/usr/share/pyshared/cogent/seqsim/tree.py is in python-cogent 1.5.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | #!/usr/bin/env python
"""Fast tree class for sequence simulations."""
from operator import add, or_, and_
from random import choice
from numpy import array, zeros, transpose, arange, concatenate, any
from numpy.random import permutation
from cogent.core.tree import PhyloNode
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class RangeNode(PhyloNode):
"""Node object that assigns ids to its leaves and can access leaf blocks.
Note: some of these methods should possibly move to the base class.
"""
def __init__(self, *args, **kwargs):
"""Returns a new RangeNode object.
Name: text label
LeafRange: range of this node's leaves in array. last = index+1
Id: index of this node in array.
Children: list of Node objects that are this node's direct
children.
Parent: Node object that is this node's parent.
NameLoaded: From cogent.core.tree.TreeNode, undocumented.
WARNING: Parent/Child relationships are _not_ checked to preserve
consistency! You must specify both the parent and the children
explicitly, or the connections will not be made correctly.
"""
self.LeafRange = kwargs.get('LeafRange', None)
self.Id = kwargs.get('Id', None)
super(RangeNode, self).__init__(*args, **kwargs)
def __int__(self):
"""Returns index of self."""
return self.Index
def _find_label(self):
"""Makes up a label for __str__ method."""
label = None
if hasattr(self, 'Name'):
label = self.Name
if label is None:
if hasattr(self, 'Id'):
label = self.Id
if label is None:
label = ''
return label
def __str__(self):
"""Returns informal Newick-like representation of self."""
label = self._find_label()
if self.Children:
child_string = ','.join(map(str, self.Children))
else:
child_string = ''
if self.Parent is None: #root of tree
if self.Children:
return '(%s)%s' % (child_string, label)
else:
return '()%s' % label
else: #internal node
if self.Children:
if hasattr(self, 'Length') and (self.Length!=None):
return '(%s)%s:%s' % \
(child_string, label, self.Length)
else:
return '(%s)%s' % \
(child_string, label)
else:
if hasattr(self, 'Length') and (self.Length!=None):
return '%s:%s' % (label, self.Length)
else:
return '%s' % (label)
def traverse(self, self_before=False, self_after=False, include_self=True):
"""Iterates through children of self. Default behavior: leaves only.
self_before: yield self before children (preorder traversal)
self_after: yield self after children (postorder traversal)
include_self: if False (default is True), skips self in traversal.
Primarily useful for skipping the root node.
If both self_before and self_after are True, the node is returned
both before _and_ after all its children are handled. This can be
useful for certain applications, e.g. in RNA structure.
"""
return super(RangeNode, self).traverse(self_before, self_after, \
include_self)
def indexByAttr(self, attr, multiple=False):
"""Returns dict of node.attr -> node.
WARNING: Assumes all nodes have unique values of attr unless
multiple is set to True.
"""
result = {}
if multiple:
for n in self.traverse(self_before=True):
curr = getattr(n, attr)
if curr not in result:
result[curr] = [n]
else:
result[curr].append(n)
else:
for n in self.traverse(self_before=True):
result[getattr(n, attr)] = n
return result
def indexByFunc(self, f):
"""Returns dict of f(node) -> [matching nodes]."""
result = {}
for n in self.traverse(self_before=True):
val = f(n)
if val not in result:
result[val] = [n]
else:
result[val].append(n)
return result
def assignIds(self, num_leaves=None):
"""Assigns each node's Id property, based on order in the tree.
WARNING: Will store incorrect data if num_leaves is incorrect.
"""
if num_leaves is None:
num_leaves = len(list(self.traverse()))
last_leaf_id = 0
last_internal_id = num_leaves
for node in self.traverse(self_after=True):
c = node.Children
if c:
node.Id = last_internal_id
last_internal_id += 1
node.LeafRange = (c[0].LeafRange[0], c[-1].LeafRange[-1])
else:
node.Id = last_leaf_id
node.LeafRange = (last_leaf_id, last_leaf_id + 1)
last_leaf_id += 1
def propagateAttr(self, attr, overwrite=False):
"""Propagates self's version of attr to all children without attr.
overwrite: determines whether to overwrite existing attr values.
