This file is indexed.

/usr/share/pyshared/cvxopt/cvxprog.py is in python-cvxopt 1.1.4-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
"""
Convex programming solver.

A primal-dual interior-point solver written in Python and interfaces
for quadratic and geometric programming.  Also includes an interface
to the quadratic programming solver from MOSEK.
"""

# Copyright 2010-2011 L. Vandenberghe.
# Copyright 2004-2009 J. Dahl and L. Vandenberghe.
# 
# This file is part of CVXOPT version 1.1.4.
#
# CVXOPT is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# CVXOPT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.


__all__ = []
options = {}


def cpl(c, F, G = None, h = None, dims = None, A = None, b = None, 
    kktsolver = None, xnewcopy = None, xdot = None, xaxpy = None,
    xscal = None, ynewcopy = None, ydot = None, yaxpy = None, 
    yscal = None):

    """
    Solves a convex optimization problem with a linear objective

        minimize    c'*x 
        subject to  f(x) <= 0
                    G*x <= h
                    A*x = b.                      

    f is vector valued, convex and twice differentiable.  The linear 
    inequalities are with respect to a cone C defined as the Cartesian 
    product of N + M + 1 cones:
    
        C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}.

    The first cone C_0 is the nonnegative orthant of dimension ml.  The 
    next N cones are second order cones of dimension mq[0], ..., mq[N-1].
    The second order cone of dimension m is defined as
    
        { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }.

    The next M cones are positive semidefinite cones of order ms[0], ...,
    ms[M-1] >= 0.  


    Input arguments (basic usage).

        c is a dense 'd' matrix of size (n,1). 

        F is a function that handles the following arguments.

            F() returns a tuple (mnl, x0).  mnl is the number of nonlinear 
            inequality constraints.  x0 is a point in the domain of f.

            F(x) returns a tuple (f, Df).

                f is  a dense 'd' matrix of size (mnl, 1) containing f(x). 

                Df is a dense or sparse 'd' matrix of size (mnl, n), 
                containing the derivatives of f at x:  Df[k,:] is the 
                transpose of the gradient of fk at x.  If x is not in 
                dom f, F(x) returns None or (None, None).

            F(x, z) with z a positive 'd' matrix of size (mnl,1), returns 
            a tuple (f, Df, H).
            
                f and Df are defined as above.
                
                H is a dense or sparse 'd' matrix of size (n,n).  The 
                lower triangular part of H contains the lower triangular
                part of sum_k z[k] * Hk where Hk is the Hessian of fk at x.

                If F is called with two arguments, it can be assumed that 
                x is dom f. 

            If Df and H are returned as sparse matrices, their sparsity
            patterns must be the same for each call to F(x) or F(x,z). 

        dims is a dictionary with the dimensions of the components of C.  
        It has three fields.
        - dims['l'] = ml, the dimension of the nonnegative orthant C_0.
          (ml >= 0.)
        - dims['q'] = mq = [ mq[0], mq[1], ..., mq[N-1] ], a list of N 
          integers with the dimensions of the second order cones 
          C_1, ..., C_N.  (N >= 0 and mq[k] >= 1.)
        - dims['s'] = ms = [ ms[0], ms[1], ..., ms[M-1] ], a list of M  
          integers with the orders of the semidefinite cones 
          C_{N+1}, ..., C_{N+M}.  (M >= 0 and ms[k] >= 0.)
        The default value of dims is {'l': G.size[0], 'q': [], 's': []}.

        G is a dense or sparse 'd' matrix of size (K,n), where

            K = ml + mq[0] + ... + mq[N-1] + ms[0]**2 + ... + ms[M-1]**2.

        Each column of G describes a vector 

            v = ( v_0, v_1, ..., v_N, vec(v_{N+1}), ..., vec(v_{N+M}) ) 

        in V = R^ml x R^mq[0] x ... x R^mq[N-1] x S^ms[0] x ... x S^ms[M-1]
        stored as a column vector

            [ v_0; v_1; ...; v_N; vec(v_{N+1}); ...; vec(v_{N+M}) ].

        Here, if u is a symmetric matrix of order m, then vec(u) is the 
        matrix u stored in column major order as a vector of length m**2.
        We use BLAS unpacked 'L' storage, i.e., the entries in vec(u) 
        corresponding to the strictly upper triangular entries of u are 
        not referenced.

        h is a dense 'd' matrix of size (K,1), representing a vector in V,
        in the same format as the columns of G.
    
        A is a dense or sparse 'd' matrix of size (p,n).  The default
        value is a sparse 'd' matrix of size (0,n).

        b is a dense 'd' matrix of size (p,1).  The default value is a 
        dense 'd' matrix of size (0,1).

        It is assumed that rank(A) = p and rank([H; A; Df; G]) = n at all 
        x in dom f.

        The other arguments are normally not needed.  They make it possible
        to exploit certain types of structure, as described further below.


    Output arguments.

        Returns a dictionary with keys 'status', 'x', 'snl', 'sl', 'znl', 
        'zl', 'y', 'primal objective', 'dual objective', 'gap', 
        'relative gap', 'primal infeasibility', 'dual infeasibility',
        'primal slack', 'dual slack'.

        The 'status' field has values 'optimal' or 'unknown'.
        If status is 'optimal', x, snl, sl, y, znl, zl are an approximate 
        solution of the primal and dual optimality conditions 

            f(x) + snl = 0,  G*x + sl = h,  A*x = b 
            Df(x)'*znl + G'*zl + A'*y + c = 0 
            snl >= 0,  znl >= 0,  sl >= 0,  zl >= 0
            snl'*znl + sl'* zl = 0.

        If status is 'unknown', x, snl, sl, y, znl, zl are the last
        iterates before termination.  They satisfy snl > 0, znl > 0, 
        sl > 0, zl > 0, but are not necessarily feasible.

        The values of the other fields are defined as follows.

        - 'primal objective': the primal objective c'*x.

        - 'dual objective': the dual objective 

              L(x,y,znl,zl) = c'*x + znl'*f(x) + zl'*(G*x-h) + y'*(A*x-b).

        - 'gap': the duality gap snl'*znl + sl'*zl.

        - 'relative gap': the relative gap, defined as 

              gap / -primal objective

          if the primal objective is negative, 

              gap / dual objective

          if the dual objective is positive, and None otherwise.

        - 'primal infeasibility': the residual in the primal constraints,
          defined as 

              || (f(x) + snl, G*x + sl - h, A*x-b) ||_2  

          divided by 

              max(1, || (f(x0) + 1, G*x0 + 1 - h, A*x0 - b) ||_2 )

          where x0 is the point returned by F().

        - 'dual infeasibility': the residual in the dual constraints,
          defined as

              || c + Df(x)'*znl + G'*zl + A'*y ||_2
 
          divided by 

              max(1, || c + Df(x0)'*1 + G'*1 ||_2 ).

        - 'primal slack': the smallest primal slack, min( min_k sl_k,
          sup {t | sl >= te} ) where 

              e = ( e_0, e_1, ..., e_N, e_{N+1}, ..., e_{M+N} )
    
          is the identity vector in C.  e_0 is an ml-vector of ones, 
          e_k, k = 1,..., N, is the unit vector (1,0,...,0) of length
          mq[k], and e_k = vec(I) where I is the identity matrix of order
          ms[k].

        - 'dual slack': the smallest dual slack, min( min_k zl_k,
          sup {t | zl >= te} ).
               

        If the exit status is 'optimal', then the primal and dual
        infeasibilities are guaranteed to be less than 
        solvers.options['feastol'] (default 1e-7).  The gap is less than
        solvers.options['abstol'] (default 1e-7) or the relative gap is 
        less than solvers.options['reltol'] (defaults 1e-6).     

        Termination with status 'unknown' indicates that the algorithm 
        failed to find a solution that satisfies the specified tolerances.
        In some cases, the returned solution may be fairly accurate.  If
        the primal and dual infeasibilities, the gap, and the relative gap
        are small, then x, y, snl, sl, znl, zl are close to optimal.


    Advanced usage.

        Three mechanisms are provided to express problem structure.

        1.  The user can provide a customized routine for solving 
        linear equations ('KKT systems')

            [ sum_k zk*Hk(x)  A'  GG'   ] [ ux ]   [ bx ]
            [ A               0   0     ] [ uy ] = [ by ]
            [ GG              0   -W'*W ] [ uz ]   [ bz ]

        where GG = [ Df(x);  G ], uz = (uznl, uzl), bz = (bznl, bzl).  

        z is a positive vector of length mnl and x is a point in the domain
        of f.   W is a scaling matrix, i.e., a block diagonal mapping

           W*u = ( Wnl*unl, W0*u_0, ..., W_{N+M}*u_{N+M} )

        defined as follows.

        - For the nonlinear block (Wnl):

              Wnl = diag(dnl),

          with dnl a positive vector of length mnl.

        - For the 'l' block (W_0):

              W_0 = diag(d),

          with d a positive vector of length ml.

        - For the 'q' blocks (W_{k+1}, k = 0, ..., N-1):

              W_{k+1} = beta_k * ( 2 * v_k * v_k' - J )

          where beta_k is a positive scalar, v_k is a vector in R^mq[k]
          with v_k[0] > 0 and v_k'*J*v_k = 1, and J = [1, 0; 0, -I].

        - For the 's' blocks (W_{k+N}, k = 0, ..., M-1):

              W_k * u = vec(r_k' * mat(u) * r_k)

          where r_k is a nonsingular matrix of order ms[k], and mat(x) is
          the inverse of the vec operation.

        The optional argument kktsolver is a Python function that will be
        called as g = kktsolver(x, z, W).  W is a dictionary that contains
        the parameters of the scaling:

        - W['dnl'] is a positive 'd' matrix of size (mnl, 1).
        - W['dnli'] is a positive 'd' matrix with the elementwise inverse 
          of W['dnl'].
        - W['d'] is a positive 'd' matrix of size (ml, 1).
        - W['di'] is a positive 'd' matrix with the elementwise inverse of
          W['d'].
        - W['beta'] is a list [ beta_0, ..., beta_{N-1} ]
        - W['v'] is a list [ v_0, ..., v_{N-1} ]
        - W['r'] is a list [ r_0, ..., r_{M-1} ]
        - W['rti'] is a list [ rti_0, ..., rti_{M-1} ], with rti_k the
          inverse of the transpose of r_k.

        The call g = kktsolver(x, z, W) should return a function g that
        solves the KKT system by g(x, y, z).  On entry, x, y, z contain 
        the righthand side bx, by, bz.  On exit, they contain the 
        solution, with uz scaled: W*uz is returned instead of uz.  In other
        words, on exit x, y, z are the solution of

            [ sum_k zk*Hk(x)  A'   GG'*W^{-1} ] [ ux ]   [ bx ]
            [ A               0    0          ] [ uy ] = [ by ].
            [ GG              0   -W'         ] [ uz ]   [ bz ]


        2.  The linear operators Df*u, H*u, G*u and A*u can be specified 
        by providing Python functions instead of matrices.  This can only 
        be done in combination with 1. above, i.e., it also requires the 
        kktsolver argument.
        
