This file is indexed.

/usr/lib/python2.7/dist-packages/cpl/dfs.py is in python-cpl 0.6.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import sys
try:
    from astropy.io import fits
except:
    import pyfits as fits

import cpl

class ProcessingInfo(object):
    '''This class contains support for reading input files and parameters from
    the FITS header of a CPL processed file.

    This is done through the FITS headers that were written by the DFS function
    called within the processing recipe.

    .. attribute:: name 

       Recipe name

    .. attribute:: version 

       Recipe version string

    .. attribute::  pipeline

       Pipeline name

    .. attribute:: cpl_version
    
       CPL version string

    .. attribute:: tag

       Tag name

    .. attribute:: calib

       Calibration frames from a FITS file processed with CPL.
       The result of this function may directly set as :attr:`cpl.Recipe.calib`
       attribute::
    
         import cpl
         myrecipe = cpl.Recipe('muse_bias')
         myrecipe.calib = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').calib

       .. note::

          This will not work properly for files that had
          :class:`astropy.io.fits.HDUList` inputs since they have assigned a
          temporary file name only.

    .. attribute:: raw

       Raw (input) frames

       .. note::

          This will not work properly for files that had
          :class:`astropy.io.fits.HDUList` inputs since they have assigned a
          temporary file name only.

    .. attribute:: param

       Processing parameters.
       The result of this function may directly set as :attr:`cpl.Recipe.param`
       attribute::
    
         import cpl
         myrecipe = cpl.Recipe('muse_bias')
         myrecipe.param = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').param

    .. attribute:: md5sum

       MD5 sum of the data portions of the output file (header keyword 
       'DATAMD5').

    .. attribute:: md5sums

       MD5 sums of the input and calibration files. :class:`dict` with the
       file name as key and the corresponding MD5 sum as value.

       .. note::

          Due to a design decision in CPL, the raw input files are not
          accompanied with the MD5 sum.
    '''

    def __init__(self, source, datapaths = None):
        '''
        :param source: Object pointing to the result file header
        :type source: :class:`str` or :class:`astropy.io.fits.HDUList`
                      or :class:`astropy.io.fits.PrimaryHDU` or 
                      :class:`astropy.io.fits.Header`
        :param datapaths: Dictionary with frame tags as keys and directory paths
                        as values to provide a full path for the raw and
                        calibration frames. Optional.
        :type datapaths: :class:`dict`
        '''
        if isinstance(source, str):
            header = fits.open(source)[0].header
        elif isinstance(source, fits.HDUList):
            header = source[0].header
        elif isinstance(source, fits.PrimaryHDU):
            header = source.header
        elif isinstance(source, (fits.Header, dict)):
            header = source
        else:
            raise ValueError('Cannot assign type %s to header' % 
                             source.__class__.__name__)
        
        self.name = header['HIERARCH ESO PRO REC1 ID']
        self.product = header['HIERARCH ESO PRO CATG']
        self.orig_filename = header['PIPEFILE']
        if datapaths and self.product in datapaths:
            self.orig_filename = os.path.join(datapaths[self.product], 
                                              self.orig_filename)
        pipe_id = header.get('HIERARCH ESO PRO REC1 PIPE ID')
        if pipe_id:
            self.pipeline, version = pipe_id.split('/')
            num_version = 0
            for i in version.split('.'):
                num_version = num_version * 100 + int(i)
            self.version = (num_version, version)
        else:
            self.pipeline =  None
            self.version = None
        self.cpl_version = header.get('HIERARCH ESO PRO REC1 DRS ID')
        self.md5sum = header.get('DATAMD5')
        self.md5sums = {}
        self.calib = _get_rec_keys(header, 'CAL', 'CATG', 'NAME', datapaths)
        for cat, md5 in _get_rec_keys(header, 'CAL', 'CATG', 'DATAMD5').items():
            if isinstance(md5, list):
                for m, f in zip(md5, self.calib[cat]):
                    if m is not None: 
                        self.md5sums[f] = m
            elif md5 is not None:
                self.md5sums[self.calib[cat]] = md5
        raw = _get_rec_keys(header, 'RAW', 'CATG', 'NAME', datapaths)
        if raw:
            self.tag = list(raw.keys())[0]
            self.raw = raw[self.tag]
            md5 = _get_rec_keys(header, 'RAW', 'CATG', 'DATAMD5')[self.tag]
            if isinstance(md5, list):
                for m, f in zip(md5, self.raw):
                    if m is not None: 
                        self.md5sums[f] = m
            elif md5 is not None:
                self.md5sums[self.raw] = md5
        else:
            self.tag = None
            self.input = None
        param = _get_rec_keys(header, 'PARAM', 'NAME', 'VALUE')
        self.param = dict()
        for k,v in param.items():
            self.param[k] = _best_type(v)
            
    def create_recipe(self):
        recipe = cpl.Recipe(self.name)
        recipe.param = self.param
        recipe.calib = self.calib
        recipe.tag = self.tag
        return recipe