"""
curr = getattr(self, attr)
if overwrite:
for node in self.traverse(self_after=True):
setattr(node, attr, curr)
else:
for node in self.Children:
if not hasattr(node, attr):
setattr(node, attr, curr)
node.propagateAttr(attr)
def delAttr(self, attr):
"""Delets attr in self and all children."""
for node in self.traverse(self_after=True):
delattr(node, attr)
def perturbAttr(self, attr, f, pass_attr=False):
"""Perturbs attr in self and all children according to f() or f(attr).
If pass_attr is False (the default), the branch is assigned f(). If
pass_attr is True, the branch is assigned f(attr). Make sure that
f has the correct form or you'll get an error!
"""
for node in self.traverse(self_after=True):
if pass_attr:
setattr(node, attr, f(getattr(node, attr)))
else:
setattr(node, attr, f())
def accumulateAttr(self, attr, towards_leaves=True, f=add):
"""Sets each node's version of attr to f(node, parent|children).
if towards_leaves (the default), node.attr = f(node.attr, parent.attr);
otherwise, node.attr = f(node.attr, child.attr) for each child.
"""
if towards_leaves:
for node in self.traverse(self_before=True):
parent = node.Parent
if parent is None:
continue
else:
setattr(node, attr, \
f(getattr(node,attr), getattr(parent,attr)))
else:
for node in self.traverse(self_after=True):
children = node.Children
if children:
for c in children:
setattr(node, attr, \
f(getattr(node, attr), getattr(c, attr)))
def accumulateChildAttr(self, attr, f=add):
"""Sets each node's attr based on states in children (only).
Always works from leaves to root. Does not set states in leaves.
Skips any child where attr is None.
"""
for node in self.traverse(self_after=True):
#only reset nodes with children
if node.Children:
#get attr from all children that have it
vals = [getattr(c, attr) for c in node.Children \
if hasattr(c, attr)]
#get rid of None values
vals = filter(lambda x: x is not None, vals)
if vals:
setattr(node, attr, reduce(f, vals))
else:
setattr(node, attr, None)
def assignLevelsFromRoot(self):
"""Assigns each node its level reletave to self (self.Level=0)."""
self.Level = 0
self.propagateAttr('Level', overwrite=True)
self.accumulateAttr('Level', towards_leaves=True, f=lambda a,b:b+1)
def assignLevelsFromLeaves(self, use_min=False):
"""Assigns each node its distance from the leaves.
use_min: use min distance from leaf instead of max (default:False)
"""
self.Level = 0
self.propagateAttr('Level', overwrite=True)
if use_min:
self.accumulateAttr('Level', towards_leaves=False, \
f=lambda a,b: (a and min(a, b+1)) or b+1)
else:
self.accumulateAttr('Level', towards_leaves=False, \
f=lambda a,b:max(a, b+1))
def attrToList(self, attr, default=None, size=None, \
leaves_only=False):
"""Copies attribute from each node of self into list.
attr: name of attr to copy.
size: size of list to copy into (must be >= num nodes).
leaves_only: only look at leaves, not internal nodes
WARNING: will fail if the Id attribute of each node has
not yet been set.
"""
if leaves_only:
nodes = list(self.traverse())
else:
nodes = list(self.traverse(self_before=True))
if size is None:
size = len(nodes)
result = [default] * size
for node in nodes:
result[node.Id] = getattr(node, attr)
return result
def attrFromList(self, attr, items, leaves_only=False):
"""Copies items in list into attr of nodes. Must have right # items."""
for n in self.traverse(self_before = not leaves_only):
setattr(n, attr, items[n.Id])
def toBreakpoints(self):
"""Returns list of breakpoints that reconstructs self's topology.
WARNING: Only works for strictly bifurcating trees.
"""
result = []
for node in self.traverse(self_before=True):
if node.Children:
result.append(node.Children[0].LeafRange[-1] - 1)
return result
def fromBreakpoints(cls, breakpoints):
"""Makes a new RangeNode tree from a sequence of breakpoints.
Will have one more leaf than breakpoint. Always produces bifurcating
tree.
WARNING: will return incorrect results if elements in breakpoints are
not unique!
To make a random tree. call fromBreakpoints(permutation(n-1)) where
n is the number of leaves desired in the tree.