        If G is a function, the call G(u, v, alpha, beta, trans) should 
        evaluate the matrix-vector products

            v := alpha * G * u + beta * v  if trans is 'N'
            v := alpha * G' * u + beta * v  if trans is 'T'.

        The arguments u and v are required.  The other arguments have
        default values alpha = 1.0, beta = 0.0, trans = 'N'.

        If A is a function, the call A(u, v, alpha, beta, trans) should
        evaluate the matrix-vectors products

            v := alpha * A * u + beta * v if trans is 'N'
            v := alpha * A' * u + beta * v if trans is 'T'.

        The arguments u and v are required.  The other arguments
        have default values alpha = 1.0, beta = 0.0, trans = 'N'.

        If Df is a function, the call Df(u, v, alpha, beta, trans) should
        evaluate the matrix-vectors products

            v := alpha * Df(x) * u + beta * v if trans is 'N'
            v := alpha * Df(x)' * u + beta * v if trans is 'T'.

        If H is a function, the call H(u, v, alpha, beta) should evaluate 
        the matrix-vectors product

            v := alpha * H * u + beta * v.


        3.  Instead of using the default representation of the primal 
        variable x and the dual variable y as one-column 'd' matrices, 
        we can represent these variables and the corresponding parameters 
        c and b by arbitrary Python objects (matrices, lists, dictionaries,
        etc).  This can only be done in combination with 1. and 2. above,
        i.e., it requires a user-provided KKT solver and a function
        description of the linear mappings.   It also requires the 
        arguments xnewcopy, xdot, xscal, xaxpy, ynewcopy, ydot, yscal, 
        yaxpy.  These arguments are functions defined as follows.
   
        If X is the vector space of primal variables x, then:
        - xnewcopy(u) creates a new copy of the vector u in X.
        - xdot(u, v) returns the inner product of two vectors u and v in X.
        - xscal(alpha, u) computes u := alpha*u, where alpha is a scalar
          and u is a vector in X.
        - xaxpy(u, v, alpha = 1.0, beta = 0.0) computes v := alpha*u + v
          for a scalar alpha and two vectors u and v in X.

        If Y is the vector space of primal variables y:
        - ynewcopy(u) creates a new copy of the vector u in Y.
        - ydot(u, v) returns the inner product of two vectors u and v in Y.
        - yscal(alpha, u) computes u := alpha*u, where alpha is a scalar
          and u is a vector in Y.
        - yaxpy(u, v, alpha = 1.0, beta = 0.0) computes v := alpha*u + v
          for a scalar alpha and two vectors u and v in Y.


    Control parameters.

       The following control parameters can be modified by adding an
       entry to the dictionary options.

       options['show_progress'] True/False (default: True)
       options['maxiters'] positive integer (default: 100)
       options['refinement'] nonnegative integer (default: 1)
       options['abstol'] scalar (default: 1e-7)
       options['reltol'] scalar (default: 1e-6)
       options['feastol'] scalar (default: 1e-7).

    """

    import math 
    from cvxopt import base, blas, misc
    from cvxopt.base import matrix, spmatrix 

    STEP = 0.99
    BETA = 0.5
    ALPHA = 0.01
    EXPON = 3
    MAX_RELAXED_ITERS = 8

    try: DEBUG = options['debug']
    except KeyError: DEBUG = False

    try: MAXITERS = options['maxiters']
    except KeyError: MAXITERS = 100
    else: 
        if type(MAXITERS) is not int or MAXITERS < 1: 
            raise ValueError("options['maxiters'] must be a positive "\
                "integer")

    try: ABSTOL = options['abstol']
    except KeyError: ABSTOL = 1e-7
    else: 
        if type(ABSTOL) is not float and type(ABSTOL) is not int: 
            raise ValueError("options['abstol'] must be a scalar")

    try: RELTOL = options['reltol']
    except KeyError: RELTOL = 1e-6
    else: 
        if type(RELTOL) is not float and type(RELTOL) is not int: 
            raise ValueError("options['reltol'] must be a scalar")

    try: FEASTOL = options['feastol']
    except KeyError: FEASTOL = 1e-7
    else: 
        if (type(FEASTOL) is not float and type(FEASTOL) is not int) or \
            FEASTOL <= 0.0: 
            raise ValueError("options['feastol'] must be a positive "\
                "scalar")

    if RELTOL <= 0.0 and ABSTOL <= 0.0:
        raise ValueError("at least one of options['reltol'] and " \
            "options['abstol'] must be positive")

    try: show_progress = options['show_progress']
    except KeyError: show_progress = True

    try: refinement = options['refinement']
    except KeyError: refinement = 1
    else:
        if type(refinement) is not int or refinement < 0:
            raise ValueError("options['refinement'] must be a "\
                "nonnegative integer")

    if kktsolver is None: 
        if dims and (dims['q'] or dims['s']):  
            kktsolver = 'chol'            
        else:
            kktsolver = 'chol2'            
    defaultsolvers = ('ldl', 'ldl2', 'chol', 'chol2')
    if type(kktsolver) is str and kktsolver not in defaultsolvers:
        raise ValueError("'%s' is not a valid value for kktsolver" \
            %kktsolver)

    try: mnl, x0 = F()   
    except: raise ValueError("function call 'F()' failed")
    
    # Argument error checking depends on level of customization.
    customkkt = type(kktsolver) is not str
    operatorG = G is not None and type(G) not in (matrix, spmatrix)
    operatorA = A is not None and type(A) not in (matrix, spmatrix)
    if (operatorG or operatorA) and not customkkt:
        raise ValueError("use of function valued G, A requires a "\
            "user-provided kktsolver")
    customx = (xnewcopy != None or xdot != None or xaxpy != None or 
        xscal != None)
    if customx and (not operatorG or not operatorA or not customkkt):
        raise ValueError("use of non-vector type for x requires "\
            "function valued G, A and user-provided kktsolver")
    customy = (ynewcopy != None or ydot != None or yaxpy != None or 
        yscal != None) 
    if customy and (not operatorA or not customkkt):
        raise ValueError("use of non vector type for y requires "\
            "function valued A and user-provided kktsolver")

    if not customx:  
        if type(x0) is not matrix or x0.typecode != 'd' or x0.size[1] != 1:
            raise TypeError("'x0' must be a 'd' matrix with one column")
        if type(c) is not matrix or c.typecode != 'd' or c.size != x0.size:
            raise TypeError("'c' must be a 'd' matrix of size (%d,%d)"\
                %(x0.size[0],1))
        
    if h is None: h = matrix(0.0, (0,1))
    if type(h) is not matrix or h.typecode != 'd' or h.size[1] != 1:
        raise TypeError("'h' must be a 'd' matrix with 1 column")

    if not dims:  dims = {'l': h.size[0], 'q': [], 's': []}

    # Dimension of the product cone of the linear inequalities. with 's' 
    # components unpacked.
    cdim = dims['l'] + sum(dims['q']) + sum([ k**2 for k in dims['s'] ])
    if h.size[0] != cdim:
        raise TypeError("'h' must be a 'd' matrix of size (%d,1)" %cdim)

    if G is None:
        if customx:
            def G(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
                if trans == 'N': pass
                else: xscal(beta, y)
        else:
            G = spmatrix([], [], [], (0, c.size[0]))
    if not operatorG:
        if G.typecode != 'd' or G.size != (cdim, c.size[0]):
            raise TypeError("'G' must be a 'd' matrix with size (%d, %d)"\
                %(cdim, c.size[0]))
        def fG(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
            misc.sgemv(G, x, y, dims, trans = trans, alpha = alpha, 
                beta = beta)
    else:
        fG = G

    if A is None:
        if customx or customy:
            def A(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
                if trans == 'N': pass
                else: yscal(beta, y)
        else:
            A = spmatrix([], [], [], (0, c.size[0]))
    if not operatorA:
        if A.typecode != 'd' or A.size[1] != c.size[0]:
            raise TypeError("'A' must be a 'd' matrix with %d columns" \
                %c.size[0])
        def fA(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
            base.gemv(A, x, y, trans = trans, alpha = alpha, beta = beta)
    else:
        fA = A
    if not customy:
        if b is None: b = matrix(0.0, (0,1))
        if type(b) is not matrix or b.typecode != 'd' or b.size[1] != 1:
            raise TypeError("'b' must be a 'd' matrix with one column")
        if not operatorA and b.size[0] != A.size[0]:
            raise TypeError("'b' must have length %d" %A.size[0])
    if b is None and customy:  
        raise ValueEror("use of non vector type for y requires b")

   
    # kktsolver(x, z, W) returns a routine for solving
    #
    #     [ sum_k zk*Hk(x)  A'   GG'*W^{-1} ] [ ux ]   [ bx ]
    #     [ A               0    0          ] [ uy ] = [ by ]
    #     [ GG              0   -W'         ] [ uz ]   [ bz ]
    #
    # where G = [Df(x); G].

    if kktsolver in defaultsolvers:
         if kktsolver == 'ldl': 
             factor = misc.kkt_ldl(G, dims, A, mnl)
         elif kktsolver == 'ldl2': 
             factor = misc.kkt_ldl2(G, dims, A, mnl)
         elif kktsolver == 'chol':
             factor = misc.kkt_chol(G, dims, A, mnl)
         else: 
             factor = misc.kkt_chol2(G, dims, A, mnl)
         def kktsolver(x, z, W):
             f, Df, H = F(x, z)
             return factor(W, H, Df)             


    if xnewcopy is None: xnewcopy = matrix 
    if xdot is None: xdot = blas.dot
    if xaxpy is None: xaxpy = blas.axpy 
    if xscal is None: xscal = blas.scal 
    def xcopy(x, y): 
        xscal(0.0, y) 
        xaxpy(x, y)
    if ynewcopy is None: ynewcopy = matrix 
    if ydot is None: ydot = blas.dot 
    if yaxpy is None: yaxpy = blas.axpy 
    if yscal is None: yscal = blas.scal
    def ycopy(x, y): 
        yscal(0.0, y) 
        yaxpy(x, y)
             