    def create_script(self, scriptfile = sys.stdout):
        if isinstance(scriptfile, str):
            scriptfile = file(scriptfile, mode='w')
        scriptfile.write('import cpl\n\n')
        scriptfile.write('# Recipe: %s.%s, Version %s, CPL version %s\n' % 
                         (self.pipeline, self.name, self.version[1], 
                          self.cpl_version))
        scriptfile.write('%s = cpl.Recipe(%s, version = %s)\n' % 
                         (self.name, repr(self.name), repr(self.version[0])))
        scriptfile.write('\n# Parameters:\n')
        for k,v in self.param.items():
            scriptfile.write('%s.param.%s = %s\n' % (self.name, k, repr(v)))
        if self.calib:
            scriptfile.write('\n# Calibration frames:\n')
        for k,v in self.calib.items():
            scriptfile.write('%s.calib.%s = %s\n' % (self.name, k, repr(v)))
        scriptfile.write('\n# Process input frames:\n')
        scriptfile.write('%s.tag = %s\n' % (self.name, repr(self.tag)))
        scriptfile.write('res = %s(%s)\n' % (self.name, repr(self.raw)))
        scriptfile.write('%s = res.%s\n' % (self.product.lower(), self.product))
        scriptfile.write('%s.writeto(%s)\n' % (self.product.lower(), 
                                               repr(self.orig_filename)))

    def printinfo(self):
        print('Recipe: %s, Version %s, CPL version %s ' % (
                self.name, self.version, self.cpl_version))
        print('Parameters:')
        for k,v in self.param.items():
            print(' %s.%s.%s = %s' % (self.pipeline, self.name, k, v))
        if self.calib:
            print('Calibration frames:')
        for k,v in self.calib.items():
            if isinstance(v, str):
                print(' %s %s' % (v,k))
            else:
                for n in v:
                    print(' %s %s' % (n,k))
        print('Input frames:')
        if isinstance(self.raw, str):
            print(' %s %s' % (self.raw, self.tag))
        else:
            for n in self.raw:
                print(' %s %s' % (n, self.tag))

def _get_rec_keys(header, key, name, value, datapaths = None):
    '''Get a dictionary of key/value pairs from the DFS section of the
    header.

    :param key: Common keyword for the value. Usually 'PARAM' for 
                parameters, 'RAW' for raw frames, and 'CAL' for 
                calibration frames.
    :type key: :class:`str`
    :param name: Header keyword (last part) for the name of each key
    :type name: :class:`str`
    :param value: Header keyword (last part) for the value of each key
    :type name: :class:`str`
    :param datapaths: Dictionary with frame tags as keys and directory paths 
                    as values to provide a full path for the raw and 
                    calibration frames. Optional.
    :type datapaths: :class:`dict`

    When the header
    
      HIERARCH ESO PRO REC1 PARAM1 NAME = 'nifu'
      HIERARCH ESO PRO REC1 PARAM1 VALUE = '1'
      HIERARCH ESO PRO REC1 PARAM2 NAME = 'combine'
      HIERARCH ESO PRO REC1 PARAM2 VALUE = 'median'
      
    is called with

      _get_rec_keys('PARAM', 'NAME', 'VALUE')

    the returned dictionary will contain the keys

      res['nifu'] = '1'
      res['combine'] = 'median'
    '''
    res = dict()
    for i in range(1, 2**16):
        try:
            prefix = 'HIERARCH ESO PRO REC1 %s%i' % (key, i)
            k = header['%s %s' % (prefix, name)]
            fn = header.get('%s %s' % (prefix, value))
            if datapaths and k in datapaths:
                fn = os.path.join(datapaths[k], fn)
            if k not in  res:
                res[k] = fn
            elif isinstance(res[k], list):
                res[k].append(fn)
            else:
                res[k] = [ res[k], fn ]
        except KeyError:
            break
    return res
    
def _best_type(value):
    '''Convert the value to the best applicable type: :class:`int`, 
    :class:`float`, :class:`bool` or :class`str`.

    :param value: Value to convert.
    :type value: :class:`str`
    '''
    for t in int, float:
        try:
            return t(value)
        except ValueError:
            pass
    return {'true':True, 'false':False}.get(value, value)

if __name__ == '__main__':
    import sys

    datapaths = {
        'BIAS':'raw', 'DARK':'raw', 'FLAT':'raw', 'ARC':'raw', 'OBJECT':'raw', 
        'LINE_CATALOG':'aux', 'TRACE_TABLE':'aux', 'GEOMETRY_TABLE':'aux',
        'MASTER_BIAS':'result', 'MASTER_DARK':'result', 'MASTER_FLAT':'result',
        'WAVECAL_TABLE':'result', 'PIXTABLE_OBJECT':'result', 
        }
    for arg in sys.argv[1:]:
        print('---------------------')
        print('file: %s' % arg)
        pi = ProcessingInfo(arg, datapaths = datapaths)
        pi.printinfo()