"""
#return single, leaf node if breakpoints is empty
if not any(breakpoints):
return cls(Id=0, LeafRange=(0,1))
num_leaves = len(breakpoints) + 1
curr_internal_index = num_leaves
root = cls(Id=curr_internal_index, LeafRange=(0,num_leaves))
curr_internal_index += 1
#need to walk through the tree for each breakpoint, find the range
#in which the breakpoint occurs, and make children containing the
#start (i.e. start:breakpoint+1) and end (i.e. breakpoint+1:end)
#of the range.
for b in breakpoints:
#start at the root
curr_node = root
children = curr_node.Children
#walk down the tree until we find a range without children that
#the breakpoint is in
while children:
middle = children[1].LeafRange[0]
#SUPPORT2425
curr_node = children[int(middle <= b)]
children = curr_node.Children
#curr_node is now the range that contains the breakpoint
start, end = curr_node.LeafRange
#check if left and right nodes are leaves, and assign relevant ids
#we frequently need the index after the breakpoint, so assign
#variable after_b to avoid lots of mysterious 'b+1's in the code
after_b = b+1
if after_b - start == 1:
left_id = start
else:
left_id = curr_internal_index
curr_internal_index += 1
if end - after_b == 1:
right_id = after_b
else:
right_id = curr_internal_index
curr_internal_index += 1
#add left and right nodes to current node's children
left = cls(Parent=curr_node,Id=left_id, LeafRange=(start, after_b))
right = cls(Parent=curr_node,Id=right_id, LeafRange=(after_b, end))
curr_node.Children = [left, right]
return root
fromBreakpoints = classmethod(fromBreakpoints)
def leafLcaDepths(self, assign_ids=True, assign_levels=True):
"""Returns num_leaves x num_leaves matrix with depth of each LCA.
assign_ids and assign_levels control whether or not to assign
ids and levels (default: True).
size: if supplied, sizes the matrix.
No longer assumes strictly bifurcating tree.
"""
if assign_ids:
self.assignIds()
if assign_levels:
self.assignLevelsFromLeaves()
nodes = list(self.traverse(self_before=True))
#second element of LeafRange should contain largest node index
#incidentally, will fail if ids not assigned
num_nodes = self.LeafRange[1]
result = zeros((num_nodes,num_nodes))
for node in nodes:
#skip any nodes that are themselves leaves
children = node.Children
if not children:
continue
#if node has only one child, can't be anyone's LCA
if len(children) == 1:
continue
if len(children) == 2:
#if node has two children, is LCA of any descendant of first
#child w.r.t. any descendant of second child
curr_level = node.Level
left, right = children
for left_index in range(*(left.LeafRange)):
for right_index in range(*(right.LeafRange)):
result[left_index, right_index] = curr_level
#otherwise, node is LCA of each child's descendants w.r.t. the
#descendants of other children
else:
curr_level = node.Level
for first in children:
for second in children[1:]:
for left_index in range(*(first.LeafRange)):
for right_index in range(*(second.LeafRange)):
result[left_index, right_index] = curr_level
result += transpose(result)
return result
def randomNode(self):
"""Returns random node from self and children."""
return choice(list(self.traverse(self_before=True)))
def randomLeaf(self):
"""Returns random leaf descended from self."""
if self.Children:
return choice(list(self.traverse()))
else:
return self
def randomNodeWithNLeaves(self, n):
"""Returns random node with exactly the specified number of leaves."""
try:
lookup = self.indexByFunc(lambda x: x.LeafRange[1] - x.LeafRange[0])
except TypeError: #possible that ranges weren't assigned
self.assignIds()
lookup = self.indexByFunc(lambda x: x.LeafRange[1] - x.LeafRange[0])
return choice(lookup[n])
def randomNodeAtLevel(self, n, from_leaves=True):
"""Returns random node at specified level from root or tips."""
if from_leaves:
self.assignLevelsFromLeaves()
else:
self.assignLevelsFromRoot()
lookup = self.indexByAttr('Level', multiple=True)
return choice(lookup[n])
def outgroupLast(self, first, second, third, cache=True):
"""Returns tuple of nodes first, second and third, with outgroup last.
first, second, and third must all be descendants of self, and ids
must have already been assigned to the trees.