    # Initial points
    x = xnewcopy(x0)
    y = ynewcopy(b);  yscal(0.0, y)
    z, s = matrix(0.0, (mnl + cdim, 1)), matrix(0.0, (mnl + cdim, 1))
    z[: mnl+dims['l']] = 1.0 
    s[: mnl+dims['l']] = 1.0 
    ind = mnl + dims['l']
    for m in dims['q']:
        z[ind] = 1.0
        s[ind] = 1.0
        ind += m
    for m in dims['s']:
        z[ind : ind + m*m : m+1] = 1.0
        s[ind : ind + m*m : m+1] = 1.0
        ind += m**2


    rx, ry = xnewcopy(x0), ynewcopy(b)
    rznl, rzl = matrix(0.0, (mnl, 1)), matrix(0.0, (cdim, 1)), 
    dx, dy = xnewcopy(x), ynewcopy(y)   
    dz, ds = matrix(0.0, (mnl + cdim, 1)), matrix(0.0, (mnl + cdim, 1))

    lmbda = matrix(0.0, (mnl + dims['l'] + sum(dims['q']) + 
        sum(dims['s']), 1))
    lmbdasq = matrix(0.0, (mnl + dims['l'] + sum(dims['q']) + 
        sum(dims['s']), 1))
    sigs = matrix(0.0, (sum(dims['s']), 1))
    sigz = matrix(0.0, (sum(dims['s']), 1))

    dz2, ds2 = matrix(0.0, (mnl + cdim, 1)), matrix(0.0, (mnl + cdim, 1))

    newx, newy = xnewcopy(x),  ynewcopy(y)
    newz, news = matrix(0.0, (mnl + cdim, 1)), matrix(0.0, (mnl + cdim, 1))
    newrx = xnewcopy(x0)
    newrznl = matrix(0.0, (mnl, 1))

    rx0, ry0 = xnewcopy(x0), ynewcopy(b)
    rznl0, rzl0 = matrix(0.0, (mnl, 1)), matrix(0.0, (cdim, 1)), 
    x0, dx0 = xnewcopy(x), xnewcopy(dx)
    y0, dy0 = ynewcopy(y), ynewcopy(dy)
    z0 = matrix(0.0, (mnl + cdim, 1))
    dz0 = matrix(0.0, (mnl + cdim, 1))
    dz20 = matrix(0.0, (mnl + cdim, 1))
    s0 = matrix(0.0, (mnl + cdim, 1))
    ds0 = matrix(0.0, (mnl + cdim, 1))
    ds20 = matrix(0.0, (mnl + cdim, 1))
    W0 = {}
    W0['dnl'] = matrix(0.0, (mnl, 1))
    W0['dnli'] = matrix(0.0, (mnl, 1))
    W0['d'] = matrix(0.0, (dims['l'], 1))
    W0['di'] = matrix(0.0, (dims['l'], 1))
    W0['v'] = [ matrix(0.0, (m, 1)) for m in dims['q'] ]
    W0['beta'] = len(dims['q']) * [ 0.0 ]
    W0['r'] = [ matrix(0.0, (m, m)) for m in dims['s'] ]
    W0['rti'] = [ matrix(0.0, (m, m)) for m in dims['s'] ]
    lmbda0 = matrix(0.0, (mnl + dims['l'] + sum(dims['q']) + 
        sum(dims['s']), 1))
    lmbdasq0 = matrix(0.0, (mnl + dims['l'] + sum(dims['q']) + 
        sum(dims['s']), 1))
    

    if show_progress: 
        print("% 10s% 12s% 10s% 8s% 7s" %("pcost", "dcost", "gap", "pres",
            "dres"))


    relaxed_iters = 0
    for iters in range(MAXITERS + 1):  

        if refinement or DEBUG:  
            # We need H to compute residuals of KKT equations.
            f, Df, H = F(x, z[:mnl])
        else:
            f, Df = F(x)
       
        f = matrix(f, tc='d')
        if f.typecode != 'd' or f.size != (mnl, 1):
            raise TypeError("first output argument of F() must be a "\
                "'d' matrix of size (%d, %d)" %(mnl, 1))

        if type(Df) is matrix or type(Df) is spmatrix:
            if customx: raise ValueError("use of non-vector type for x "\
                "requires function valued Df")
            if Df.typecode != 'd' or Df.size != (mnl, c.size[0]):
                raise TypeError("second output argument of F() must "\
                    "be a 'd' matrix of size (%d,%d)" %(mnl, c.size[0]))
            def fDf(u, v, alpha = 1.0, beta = 0.0, trans = 'N'): 
                base.gemv(Df, u, v, alpha = alpha, beta = beta, trans = 
                    trans)
        else: 
            if not customkkt:
                raise ValueError("use of function valued Df requires "\
                    "a user-provided kktsolver")
            fDf = Df

        if refinement or DEBUG:
            if type(H) is matrix or type(H) is spmatrix:
                if customx: raise ValueError("use of non-vector type "\
                    "for  x requires function valued H")
                if H.typecode != 'd' or H.size != (c.size[0], c.size[0]):
                    raise TypeError("third output argument of F() must "\
                        "be a 'd' matrix of size (%d,%d)" \
                        %(c.size[0], c.size[0]))
                def fH(u, v, alpha = 1.0, beta = 0.0): 
                    base.symv(H, u, v, alpha = alpha, beta = beta)
            else: 
                if not customkkt:
                    raise ValueError("use of function valued H requires "\
                        "a user-provided kktsolver")
                fH = H
           

        gap = misc.sdot(s, z, dims, mnl) 

        # rx = c + A'*y + Df'*z[:mnl] + G'*z[mnl:]
        xcopy(c, rx) 
        fA(y, rx, beta = 1.0, trans = 'T')
        fDf(z[:mnl], rx, beta = 1.0, trans = 'T')
        fG(z[mnl:], rx, beta = 1.0, trans = 'T')
        resx = math.sqrt(xdot(rx, rx))
           
        # ry = A*x - b
        ycopy(b, ry)
        fA(x, ry, alpha = 1.0, beta = -1.0)
        resy = math.sqrt(ydot(ry, ry))

        # rznl = s[:mnl] + f 
        blas.copy(s[:mnl], rznl)
        blas.axpy(f, rznl)
        resznl = blas.nrm2(rznl)

        # rzl = s[mnl:] + G*x - h
        blas.copy(s[mnl:], rzl)
        blas.axpy(h, rzl, alpha = -1.0)
        fG(x, rzl, beta = 1.0)
        reszl = misc.snrm2(rzl, dims)

        # Statistics for stopping criteria.

        # pcost = c'*x
        # dcost = c'*x + y'*(A*x-b) + znl'*f(x) + zl'*(G*x-h)
        #       = c'*x + y'*(A*x-b) + znl'*(f(x)+snl) + zl'*(G*x-h+sl) 
        #         - z'*s
        #       = c'*x + y'*ry + znl'*rznl + zl'*rzl - gap
        pcost = xdot(c,x)
        dcost = pcost + ydot(y, ry) + blas.dot(z[:mnl], rznl) + \
            misc.sdot(z[mnl:], rzl, dims) - gap
        if pcost < 0.0:
            relgap = gap / -pcost
        elif dcost > 0.0:
            relgap = gap / dcost
        else:
            relgap = None
        pres = math.sqrt( resy**2 + resznl**2 + reszl**2 )
        dres = resx
        if iters == 0: 
            resx0 = max(1.0, resx)
            resznl0 = max(1.0, resznl)
            pres0 = max(1.0, pres)
            dres0 = max(1.0, dres)
            gap0 = gap
            theta1 = 1.0 / gap0
            theta2 = 1.0 / resx0
            theta3 = 1.0 / resznl0
        phi = theta1 * gap + theta2 * resx + theta3 * resznl
        pres = pres / pres0
        dres = dres / dres0

        if show_progress:
            print("%2d: % 8.4e % 8.4e % 4.0e% 7.0e% 7.0e" \
                %(iters, pcost, dcost, gap, pres, dres))

        # Stopping criteria.    
        if ( pres <= FEASTOL and dres <= FEASTOL and ( gap <= ABSTOL or 
            (relgap is not None and relgap <= RELTOL) )) or \
            iters == MAXITERS:
            sl, zl = s[mnl:], z[mnl:]
            ind = dims['l'] + sum(dims['q'])
            for m in dims['s']:
                misc.symm(sl, m, ind)
                misc.symm(zl, m, ind)
                ind += m**2
            ts = misc.max_step(s, dims, mnl)
            tz = misc.max_step(z, dims, mnl)
            if iters == MAXITERS:
                if show_progress:
                    print("Terminated (maximum number of iterations "\
                        "reached).")
                status = 'unknown'
            else:
                if show_progress:
                    print("Optimal solution found.")
                status = 'optimal'

            return {'status': status, 'x': x,  'y': y, 'znl': z[:mnl],  
                'zl': zl, 'snl': s[:mnl], 'sl': sl, 'gap': gap, 
                'relative gap': relgap, 'primal objective': pcost, 
                'dual objective': dcost,  'primal slack': -ts, 
                'dual slack': -tz, 'primal infeasibility': pres,
                'dual infeasibility': dres }


        # Compute initial scaling W: 
        #
        #     W * z = W^{-T} * s = lambda.
        #
        # lmbdasq = lambda o lambda 

        if iters == 0:  
            W = misc.compute_scaling(s, z, lmbda, dims, mnl)
        misc.ssqr(lmbdasq, lmbda, dims, mnl)


        # f3(x, y, z) solves
        #
        #     [ H   A'  GG'*W^{-1} ] [ ux ]   [ bx ]
        #     [ A   0   0          ] [ uy ] = [ by ].
        #     [ GG  0  -W'         ] [ uz ]   [ bz ]
        #
        # On entry, x, y, z contain bx, by, bz.
        # On exit, they contain ux, uy, uz.
        
        try: f3 = kktsolver(x, z[:mnl], W)
        except ArithmeticError: 
            singular_kkt_matrix = False
            if iters == 0:
                raise ValueError("Rank(A) < p or "\
                    "Rank([H(x); A; Df(x); G]) < n")

            elif 0 < relaxed_iters < MAX_RELAXED_ITERS > 0:
                # The arithmetic error may be caused by a relaxed line 
                # search in the previous iteration.  Therefore we restore 
                # the last saved state and require a standard line search. 

