family_info[k] = label_constructor(v,strict=strict)
except:
raise RecordError,"Info construction failed on " +\
"record on the %s annotation"%(k)
try:
for seq in alignment.Seqs:
_process_seq(seq, strict)
structure = struct_constructor(structure)
alignment.Info.update(family_info)
alignment.Info.update({'Struct':structure})
yield alignment
except Exception, e:
raise RecordError,"Sequence construction failed on " +\
"record with reference %s"%\
(family_info['GF'].get('AccessionNumber',None))
else:
try:
for k,v in annotation.items():
label_constructor = info_constructor_dict[k]
family_info[k] = label_constructor(v,strict=strict)
for seq in alignment.Seqs:
_process_seq(seq, strict)
structure = struct_constructor(structure)
alignment.Info.update(family_info)
alignment.Info.update({'Struct':structure})
yield alignment
except Exception, e:
continue
def _process_seq(seq, strict):
"""Adds info to seq, and to Aligned object if seq is hidden."""
if hasattr(seq, 'data'):
real_seq = seq.data
else:
real_seq = seq
if seq.Info and 'Name' in seq.Info:
seq.Name = seq.Info.Name
if seq is not real_seq:
real_seq.Name = seq.Name
real_seq.Info = seq.Info
|