Sets self._leaf_lca_depths if not already set if cache is True.
WARNING: if first, second, third are all at the same level of an
unresolved polytomy, will arbitrarily choose one of the three as
an outgroup. This choice may be inconsistent between different
runs of the program.
"""
#find the leaf lca depths if necessary
if cache:
if not hasattr(self, '_leaf_lca_depths'):
self._leaf_lca_depths = self.leafLcaDepths()
depths = self._leaf_lca_depths
else:
depths = self.leafLcaDepths()
#get the ids of the nodes
first_id, second_id, third_id = first.Id, second.Id, third.Id
lca_12 = depths[first_id, second_id]
lca_13 = depths[first_id, third_id]
lca_23 = depths[second_id, third_id]
#find the shallowest lca and return nodes in appropriate order
shallowest_lca = min([lca_12, lca_13, lca_23])
if shallowest_lca == lca_12:
return (first, second, third)
elif shallowest_lca == lca_13:
return first, third, second
else:
return second, third, first
def filter(self, taxa, keep=True):
"""Prunes (inplace) all items in self not leading to a taxon in taxa.
Taxa must be container of nodes in the tree.
keep determines whether to keep (if True) or delete (if False) the
specified taxa.
Collapses nodes where appropriate (i.e. one-child nodes get deleted).
Branch lengths are preserved (i.e. if a node is collapsed, its branch
length is added to the node that collapses onto it).
WARNING: Root of the tree is always preserved, so you might find that
all the nodes are in a single-child subtree of the root if all the nodes
on the other side of the root were deleted. If no nodes are kept,
will return an empty root node with no children.
"""
taxon_ids = dict.fromkeys(map(id, taxa))
node_ids = self.indexByFunc(id)
#select specified ids
for t in taxon_ids:
if t in node_ids:
node_ids[t][0]._selected = True
#unselect root if not specified
if not id(self) in taxon_ids:
self._selected = False
#figure out whether each node is selected: first, accumulate towards
#tips, then trace back to root
self.propagateAttr('_selected')
if keep:
self.accumulateChildAttr('_selected', f=or_)
else:
self.accumulateChildAttr('_selected', f=and_)
#delete and/or collapse undesired nodes
for node in list(self.traverse(self_after=True)):
if node.Parent is None: #back at root
continue
#delete if not selected
if node._selected != keep:
result = node.Parent.removeNode(node)
node.Parent = None
#replace with (already handled) child if single-item
elif (len(node.Children) == 1) and (node.Parent is not None):
curr_child = node.Children[0]
curr_parent = node.Parent
curr_parent.Children[curr_parent.Children.index(node)] = \
curr_child
curr_child.Parent = curr_parent
node.Parent = None
#add branch lengths if present
if hasattr(node, 'Length'):
if hasattr(curr_child, 'Length') and \
curr_child.Length is not None:
curr_child.Length += node.Length
else:
curr_child.Length = node.Length
self.delAttr('_selected')
def addChildren(self, n):
"""Adds n children to self."""
constructor = self.__class__
new_nodes = [constructor(Parent=self) for i in range(n)]
def makeIdIndex(self):
"""Sets self.IdIndex as index of ids in self."""
self.assignIds()
self.IdIndex = self.indexByAttr('Id')
def assignQ(self, q=None, special_qs=None, overwrite=False):
"""Clears and assigns Q matrices.
q: overall Q for tree.
special_qs: dict of node id -> q for node and its subtrees.
overwrite: if True (default is False), overwrites existing Qs
"""
if q is not None:
self.Q = q
if special_qs:
ids = self.IdIndex
for k, v in special_qs.items():
ids[int(k)].Q = v
if (not hasattr(self, 'Q')) or (not self.Q):
raise ValueError, "Failed to assign Q matrix to root."
self.propagateAttr('Q', overwrite)
def assignP(self):
"""Assigns P-matrices based on current Q-matrices.
Assumes that Length and Q are already set in all nodes.
WARNING: Assumes that branch lengths represent sequence divergences and
are at most 0.75 (for DNA, somewhat more for protein), i.e. do not
exceed saturation. If the branch lengths exceed saturation, will
probably fail unpredictably. Note that Q.toSimilarProbs generates a
sequence that matches a specific similarity, not a specific divergence,
so need to use (1-Length) (with the attendant dangers).