                phi, gap = phi0, gap0
                mu = gap / ( mnl + dims['l'] + len(dims['q']) + 
                    sum(dims['s']) )
                blas.copy(W0['dnl'], W['dnl'])
                blas.copy(W0['dnli'], W['dnli'])
                blas.copy(W0['d'], W['d'])
                blas.copy(W0['di'], W['di'])
                for k in range(len(dims['q'])):
                    blas.copy(W0['v'][k], W['v'][k])
                    W['beta'][k] = W0['beta'][k]
                for k in range(len(dims['s'])):
                    blas.copy(W0['r'][k], W['r'][k])
                    blas.copy(W0['rti'][k], W['rti'][k])
                xcopy(x0, x); 
                ycopy(y0, y); 
                blas.copy(s0, s); blas.copy(z0, z)
                blas.copy(lmbda0, lmbda)
                blas.copy(lmbdasq, lmbdasq0)
                xcopy(rx0, rx); ycopy(ry0, ry)
                resx = math.sqrt(xdot(rx, rx))
                blas.copy(rznl0, rznl);  blas.copy(rzl0, rzl);
                resznl = blas.nrm2(rznl)

                relaxed_iters = -1

                try: f3 = kktsolver(x, z[:mnl], W)
                except ArithmeticError: 
                     singular_kkt_matrix = True

            else:  
                 singular_kkt_matrix = True

            if singular_kkt_matrix:
                sl, zl = s[mnl:], z[mnl:]
                ind = dims['l'] + sum(dims['q'])
                for m in dims['s']:
                    misc.symm(sl, m, ind)
                    misc.symm(zl, m, ind)
                    ind += m**2
                ts = misc.max_step(s, dims, mnl)
                tz = misc.max_step(z, dims, mnl)
                if show_progress:
                    print("Terminated (singular KKT matrix).")
                status = 'unknown'
                return {'status': status, 'x': x,  'y': y, 
                    'znl': z[:mnl],  'zl': zl, 'snl': s[:mnl], 
                    'sl': sl, 'gap': gap, 'relative gap': relgap, 
                    'primal objective': pcost, 'dual objective': dcost,  
                    'primal infeasibility': pres, 
                    'dual infeasibility': dres, 'primal slack': -ts,
                    'dual slack': -tz }


        # f4_no_ir(x, y, z, s) solves
        # 
        #     [ 0     ]   [ H   A'  GG' ] [ ux        ]   [ bx ]
        #     [ 0     ] + [ A   0   0   ] [ uy        ] = [ by ]
        #     [ W'*us ]   [ GG  0   0   ] [ W^{-1}*uz ]   [ bz ]
        #
        #     lmbda o (uz + us) = bs.
        #
        # On entry, x, y, z, x, contain bx, by, bz, bs.
        # On exit, they contain ux, uy, uz, us.

        if iters == 0:
            ws3 = matrix(0.0, (mnl + cdim, 1))
            wz3 = matrix(0.0, (mnl + cdim, 1))

        def f4_no_ir(x, y, z, s):

            # Solve 
            #
            #     [ H  A'  GG'  ] [ ux        ]   [ bx                    ]
            #     [ A  0   0    ] [ uy        ] = [ by                    ]
            #     [ GG 0  -W'*W ] [ W^{-1}*uz ]   [ bz - W'*(lmbda o\ bs) ]
            #
            #     us = lmbda o\ bs - uz.
            
            # s := lmbda o\ s 
            #    = lmbda o\ bs
            misc.sinv(s, lmbda, dims, mnl)

            # z := z - W'*s 
            #    = bz - W' * (lambda o\ bs)
            blas.copy(s, ws3)
            misc.scale(ws3, W, trans = 'T')
            blas.axpy(ws3, z, alpha = -1.0)

            # Solve for ux, uy, uz
            f3(x, y, z)

            # s := s - z 
            #    = lambda o\ bs - z.
            blas.axpy(z, s, alpha = -1.0)


        if iters == 0:
            wz2nl, wz2l = matrix(0.0, (mnl,1)), matrix(0.0, (cdim, 1))

        def res(ux, uy, uz, us, vx, vy, vz, vs):

            # Evaluates residuals in Newton equations:
            #
            #     [ vx ]     [ 0     ]   [ H  A' GG' ] [ ux        ]
            #     [ vy ] -=  [ 0     ] + [ A  0  0   ] [ uy        ]
            #     [ vz ]     [ W'*us ]   [ GG 0  0   ] [ W^{-1}*uz ]
            #
            #     vs -= lmbda o (uz + us).

            # vx := vx - H*ux - A'*uy - GG'*W^{-1}*uz
            fH(ux, vx, alpha = -1.0, beta = 1.0)
            fA(uy, vx, alpha = -1.0, beta = 1.0, trans = 'T') 
            blas.copy(uz, wz3)
            misc.scale(wz3, W, inverse = 'I')
            fDf(wz3[:mnl], vx, alpha = -1.0, beta = 1.0, trans = 'T')
            fG(wz3[mnl:], vx, alpha = -1.0, beta = 1.0, trans = 'T') 

            # vy := vy - A*ux 
            fA(ux, vy, alpha = -1.0, beta = 1.0)

            # vz := vz - W'*us - GG*ux 
            fDf(ux, wz2nl)
            blas.axpy(wz2nl, vz, alpha = -1.0)
            fG(ux, wz2l)
            blas.axpy(wz2l, vz, alpha = -1.0, offsety = mnl)
            blas.copy(us, ws3) 
            misc.scale(ws3, W, trans = 'T')
            blas.axpy(ws3, vz, alpha = -1.0)

            # vs -= lmbda o (uz + us)
            blas.copy(us, ws3)
            blas.axpy(uz, ws3)
            misc.sprod(ws3, lmbda, dims, mnl, diag = 'D')
            blas.axpy(ws3, vs, alpha = -1.0)


        # f4(x, y, z, s) solves the same system as f4_no_ir, but applies
        # iterative refinement.

        if iters == 0:
            if refinement or DEBUG:
                wx, wy = xnewcopy(c), ynewcopy(b)
                wz = matrix(0.0, (mnl + cdim, 1))
                ws = matrix(0.0, (mnl + cdim, 1))
            if refinement:
                wx2, wy2 = xnewcopy(c), ynewcopy(b)
                wz2 = matrix(0.0, (mnl + cdim, 1))
                ws2 = matrix(0.0, (mnl + cdim, 1))

        def f4(x, y, z, s):
            if refinement or DEBUG: 
                xcopy(x, wx)        
                ycopy(y, wy)        
                blas.copy(z, wz)        
                blas.copy(s, ws)        
            f4_no_ir(x, y, z, s)        
            for i in range(refinement):
                xcopy(wx, wx2)        
                ycopy(wy, wy2)        
                blas.copy(wz, wz2)        
                blas.copy(ws, ws2)        
                res(x, y, z, s, wx2, wy2, wz2, ws2) 
                f4_no_ir(wx2, wy2, wz2, ws2)
                xaxpy(wx2, x)
                yaxpy(wy2, y)
                blas.axpy(wz2, z)
                blas.axpy(ws2, s)
            if DEBUG:
                res(x, y, z, s, wx, wy, wz, ws)
                print("KKT residuals:")
                print("    'x': %e" %math.sqrt(xdot(wx, wx)))
                print("    'y': %e" %math.sqrt(ydot(wy, wy)))
                print("    'z': %e" %misc.snrm2(wz, dims, mnl))
                print("    's': %e" %misc.snrm2(ws, dims, mnl))
     

        sigma, eta = 0.0, 0.0
        for i in [0, 1]:

            # Solve
            #
            #     [ 0     ]   [ H  A' GG' ] [ dx        ]
            #     [ 0     ] + [ A  0  0   ] [ dy        ] = -(1 - eta)*r  
            #     [ W'*ds ]   [ GG 0  0   ] [ W^{-1}*dz ]
            #
            #     lmbda o (dz + ds) = -lmbda o lmbda + sigma*mu*e.
            #

            mu = gap / (mnl + dims['l'] + len(dims['q']) + sum(dims['s']))

            # ds = -lmbdasq + sigma * mu * e  
            blas.scal(0.0, ds)
            blas.axpy(lmbdasq, ds, n = mnl + dims['l'] + sum(dims['q']), 
                alpha = -1.0)
            ds[:mnl + dims['l']] += sigma*mu
            ind = mnl + dims['l']
            for m in dims['q']:
                ds[ind] += sigma*mu
                ind += m
            ind2 = ind
            for m in dims['s']:
                blas.axpy(lmbdasq, ds, n = m, offsetx = ind2, offsety =  
                    ind, incy = m + 1, alpha = -1.0)
                ds[ind : ind + m*m : m+1] += sigma*mu
                ind += m*m
                ind2 += m
       
            # (dx, dy, dz) := -(1-eta) * (rx, ry, rz)
            xscal(0.0, dx);  xaxpy(rx, dx, alpha = -1.0 + eta)
            yscal(0.0, dy);  yaxpy(ry, dy, alpha = -1.0 + eta)
            blas.scal(0.0, dz) 
            blas.axpy(rznl, dz, alpha = -1.0 + eta)
            blas.axpy(rzl, dz, alpha = -1.0 + eta, offsety = mnl)
            
            try: f4(dx, dy, dz, ds)
            except ArithmeticError: 
                if iters == 0:
                    raise ValueError("Rank(A) < p or "\
                        "Rank([H(x); A; Df(x); G]) < n")
                else:
                    sl, zl = s[mnl:], z[mnl:]
                    ind = dims['l'] + sum(dims['q'])
                    for m in dims['s']:
                        misc.symm(sl, m, ind)
                        misc.symm(zl, m, ind)
                        ind += m**2
                    ts = misc.max_step(s, dims, mnl)
                    tz = misc.max_step(z, dims, mnl)
                    if show_progress:
                        print("Terminated (singular KKT matrix).")
                    return {'status': 'unknown', 'x': x,  'y': y, 
                        'znl': z[:mnl],  'zl': zl, 'snl': s[:mnl], 
                        'sl': sl, 'gap': gap, 'relative gap': relgap, 
                        'primal objective': pcost, 'dual objective': dcost,
                        'primal infeasibility': pres, 
                        'dual infeasibility': dres, 'primal slack': -ts,
                        'dual slack': -tz }

            # Inner product ds'*dz and unscaled steps are needed in the 
            # line search.
            dsdz = misc.sdot(ds, dz, dims, mnl)
            blas.copy(dz, dz2)
            misc.scale(dz2, W, inverse = 'I')
            blas.copy(ds, ds2)
            misc.scale(ds2, W, trans = 'T')

            # Maximum steps to boundary. 
            # 
            # Also compute the eigenvalue decomposition of 's' blocks in 
            # ds, dz.  The eigenvectors Qs, Qz are stored in ds, dz.
            # The eigenvalues are stored in sigs, sigz.

            misc.scale2(lmbda, ds, dims, mnl)
            ts = misc.max_step(ds, dims, mnl, sigs)
            misc.scale2(lmbda, dz, dims, mnl)
            tz = misc.max_step(dz, dims, mnl, sigz)
            t = max([ 0.0, ts, tz ])
            if t == 0:
                step = 1.0
            else:
                step = min(1.0, STEP / t)

            # Backtrack until newx is in domain of f.
            backtrack = True
            while backtrack:
                xcopy(x, newx);  xaxpy(dx, newx, alpha = step)
                t = F(newx)
                if t is None: newf = None
                else: newf, newDf = t[0], t[1]
                if newf is not None:
                    backtrack = False
                else:
                    step *= BETA


            # Merit function 
            #
            #     phi = theta1 * gap + theta2 * norm(rx) + 
            #         theta3 * norm(rznl)
            #
            # and its directional derivative dphi.

            phi = theta1 * gap + theta2 * resx + theta3 * resznl
            if i == 0:
                dphi = -phi 
            else:
                dphi = -theta1 * (1 - sigma) * gap -  \
                    theta2 * (1 - eta) * resx - \
                    theta3 * (1 - eta) * resznl  


            # Line search.
            #
            # We use two types of line search.  In a standard iteration we
            # use is a normal backtracking line search terminating with a 
            # sufficient decrease of phi.  In a "relaxed" iteration the 
            # line search is terminated after one step, regardless of the 
            # value of phi.  We make at most MAX_RELAXED_ITERS consecutive
            # relaxed iterations.  When starting a series of relaxed 
            # iteration, we save the state at the end of the first line 
            # search in the series (scaling, primal and dual iterates, 
            # steps, sigma, eta, i.e., all information needed to resume 
            # the line search at some later point).  If a series of
            # MAX_RELAXED_ITERS relaxed iterations does not result in a 
            # sufficient decrease compared to the value of phi at the start
            # of the series, then we resume the first line search in the 
            # series as a standard line search (using the saved state).
            # On the other hand, if at some point during the series of 
            # relaxed iterations we obtain a sufficient decrease of phi 
            # compared with the value at the start of the series, then we 
            # start a new series of relaxed line searches. 
            #  
            # To implement this we use a counter relaxed_iters.
            #
            # 1. If 0 <= relaxed_iters < MAX_RELAXED_ITERS, we use a 
            #    relaxed line search (one full step).  If relaxed_iters 
            #    is 0, we save the value phi0 of the merit function at the
            #    current point, as well as the state at the end of the 
            #    line search.  If the relaxed line search results in a 
            #    sufficient decrease w.r.t. phi0, we reset relaxed_iters 
            #    to 0.  Otherwise we increment relaxed_iters.
            #
            # 2. If relaxed_iters is MAX_RELAXED_ITERS, we use a standard
            #    line search.  If this results in a sufficient decrease 
            #    of the merit function compared with phi0, we set 
            #    relaxed_iters to 0.  If phi decreased compared with phi0,
            #    but not sufficiently, we set relaxed_iters to -1.  
            #    If phi increased compared with phi0, we resume the 
            #    backtracking at the last saved iteration, and after 
            #    completing the line search, set relaxed_iters to 0.
            # 
            # 3. If relaxed_iters is -1, we use a standard line search
            #    and increment relaxed_iters to 0. 


            backtrack = True
            while backtrack:
                xcopy(x, newx);  xaxpy(dx, newx, alpha = step)
                ycopy(y, newy);  yaxpy(dy, newy, alpha = step)
                blas.copy(z, newz);  blas.axpy(dz2, newz, alpha = step) 
                blas.copy(s, news);  blas.axpy(ds2, news, alpha = step) 

                t = F(newx)
                newf, newDf = matrix(t[0], tc = 'd'), t[1]
                if type(newDf) is matrix or type(Df) is spmatrix:
                    if newDf.typecode != 'd' or \
                        newDf.size != (mnl, c.size[0]):
                            raise TypeError("second output argument "\
                                "of F() must be a 'd' matrix of size "\
                                "(%d,%d)" %(mnl, c.size[0]))
                    def newfDf(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):
                        base.gemv(newDf, u, v, alpha = alpha, beta = 
                                beta, trans = trans)
                else: 
                    newfDf = newDf

                # newrx = c + A'*newy + newDf'*newz[:mnl] + G'*newz[mnl:]
                xcopy(c, newrx) 
                fA(newy, newrx, beta = 1.0, trans = 'T')
                newfDf(newz[:mnl], newrx, beta = 1.0, trans = 'T')
                fG(newz[mnl:], newrx, beta = 1.0, trans = 'T')
                newresx = math.sqrt(xdot(newrx, newrx))
           
                # newrznl = news[:mnl] + newf 
                blas.copy(news[:mnl], newrznl)
                blas.axpy(newf, newrznl)
                newresznl = blas.nrm2(newrznl)

                newgap = (1.0 - (1.0 - sigma) * step) * gap \
                    + step**2 * dsdz
                newphi = theta1 * newgap  + theta2 * newresx + \
                    theta3 * newresznl

                if i == 0:
                    if newgap <= (1.0 - ALPHA * step) * gap and \
                        ( 0 <= relaxed_iters < MAX_RELAXED_ITERS or \
                        newphi <= phi + ALPHA * step * dphi ):
                        backtrack = False
                        sigma = min(newgap/gap, (newgap/gap) ** EXPON)
                        eta = 0.0 
                    else:
                        step *= BETA

                else:
                    if relaxed_iters == -1 or ( relaxed_iters == 0 == 
                        MAX_RELAXED_ITERS ):
                        # Do a standard line search.
                        if newphi <= phi + ALPHA * step * dphi:
                            relaxed_iters == 0
                            backtrack = False
                        else:
                            step *= BETA

                    elif relaxed_iters == 0 < MAX_RELAXED_ITERS:
                        if newphi <= phi + ALPHA * step * dphi:
                            # Relaxed l.s. gives sufficient decrease.
                            relaxed_iters = 0

                        else:
                            # Save state.
                            phi0, dphi0, gap0 = phi, dphi, gap
                            step0 = step
                            blas.copy(W['dnl'], W0['dnl'])
                            blas.copy(W['dnli'], W0['dnli'])
                            blas.copy(W['d'], W0['d'])
                            blas.copy(W['di'], W0['di'])
                            for k in range(len(dims['q'])):
                                blas.copy(W['v'][k], W0['v'][k])
                                W0['beta'][k] = W['beta'][k]
                            for k in range(len(dims['s'])):
                                blas.copy(W['r'][k], W0['r'][k])
                                blas.copy(W['rti'][k], W0['rti'][k])
                            xcopy(x, x0); xcopy(dx, dx0)
                            ycopy(y, y0); ycopy(dy, dy0)
                            blas.copy(s, s0); blas.copy(z, z0)
                            blas.copy(ds, ds0)
                            blas.copy(dz, dz0)
                            blas.copy(ds2, ds20)
                            blas.copy(dz2, dz20)
                            blas.copy(lmbda, lmbda0)
                            blas.copy(lmbdasq, lmbdasq0)
                            dsdz0 = dsdz
                            sigma0, eta0 = sigma, eta
                            xcopy(rx, rx0);  ycopy(ry, ry0)
                            blas.copy(rznl, rznl0); blas.copy(rzl, rzl0)
                            relaxed_iters = 1

                        backtrack = False

                    elif 0 <= relaxed_iters < MAX_RELAXED_ITERS > 0:
                        if newphi <= phi0 + ALPHA * step0 * dphi0:
                            # Relaxed l.s. gives sufficient decrease.
                            relaxed_iters = 0

                        else: 
                            # Relaxed line search 
                            relaxed_iters += 1

                        backtrack = False

                    elif relaxed_iters == MAX_RELAXED_ITERS > 0:
                        if newphi <= phi0 + ALPHA * step0 * dphi0:
                            # Series of relaxed line searches ends 
                            # with sufficient decrease w.r.t. phi0.
                            backtrack = False
                            relaxed_iters = 0

                        elif newphi >= phi0:
                            # Resume last saved line search.
                            phi, dphi, gap = phi0, dphi0, gap0
                            step = step0
                            blas.copy(W0['dnl'], W['dnl'])
                            blas.copy(W0['dnli'], W['dnli'])
                            blas.copy(W0['d'], W['d'])
                            blas.copy(W0['di'], W['di'])
                            for k in range(len(dims['q'])):
                                blas.copy(W0['v'][k], W['v'][k])
                                W['beta'][k] = W0['beta'][k]
                            for k in range(len(dims['s'])):
                                blas.copy(W0['r'][k], W['r'][k])
                                blas.copy(W0['rti'][k], W['rti'][k])
                            xcopy(x0, x); xcopy(dx0, dx);
                            ycopy(y0, y); ycopy(dy0, dy);
                            blas.copy(s0, s); blas.copy(z0, z)
                            blas.copy(ds0, ds)
                            blas.copy(dz0, dz)
                            blas.copy(ds20, ds2)
                            blas.copy(dz20, dz2)
                            blas.copy(lmbda0, lmbda)
                            dsdz = dsdz0
                            sigma, eta = sigma0, eta0
                            relaxed_iters = -1

                        elif newphi <= phi + ALPHA * step * dphi:
                            # Series of relaxed line searches ends with
                            # with insufficient decrease w.r.t. phi0" 
                            backtrack = False
                            relaxed_iters = -1


        # Update x, y.
        xaxpy(dx, x, alpha = step)
        yaxpy(dy, y, alpha = step)


        # Replace nonlinear, 'l' and 'q' blocks of ds and dz with the 
        # updated variables in the current scaling.
        # Replace 's' blocks of ds and dz with the factors Ls, Lz in a
        # factorization Ls*Ls', Lz*Lz' of the updated variables in the 
        # current scaling.

        # ds := e + step*ds for nonlinear, 'l' and 'q' blocks.
        # dz := e + step*dz for nonlinear, 'l' and 'q' blocks.
        blas.scal(step, ds, n = mnl + dims['l'] + sum(dims['q']))
        blas.scal(step, dz, n = mnl + dims['l'] + sum(dims['q']))
        ind = mnl + dims['l']
        ds[:ind] += 1.0
        dz[:ind] += 1.0
        for m in dims['q']:
            ds[ind] += 1.0
            dz[ind] += 1.0
            ind += m


        # ds := H(lambda)^{-1/2} * ds and dz := H(lambda)^{-1/2} * dz.
        # 
        # This replaces the nonlinear, 'l' and 'q' components of ds and dz
        # with the updated variables in the new scaling.
        # The 's' components of ds and dz are replaced with
        #
        #     diag(lmbda_k)^{1/2} * Qs * diag(lmbda_k)^{1/2}
        #     diag(lmbda_k)^{1/2} * Qz * diag(lmbda_k)^{1/2}
         
        misc.scale2(lmbda, ds, dims, mnl, inverse = 'I')
        misc.scale2(lmbda, dz, dims, mnl, inverse = 'I')

        # sigs := ( e + step*sigs ) ./ lambda for 's' blocks.
        # sigz := ( e + step*sigz ) ./ lambda for 's' blocks.
        blas.scal(step, sigs)
        blas.scal(step, sigz)
        sigs += 1.0
        sigz += 1.0
        blas.tbsv(lmbda, sigs, n = sum(dims['s']), k = 0, ldA = 1, 
            offsetA = mnl + dims['l'] + sum(dims['q']) )
        blas.tbsv(lmbda, sigz, n = sum(dims['s']), k = 0, ldA = 1, 
            offsetA = mnl + dims['l'] + sum(dims['q']) )