WARNING: Does not set P-matrix at root (because there's no change
before the root. Should it instead set the P-matrix at the root to
the identity matrix of the appropriate size?)
"""
#don't set P if root
if self.Parent is not None:
self.P = self.Q.toSimilarProbs(1-self.Length)
for c in self.Children:
c.assignP()
def assignLength(self, length):
"""Assigns all nodes the specified length."""
for node in self.traverse(self_before=True):
node.Length = length
def evolve(self, seq, field_name='Sequence'):
"""Evolves seq, according to P-matrix on each node.
Assumes that P has been set on all nodes already.
WARNING: seq is an array, not a Sequence object (at this point).
"""
#assign seq to root, or evolve from parent's sequence
if self.Parent is None:
setattr(self, field_name, seq)
else:
setattr(self, field_name, self.P.mutate(seq))
for c in self.Children:
c.evolve(getattr(self, field_name), field_name)
def assignPs(self, rates):
"""Sets many P-matrices from a single Q-matrix, scaled to rates.
Assumes that Branchlength and Q are already set in all nodes.
rates should be a list of rates at least as long as the seqs to evolve.
These should all be less than 1 (i.e. the max rate is 1, and other rates
decline from there).
"""
if self.Parent is not None:
self.Ps = [self.Q.toSimilarProbs(1-(self.Length*r)) \
for r in rates]
for c in self.Children:
c.assignPs(rates)
def evolveSeqs(self, seqs, field_name='Sequences'):
"""Evolves list of seqs according to Q-matrices and rates on each node.
Assume that Ps has already been set such that P_i -> seq_i at each node,
e.g. via self.assignPs.
WARNING: seqs are (currently) assumed to be arrays, not Sequence
objects.
"""
if self.Parent is None:
setattr(self, field_name, seqs)
else:
setattr(self, field_name, [p.mutate(seq) for (p, seq) in \
zip(self.Ps, seqs)])
for c in self.Children:
c.evolveSeqs(getattr(self, field_name), field_name)
def balanced_breakpoints(num_leaves):
"""Returns breakpoints for a balanced tree with specified num_leaves.
num_leaves must be at least 1 and must be a power of 2. WARNING: no
validation is performed to ensure these conditions are met.
This algorithm works by figuring the indices of all the nodes that are at
a particular level, making an array of those indices using arange, and
then concatenating the arrays in order of level.
"""
result = []
curr_step = num_leaves
curr_start = (curr_step/2) - 1
while curr_start >= 0:
result.append(arange(curr_start, num_leaves, curr_step))
curr_step /= 2
curr_start = (curr_step/2) -1
return concatenate(result)
def BalancedTree(num_leaves, node_class=RangeNode):
"""Returns a balanced tree of node_class (num_leaves must be power of 2)."""
#return node_class.fromBreakpoints(balanced_breakpoints(num_leaves))
root = node_class()
curr_children = [root]
while len(curr_children) < num_leaves:
tmp = []
for n in curr_children:
n.Children[:] = [node_class(Parent=n), node_class(Parent=n)]
tmp.extend(n.Children)
curr_children = tmp
return root
def RandomTree(num_leaves, node_class=RangeNode):
"""Returns a random node_class tree using the breakpoint model."""
return node_class.fromBreakpoints(permutation(num_leaves-1))
def CombTree(num_leaves, deepest_first=True, node_class=RangeNode):
"""Returns a comb node_class tree."""
if deepest_first:
branch_child = 1
else:
branch_child = 0
root = node_class()
curr = root
for i in range(num_leaves-1):
curr.Children[:] = [node_class(Parent=curr),node_class(Parent=curr)]
curr = curr.Children[branch_child]
return root
def StarTree(num_leaves, node_class=RangeNode):
"""Returns a star phylogeny, with all leaves equally connected to root."""
t = node_class()
t.addChildren(num_leaves)
return t
def LineTree(depth, node_class=RangeNode):
"""Returns a tree with all nodes arranged in a line."""
t = node_class()
curr = t
for i in range(depth-1):
new_node = node_class(Parent=curr)
curr = new_node
return t
|