        # dsk := Ls = dsk * sqrt(sigs).
        # dzk := Lz = dzk * sqrt(sigz).
        ind2, ind3 = mnl + dims['l'] + sum(dims['q']), 0
        for k in range(len(dims['s'])):
            m = dims['s'][k]
            for i in range(m):
                blas.scal(math.sqrt(sigs[ind3+i]), ds, offset = ind2 + m*i,
                    n = m)
                blas.scal(math.sqrt(sigz[ind3+i]), dz, offset = ind2 + m*i,
                    n = m)
            ind2 += m*m
            ind3 += m


        # Update lambda and scaling.

        misc.update_scaling(W, lmbda, ds, dz)


        # Unscale s, z (unscaled variables are used only to compute 
        # feasibility residuals).

        blas.copy(lmbda, s, n = mnl + dims['l'] + sum(dims['q']))
        ind = mnl + dims['l'] + sum(dims['q'])
        ind2 = ind
        for m in dims['s']:
            blas.scal(0.0, s, offset = ind2)
            blas.copy(lmbda, s, offsetx = ind, offsety = ind2, n = m, 
                incy = m+1)
            ind += m
            ind2 += m*m
        misc.scale(s, W, trans = 'T')

        blas.copy(lmbda, z, n = mnl + dims['l'] + sum(dims['q']))
        ind = mnl + dims['l'] + sum(dims['q'])
        ind2 = ind
        for m in dims['s']:
            blas.scal(0.0, z, offset = ind2)
            blas.copy(lmbda, z, offsetx = ind, offsety = ind2, n = m, 
                incy = m+1)
            ind += m
            ind2 += m*m
        misc.scale(z, W, inverse = 'I')

        gap = blas.dot(lmbda, lmbda) 



def cp(F, G = None, h = None, dims = None, A = None, b = None,
    kktsolver = None, xnewcopy = None, xdot = None, xaxpy = None,
    xscal = None, ynewcopy = None, ydot = None, yaxpy = None, 
    yscal = None):

    """
    Solves a convex optimization problem
    
        minimize    f0(x)
        subject to  fk(x) <= 0, k = 1, ..., mnl
                    G*x   <= h
                    A*x   =  b.                      

    f = (f0, f1, ..., fmnl) is convex and twice differentiable.  The linear
    inequalities are with respect to a cone C defined as the Cartesian 
    product of N + M + 1 cones:
    
        C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}.

    The first cone C_0 is the nonnegative orthant of dimension ml.  The 
    next N cones are second order cones of dimension mq[0], ..., mq[N-1].
    The second order cone of dimension m is defined as
    
        { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }.

    The next M cones are positive semidefinite cones of order ms[0], ...,
    ms[M-1] >= 0.  


    Input arguments (basic usage).

        F is a function that handles the following arguments.

            F() returns a tuple (mnl, x0).  mnl is the number of nonlinear 
            inequality constraints.  x0 is a point in the domain of f.

            F(x) returns a tuple (f, Df).

                f is  a dense 'd' matrix of size (mnl+1,1) containing f(x).

                Df is a dense or sparse 'd' matrix of size (mnl+1, n), 
                containing the derivatives of f at x:  Df[k,:] is the 
                transpose of the gradient of fk at x.  If x is not in 
                dom f, F(x) returns None or (None, None).

            F(x, z) with z a positive 'd' matrix of size (mnl+1,1), returns
            a tuple (f, Df, H).
            
                f and Df are defined as above.
                
                H is a dense or sparse 'd' matrix of size (n,n).  The lower
                triangular part of H contains the lower triangular part of
                sum_k z[k] * Hk where Hk is the Hessian of fk at x.

                If F is called with two arguments, it can be assumed that 
                x is dom f. 

            If Df and H are returned as sparse matrices, their sparsity
            patterns must be the same for each call to F(x) or F(x,z). 

        dims is a dictionary with the dimensions of the components of C.  
        It has three fields.
        - dims['l'] = ml, the dimension of the nonnegative orthant C_0.
          (ml >= 0.)
        - dims['q'] = mq = [ mq[0], mq[1], ..., mq[N-1] ], a list of N 
          integers with the dimensions of the second order cones 
          C_1, ..., C_N.  (N >= 0 and mq[k] >= 1.)
        - dims['s'] = ms = [ ms[0], ms[1], ..., ms[M-1] ], a list of M  
          integers with the orders of the semidefinite cones 
          C_{N+1}, ..., C_{N+M}.  (M >= 0 and ms[k] >= 0.)
        The default value of dims = {'l': G.size[0], 'q': [], 's': []}.

        G is a dense or sparse 'd' matrix of size (K,n), where

            K = ml + mq[0] + ... + mq[N-1] + ms[0]**2 + ... + ms[M-1]**2.

        Each column of G describes a vector 

            v = ( v_0, v_1, ..., v_N, vec(v_{N+1}), ..., vec(v_{N+M}) ) 

        in V = R^ml x R^mq[0] x ... x R^mq[N-1] x S^ms[0] x ... x S^ms[M-1]
        stored as a column vector

            [ v_0; v_1; ...; v_N; vec(v_{N+1}); ...; vec(v_{N+M}) ].

        Here, if u is a symmetric matrix of order m, then vec(u) is the 
        matrix u stored in column major order as a vector of length m**2.
        We use BLAS unpacked 'L' storage, i.e., the entries in vec(u) 
        corresponding to the strictly upper triangular entries of u are 
        not referenced.

        h is a dense 'd' matrix of size (K,1), representing a vector in V,
        in the same format as the columns of G.
    
        A is a dense or sparse 'd' matrix of size (p,n).   The default
        value is a sparse 'd' matrix of size (0,n).

        b is a dense 'd' matrix of size (p,1).  The default value is a 
        dense 'd' matrix of size (0,1).

        It is assumed that rank(A) = p and rank([H; A; Df; G]) = n at all 
        x in dom f.

        The other arguments are normally not needed.  They make it possible
        to exploit certain types of structure, as described below.


    Output arguments.

        cp() returns a dictionary with keys 'status', 'x', 'snl', 'sl',
        'znl', 'zl', 'y', 'primal objective', 'dual objective', 'gap',
        'relative gap', 'primal infeasibility', 'dual infeasibility',
        'primal slack', 'dual slack'.

        The 'status' field has values 'optimal' or 'unknown'.
        If status is 'optimal', x, snl, sl, y, znl, zl  are approximate 
        solutions of the primal and dual optimality conditions

            f(x)[1:] + snl = 0,  G*x + sl = h,  A*x = b 
            Df(x)'*[1; znl] + G'*zl + A'*y + c = 0 
            snl >= 0,  znl >= 0,  sl >= 0,  zl >= 0
            snl'*znl + sl'* zl = 0.

        If status is 'unknown', x, snl, sl, y, znl, zl are the last
        iterates before termination.  They satisfy snl > 0, znl > 0, 
        sl > 0, zl > 0, but are not necessarily feasible.

        The values of the other fields are the values returned by cpl()
        applied to the epigraph form problem

            minimize   t 
            subjec to  f0(x) <= t
                       fk(x) <= 0, k = 1, ..., mnl
                       G*x <= h
                       A*x = b.

        Termination with status 'unknown' indicates that the algorithm 
        failed to find a solution that satisfies the specified tolerances.
        In some cases, the returned solution may be fairly accurate.  If
        the primal and dual infeasibilities, the gap, and the relative gap
        are small, then x, y, snl, sl, znl, zl are close to optimal.


    Advanced usage.

        Three mechanisms are provided to express problem structure.

        1.  The user can provide a customized routine for solving linear 
        equations (`KKT systems')

            [ sum_k zk*Hk(x)  A'  GG'   ] [ ux ]   [ bx ]
            [ A               0   0     ] [ uy ] = [ by ]
            [ GG              0   -W'*W ] [ uz ]   [ bz ]

        where GG = [ Df[1:,:]; G ], uz = (uznl, uzl), bz = (bznl, bzl). 

        z is a positive vector of length mnl+1 and x is a point in the 
        domain of f.   W is a scaling matrix, a block diagonal mapping

           W*u = ( Wnl*unl, W0*u_0, ..., W_{N+M}*u_{N+M} )

        defined as follows.

        - For the nonlinear block (Wnl):

              Wnl = diag(dnl),

          with dnl a positive vector of length mnl.

        - For the 'l' block (W_0):

              W_0 = diag(d),

          with d a positive vector of length ml.

        - For the 'q' blocks (W_{k+1}, k = 0, ..., N-1):

              W_{k+1} = beta_k * ( 2 * v_k * v_k' - J )

          where beta_k is a positive scalar, v_k is a vector in R^mq[k]
          with v_k[0] > 0 and v_k'*J*v_k = 1, and J = [1, 0; 0, -I].

        - For the 's' blocks (W_{k+N}, k = 0, ..., M-1):

              W_k * u = vec(r_k' * mat(u) * r_k)

          where r_k is a nonsingular matrix of order ms[k], and mat(x) is
          the inverse of the vec operation.

        The optional argument kktsolver is a Python function that will be
        called as g = kktsolver(x, z, W).  W is a dictionary that contains
        the parameters of the scaling:

        - W['dnl'] is a positive 'd' matrix of size (mnl, 1).
        - W['dnli'] is a positive 'd' matrix with the elementwise inverse 
          of W['dnl'].
        - W['d'] is a positive 'd' matrix of size (ml, 1).
        - W['di'] is a positive 'd' matrix with the elementwise inverse of
          W['d'].
        - W['beta'] is a list [ beta_0, ..., beta_{N-1} ]
        - W['v'] is a list [ v_0, ..., v_{N-1} ]
        - W['r'] is a list [ r_0, ..., r_{M-1} ]
        - W['rti'] is a list [ rti_0, ..., rti_{M-1} ], with rti_k the
          inverse of the transpose of r_k.

        The call g = kktsolver(x, z, W) should return a function g that
        solves the KKT system by g(ux, uy, uz).  On entry, ux, uy, uz 
        contain the righthand side bx, by, bz.  On exit, they contain the 
        solution, with uz scaled: (Wnl*uznl, Wl*uzl) is returned instead 
        of (uznl, uzl).

        2.  The linear operators Df*u, H*u, G*u and A*u can be specified 
        by providing Python functions instead of matrices.  This can only 
        be done in combination with 1. above, i.e., it requires the 
        kktsolver argument.
        
        If G is a function, the call G(u, v, alpha, beta, trans) should 
        evaluate the matrix-vector products

            v := alpha * G * u + beta * v  if trans is 'N'
            v := alpha * G' * u + beta * v  if trans is 'T'.

        The arguments u and v are required.  The other arguments have
        default values alpha = 1.0, beta = 0.0, trans = 'N'.

        If A is a function, the call A(u, v, alpha, beta, trans) should
        evaluate the matrix-vectors products

            v := alpha * A * u + beta * v if trans is 'N'
            v := alpha * A' * u + beta * v if trans is 'T'.

        The arguments u and v are required.  The other arguments
        have default values alpha = 1.0, beta = 0.0, trans = 'N'.

        If Df is a function, the call Df(u, v, alpha, beta, trans) should
        evaluate the matrix-vectors products

            v := alpha * Df(x) * u + beta * v if trans is 'N'
            v := alpha * Df(x)' * u + beta * v if trans is 'T'.

        If H is a function, the call H(u, v, alpha, beta) should evaluate 
        the matrix-vectors product

            v := alpha * H * u + beta * v.


        3.  Instead of using the default representation of the primal 
        variable x and the dual variable y as one-column 'd' matrices, 
        we can represent these variables and the corresponding parameters 
        c and b by arbitrary Python objects (matrices, lists, dictionaries,
        etc).  This can only be done in combination with 1. and 2. above,
        i.e., it requires a user-provided KKT solver and a function
        description of the linear mappings.   It also requires the 
        arguments xnewcopy, xdot, xscal, xaxpy, ynewcopy, ydot, yscal, 
        yaxpy.  These arguments are functions defined as follows.
   
        If X is the vector space of primal variables x, then:
        - xnewcopy(u) creates a new copy of the vector u in X.
        - xdot(u, v) returns the inner product of two vectors u and v in X.
        - xscal(alpha, u) computes u := alpha*u, where alpha is a scalar
          and u is a vector in X.
        - xaxpy(u, v, alpha = 1.0, beta = 0.0) computes v := alpha*u + v
          for a scalar alpha and two vectors u and v in X.

        If Y is the vector space of primal variables y:
        - ynewcopy(u) creates a new copy of the vector u in Y.
        - ydot(u, v) returns the inner product of two vectors u and v in Y.
        - yscal(alpha, u) computes u := alpha*u, where alpha is a scalar
          and u is a vector in Y.
        - yaxpy(u, v, alpha = 1.0, beta = 0.0) computes v := alpha*u + v
          for a scalar alpha and two vectors u and v in Y.


    Control parameters.

       The following control parameters can be modified by adding an
       entry to the dictionary options.

       options['show_progress'] True/False (default: True)
       options['maxiters'] positive integer (default: 100)
       options['refinement'] nonnegative integer (default: 1)
       options['abstol'] scalar (default: 1e-7)
       options['reltol'] scalar (default: 1e-6)
       options['feastol'] scalar (default: 1e-7).

    """

    import math 
    from cvxopt import base, blas, misc
    from cvxopt.base import matrix, spmatrix 

    mnl, x0 = F()

    # Argument error checking depends on level of customization.
    customkkt = type(kktsolver) is not str
    operatorG = G is not None and type(G) not in (matrix, spmatrix)
    operatorA = A is not None and type(A) not in (matrix, spmatrix)
    if (operatorG or operatorA) and not customkkt:
        raise ValueError("use of function valued G, A requires a "\
            "user-provided kktsolver")
    customx = (xnewcopy != None or xdot != None or xaxpy != None or
        xscal != None)
    if customx and (not operatorG or not operatorA or not customkkt):
        raise ValueError("use of non-vector type for x requires "\
            "function valued G, A and user-provided kktsolver")
    customy = (ynewcopy != None or ydot != None or yaxpy != None or 
        yscal != None)
    if customy and (not operatorA or not customkkt):
        raise ValueError("use of non vector type for y requires "\
            "function valued A and user-provided kktsolver")

    if not customx:  
        if type(x0) is not matrix or x0.typecode != 'd' or x0.size[1] != 1:
            raise TypeError("'x0' must be a 'd' matrix with one column")
        
    if h is None: h = matrix(0.0, (0,1))
    if type(h) is not matrix or h.typecode != 'd' or h.size[1] != 1:
        raise TypeError("'h' must be a 'd' matrix with one column")
    if not dims: dims = {'l': h.size[0], 'q': [], 's': []}

    # Dimension of the product cone of the linear inequalities. with 's' 
    # components unpacked.
    cdim = dims['l'] + sum(dims['q']) + sum([ k**2 for k in dims['s'] ])
    if h.size[0] != cdim:
        raise TypeError("'h' must be a 'd' matrix of size (%d,1)" %cdim)

    if G is None:
        if customx:
            def G(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
                if trans == 'N': pass
                else: xscal(beta, y)
        else:
            G = spmatrix([], [], [], (0, x0.size[0]))
    if type(G) is matrix or type(G) is spmatrix:
        if G.typecode != 'd' or G.size != (cdim, x0.size[0]):
            raise TypeError("'G' must be a 'd' matrix with size (%d, %d)"\
                %(cdim, x0.size[0]))
        def fG(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
            misc.sgemv(G, x, y, dims, trans = trans, alpha = alpha, 
                beta = beta)
    else:
        fG = G

    if A is None:
        if customy:
            def A(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
                if trans == 'N': pass
                else: xscal(beta, y)
        else:
            A = spmatrix([], [], [], (0, x0.size[0]))
    if type(A) is matrix or type(A) is spmatrix:
        if A.typecode != 'd' or A.size[1] != x0.size[0]:
            raise TypeError("'A' must be a 'd' matrix with %d columns" \
                %x0.size[0])
        def fA(x, y, trans = 'N', alpha = 1.0, beta = 0.0):
            base.gemv(A, x, y, trans = trans, alpha = alpha, beta = beta)
    else:
        fA = A
    if not customy:
        if b is None: b = matrix(0.0, (0,1))
        if type(b) is not matrix or b.typecode != 'd' or b.size[1] != 1:
            raise TypeError("'b' must be a 'd' matrix with one column")
        if not operatorA and b.size[0] != A.size[0]:
            raise TypeError("'b' must have length %d" %A.size[0])
    if b is None and customy:  
        raise ValueEror("use of non vector type for y requires b")


    if xnewcopy is None: xnewcopy = matrix 
    if xdot is None: xdot = blas.dot
    if xaxpy is None: xaxpy = blas.axpy 
    if xscal is None: xscal = blas.scal 
    def xcopy(x, y): 
        xscal(0.0, y) 
        xaxpy(x, y)
    if ynewcopy is None: ynewcopy = matrix 
    if ydot is None: ydot = blas.dot 
    if yaxpy is None: yaxpy = blas.axpy 
    if yscal is None: yscal = blas.scal
    def ycopy(x, y): 
        yscal(0.0, y) 
        yaxpy(x, y)
             

    # The problem is solved by applying cpl() to the epigraph form 
    #
    #     minimize   t 
    #     subject to f0(x) - t <= 0
    #                f1(x) <= 0
    #                ...
    #                fmnl(x) <= 0
    #                G*x <= h
    #                A*x = b.
    #
    # The epigraph form variable is stored as a list [x, t].

    # Epigraph form objective c = (0, 1).
    c = [ xnewcopy(x0), 1 ] 
    xscal(0.0, c[0])

    # Nonlinear inequalities for the epigraph problem
    #
    #     f_e(x,t) = (f0(x) - t, f1(x), ..., fmnl(x)).
    #     

    def F_e(x = None, z = None):

        if x is None: 
            return mnl+1, [ x0, 0.0 ]

        else:
            if z is None:
                v = F(x[0])
                if v is None or v[0] is None: return None, None
                val = matrix(v[0], tc = 'd')
                val[0] -= x[1]
                Df = v[1]
            else:
                val, Df, H = F(x[0], z)
                val = matrix(val, tc = 'd')
                val[0] -= x[1]

            if type(Df) in (matrix, spmatrix):
                def Df_e(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):  
                    if trans == 'N':
                        base.gemv(Df, u[0], v, alpha = alpha, beta = beta,
                            trans = 'N')
                        v[0] -= alpha * u[1]
                    else:
                        base.gemv(Df, u, v[0], alpha = alpha, beta = beta,
                            trans = 'T')
                        v[1] = -alpha * u[0] + beta * v[1]
            else:
                def Df_e(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):  
                    if trans == 'N':
                        Df(u[0], v, alpha = alpha, beta = beta, 
                            trans = 'N')
                        v[0] -= alpha * u[1]
                    else:
                        Df(u, v[0], alpha = alpha, beta = beta, 
                            trans = 'T')
                        v[1] = -alpha * u[0] + beta * v[1]

            if z is None:
                return val, Df_e
            else:
                if type(H) in (matrix, spmatrix):
                    def H_e(u, v, alpha = 1.0, beta = 1.0):
                        base.symv(H, u[0], v[0], alpha = alpha, 
                            beta = beta) 
                        v[1] += beta*v[1]
                else:
                    def H_e(u, v, alpha = 1.0, beta = 1.0):
                        H(u[0], v[0], alpha = alpha, beta = beta)
                        v[1] += beta*v[1]
                return val, Df_e, H_e


    # Linear inequality constraints.
    #
    #     G_e  = [ G, 0 ]
    #

    if type(G) in (matrix, spmatrix):
        def G_e(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):
            if trans == 'N':
                misc.sgemv(G, u[0], v, dims, alpha = alpha, beta = beta) 
            else:
                misc.sgemv(G, u, v[0], dims, alpha = alpha, beta = beta, 
                    trans = 'T') 
                v[1] *= beta
    else:
        def G_e(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):
            if trans == 'N':
                G(u[0], v, alpha = alpha, beta = beta) 
            else:
                G(u, v[0], alpha = alpha, beta = beta, trans = 'T') 
                v[1] *= beta


    # Linear equality constraints.
    #
    #     A_e = [ A, 0 ]
    #

    if type(A) in (matrix, spmatrix):
        def A_e(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):
            if trans == 'N':
                base.gemv(A, u[0], v, alpha = alpha, beta = beta) 
            else:
                base.gemv(A, u, v[0], alpha = alpha, beta = beta, 
                    trans = 'T') 
                v[1] *= beta
    else:
        def A_e(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):
            if trans == 'N':
                A(u[0], v, alpha = alpha, beta = beta) 
            else:
                A(u, v[0], alpha = alpha, beta = beta, trans = 'T') 
                v[1] *= beta
 

    # kktsolver(x, z, W) returns a routine for solving equations with 
    # coefficient matrix
    #
    #         [ H             A'   [Df[1:]; G]' ]
    #     K = [ A             0    0            ]. 
    #         [ [Df[1:]; G]   0    -W'*W        ]
 
    if kktsolver is None: 
        if dims and (dims['q'] or dims['s']):  
            kktsolver = 'chol'            
        else:
            kktsolver = 'chol2'            
    if kktsolver in ('ldl', 'chol', 'chol2', 'qr'):
        if kktsolver == 'ldl':
            factor = misc.kkt_ldl(G, dims, A, mnl)
        elif kktsolver == 'qr':
            factor = misc.kkt_qr(G, dims, A, mnl)
        elif kktsolver == 'chol':
            factor = misc.kkt_chol(G, dims, A, mnl)
        else: 
            factor = misc.kkt_chol2(G, dims, A, mnl)
        def kktsolver(x, z, W):
            f, Df, H = F(x, z)
            return factor(W, H, Df[1:,:])             

    ux, uz = xnewcopy(x0), matrix(0.0, (mnl + cdim, 1))
    def kktsolver_e(x, znl, W):

        We = W.copy()
        We['dnl'] = W['dnl'][1:]
        We['dnli'] = W['dnli'][1:]
        g = kktsolver(x[0], znl, We)

        f, Df = F(x[0])
        if type(Df) is matrix or type(Df) is spmatrix:
            gradf0 = Df[0,:].T
        else:
            gradf0 = xnewcopy(x[0])
            e0 = matrix(0.0, (mnl + 1, 1))
            e0[0] = 1.0
            Df(e0, gradf0, trans = 'T')

        def solve(x, y, z):

            # Solves 
            #
            #    [ [ H   0  ]   [ A' ]  [ Df'  G'] ] [ ux ]    [ bx ]
            #    [ [ 0   0  ]   [ 0  ]  [ -e0' 0 ] ] [    ]    [    ]
            #    [                                 ] [    ]    [    ]
            #    [ [ A   0  ]   0       0          ] [ uy ] =  [ by ].
            #    [                                 ] [    ]    [    ]
            #    [ [ Df -e0 ]   0       -W'*W      ] [ uz ]    [ bz ]
            #    [ [ G   0  ]                      ] [    ]    [    ]
            # 
            # The solution is:
            #
            #     uz[0] = -bx[1] 
            #
            #     [ ux[0]  ]          [ bx[0] + bx[1] * gradf0 ]
            #     [ uy     ] = K^-1 * [ by                     ].
            #     [ uz[1:] ]          [ bz[1:]                 ]
            #
            #     ux[1] = gradf0' * ux[0] - W['dnl'][0]**2 * uz[0] - bz[0]
            #           = gradf0' * ux[0] + W['dnl'][0]**2 * bx[1] - bz[0].
            #
            # Instead of uz we return the scaled solution W*uz.

            a = z[0]
            xcopy(x[0], ux)
            xaxpy(gradf0, ux, alpha = x[1])
            blas.copy(z, uz, offsetx = 1)
            g(ux, y, uz)
            z[0] = -x[1] * W['dnl'][0]
            blas.copy(uz, z, offsety = 1)
            xcopy(ux, x[0])
            x[1] = xdot(gradf0, x[0]) + W['dnl'][0]**2 * x[1] - a

        return solve

    def xnewcopy_e(x):
        return [ xnewcopy(x[0]), x[1] ]

    def xdot_e(x, y):
        return xdot(x[0], y[0]) + x[1]*y[1]

    def xaxpy_e(x, y, alpha = 1.0):
        xaxpy(x[0], y[0], alpha = alpha)
        y[1] += alpha*x[1]

    def xscal_e(alpha, x):
        xscal(alpha, x[0])
        x[1] *= alpha

    sol = cpl(c, F_e, G_e, h, dims, A_e, b, kktsolver_e, xnewcopy_e, 
         xdot_e, xaxpy_e, xscal_e)

    sol['x'] = sol['x'][0]
    sol['znl'], sol['snl'] = sol['znl'][1:], sol['snl'][1:]
    return sol


def gp(K, F, g, G=None, h=None, A=None, b=None):

    """
    Solves a geometric program

        minimize    log sum exp (F0*x+g0)
        subject to  log sum exp (Fi*x+gi) <= 0,  i=1,...,m
                    G*x <= h      
                    A*x = b

    Input arguments.

        K is a list of positive integers [K0, K1, K2, ..., Km].

        F is a sum(K)xn dense or sparse 'd' matrix with block rows F0, 
        F1, ..., Fm.  Each Fi is Kixn.

        g is a sum(K)x1 dense or sparse 'd' matrix with blocks g0, g1, 
        g2, ..., gm.  Each gi is Kix1.

        G is an mxn dense or sparse 'd' matrix.

        h is an mx1 dense 'd' matrix.

        A is a pxn dense or sparse 'd' matrix.

        b is a px1 dense 'd' matrix.

        The default values for G, h, A and b are empty matrices with 
        zero rows.


    Output arguments.

        Returns a dictionary with keys 'status', 'x', 'snl', 'sl',
        'znl', 'zl', 'y', 'primal objective', 'dual objective', 'gap',
        'relative gap', 'primal infeasibility', 'dual infeasibility',
        'primal slack', 'dual slack'.

        The 'status' field has values 'optimal' or 'unknown'.
        If status is 'optimal', x, snl, sl, y, znl, zl  are approximate 
        solutions of the primal and dual optimality conditions

            f(x)[1:] + snl = 0,  G*x + sl = h,  A*x = b 
            Df(x)'*[1; znl] + G'*zl + A'*y + c = 0 
            snl >= 0,  znl >= 0,  sl >= 0,  zl >= 0
            snl'*znl + sl'* zl = 0,

        where fk(x) = log sum exp (Fk*x + gk). 

        If status is 'unknown', x, snl, sl, y, znl, zl are the last
        iterates before termination.  They satisfy snl > 0, znl > 0, 
        sl > 0, zl > 0, but are not necessarily feasible.

        The values of the other fields are the values returned by cpl()
        applied to the epigraph form problem

            minimize   t 
            subjec to  f0(x) <= t
                       fk(x) <= 0, k = 1, ..., mnl
                       G*x <= h
                       A*x = b.

        Termination with status 'unknown' indicates that the algorithm 
        failed to find a solution that satisfies the specified tolerances.
        In some cases, the returned solution may be fairly accurate.  If
        the primal and dual infeasibilities, the gap, and the relative gap
        are small, then x, y, snl, sl, znl, zl are close to optimal.


    Control parameters.

       The following control parameters can be modified by adding an
       entry to the dictionary options.

       options['show_progress'] True/False (default: True)
       options['maxiters'] positive integer (default: 100)
       options['refinement'] nonnegative integer (default: 1)
       options['abstol'] scalar (default: 1e-7)
       options['reltol'] scalar (default: 1e-6)
       options['feastol'] scalar (default: 1e-7).
    """

    import math 
    from cvxopt import base, blas, misc
    from cvxopt.base import matrix, spmatrix 

    if type(K) is not list or [ k for k in K if type(k) is not int 
        or k <= 0 ]:
        raise TypeError("'K' must be a list of positive integers")
    mnl = len(K)-1
    l = sum(K)

    if type(F) not in (matrix, spmatrix) or F.typecode != 'd' or \
        F.size[0] != l:
        raise TypeError("'F' must be a dense or sparse 'd' matrix "\
            "with %d rows" %l)
    if type(g) is not matrix or g.typecode != 'd' or g.size != (l,1): 
        raise TypeError("'g' must be a dene 'd' matrix of "\
            "size (%d,1)" %l)
    n = F.size[1]

    if G is None: G = spmatrix([], [], [], (0,n))
    if h is None: h = matrix(0.0, (0,1))
    if type(G) not in (matrix, spmatrix) or G.typecode != 'd' or \
        G.size[1] != n:
        raise TypeError("'G' must be a dense or sparse 'd' matrix "\
            "with %d columns" %n)
    ml = G.size[0]
    if type(h) is not matrix or h.typecode != 'd' or h.size != (ml,1):
        raise TypeError("'h' must be a dense 'd' matrix of "\
            "size (%d,1)" %ml)
    dims = {'l': ml, 's': [], 'q': []}

    if A is None: A = spmatrix([], [], [], (0,n))
    if b is None: b = matrix(0.0, (0,1))
    if type(A) not in (matrix, spmatrix) or A.typecode != 'd' or \
        A.size[1] != n:
        raise TypeError("'A' must be a dense or sparse 'd' matrix "\
            "with %d columns" %n)
    p = A.size[0]
    if type(b) is not matrix or b.typecode != 'd' or b.size != (p,1): 
        raise TypeError("'b' must be a dense 'd' matrix of "\
            "size (%d,1)" %p)

    y = matrix(0.0, (l,1))
    u = matrix(0.0, (max(K),1))
    Fsc = matrix(0.0, (max(K),n))

    cs1 = [ sum(K[:i]) for i in range(mnl+1) ] 
    cs2 = [ cs1[i] + K[i] for i in range(mnl+1) ]
    ind = list(zip(range(mnl+1), cs1, cs2))

    def Fgp(x = None, z = None):

        if x is None: return mnl, matrix(0.0, (n,1))
	
        f = matrix(0.0, (mnl+1,1))
        Df = matrix(0.0, (mnl+1,n))

        # y = F*x+g
        blas.copy(g, y)
        base.gemv(F, x, y, beta=1.0)

        if z is not None: H = matrix(0.0, (n,n))

        for i, start, stop in ind:

            # yi := exp(yi) = exp(Fi*x+gi) 
            ymax = max(y[start:stop])
            y[start:stop] = base.exp(y[start:stop] - ymax)

            # fi = log sum yi = log sum exp(Fi*x+gi)
            ysum = blas.asum(y, n=stop-start, offset=start)
            f[i] = ymax + math.log(ysum)

            # yi := yi / sum(yi) = exp(Fi*x+gi) / sum(exp(Fi*x+gi))
            blas.scal(1.0/ysum, y, n=stop-start, offset=start)

            # gradfi := Fi' * yi 
            #        = Fi' * exp(Fi*x+gi) / sum(exp(Fi*x+gi))
            base.gemv(F, y, Df, trans='T', m=stop-start, incy=mnl+1,
                offsetA=start, offsetx=start, offsety=i)

            if z is not None:

                # Hi = Fi' * (diag(yi) - yi*yi') * Fi 
                #    = Fisc' * Fisc
                # where 
                # Fisc = diag(yi)^1/2 * (I - 1*yi') * Fi
                #      = diag(yi)^1/2 * (Fi - 1*gradfi')

                Fsc[:K[i], :] = F[start:stop, :] 
                for k in range(start,stop):
                   blas.axpy(Df, Fsc, n=n, alpha=-1.0, incx=mnl+1,
                       incy=Fsc.size[0], offsetx=i, offsety=k-start)
                   blas.scal(math.sqrt(y[k]), Fsc, inc=Fsc.size[0],
                       offset=k-start)

                # H += z[i]*Hi = z[i] * Fisc' * Fisc
                blas.syrk(Fsc, H, trans='T', k=stop-start, alpha=z[i],
                    beta=1.0)

        if z is None: return f, Df
        else: return f, Df, H

    return cp(Fgp, G, h, dims, A, b)