/usr/share/pyshared/cvxopt/msk.py is in python-cvxopt 1.1.4-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 | """
CVXOPT interface for MOSEK 6.0
"""
# Copyright 2010-2011 L. Vandenberghe.
# Copyright 2004-2009 J. Dahl and L. Vandenberghe.
#
# This file is part of CVXOPT version 1.1.4.
#
# CVXOPT is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# CVXOPT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import mosek
from cvxopt import matrix, spmatrix, sparse
from mosek.array import array, zeros
env = mosek.Env()
env.init()
def streamprinter(text): print(text)
env.set_Stream (mosek.streamtype.log, streamprinter)
inf = 0.0
options = {}
def lp(c, G, h, A=None, b=None):
"""
Solves a pair of primal and dual LPs
minimize c'*x maximize -h'*z - b'*y
subject to G*x + s = h subject to G'*z + A'*y + c = 0
A*x = b z >= 0.
s >= 0
using MOSEK 6.0.
(solsta, x, z, y) = lp(c, G, h, A=None, b=None).
Input arguments
G is m x n, h is m x 1, A is p x n, b is p x 1. G and A must be
dense or sparse 'd' matrices. h and b are dense 'd' matrices
with one column. The default values for A and b are empty
matrices with zero rows.
Return values
solsta is a MOSEK solution status key.
If solsta is mosek.solsta.optimal, then (x, y, z) contains the
primal-dual solution.
If solsta is mosek.solsta.prim_infeas_cer, then (x, y, z) is a
certificate of primal infeasibility.
If solsta is mosek.solsta.dual_infeas_cer, then (x, y, z) is a
certificate of dual infeasibility.
If solsta is mosek.solsta.unknown, then (x, y, z) are all None.
Other return values for solsta include:
mosek.solsta.dual_feas
mosek.solsta.near_dual_feas
mosek.solsta.near_optimal
mosek.solsta.near_prim_and_dual_feas
mosek.solsta.near_prim_feas
mosek.solsta.prim_and_dual_feas
mosek.solsta.prim_feas
in which case the (x,y,z) value may not be well-defined,
c.f., section 17.48 of the MOSEK Python API manual.
x, y, z the primal-dual solution.
Options are passed to MOSEK solvers via the msk.options dictionary.
For example, the following turns off output from the MOSEK solvers
>>> msk.options = {mosek.iparam.log: 0}
see chapter 15 of the MOSEK Python API manual.
"""
if type(c) is not matrix or c.typecode != 'd' or c.size[1] != 1:
raise TypeError("'c' must be a dense column matrix")
n = c.size[0]
if n < 1: raise ValueError("number of variables must be at least 1")
if (type(G) is not matrix and type(G) is not spmatrix) or \
G.typecode != 'd' or G.size[1] != n:
raise TypeError("'G' must be a dense or sparse 'd' matrix "\
"with %d columns" %n)
m = G.size[0]
if m is 0: raise ValueError("m cannot be 0")
if type(h) is not matrix or h.typecode != 'd' or h.size != (m,1):
raise TypeError("'h' must be a 'd' matrix of size (%d,1)" %m)
if A is None: A = spmatrix([], [], [], (0,n), 'd')
if (type(A) is not matrix and type(A) is not spmatrix) or \
A.typecode != 'd' or A.size[1] != n:
raise TypeError("'A' must be a dense or sparse 'd' matrix "\
"with %d columns" %n)
p = A.size[0]
if b is None: b = matrix(0.0, (0,1))
if type(b) is not matrix or b.typecode != 'd' or b.size != (p,1):
raise TypeError("'b' must be a dense matrix of size (%d,1)" %p)
bkc = m*[ mosek.boundkey.up ] + p*[ mosek.boundkey.fx ]
blc = m*[ -inf ] + [ bi for bi in b ]
buc = matrix([h, b])
bkx = n*[mosek.boundkey.fr]
blx = n*[ -inf ]
bux = n*[ +inf ]
colptr, asub, acof = sparse([G,A]).CCS
aptrb, aptre = colptr[:-1], colptr[1:]
task = env.Task(0,0)
task.set_Stream (mosek.streamtype.log, streamprinter)
# set MOSEK options
for (param, val) in options.items():
if str(param)[:6] == "iparam":
task.putintparam(param, val)
elif str(param)[:6] == "dparam":
task.putdouparam(param, val)
elif str(param)[:6] == "sparam":
task.putstrparam(param, val)
else:
raise ValueError("invalid MOSEK parameter: " + str(param))
task.inputdata (m+p, # number of constraints
n, # number of variables
array(c), # linear objective coefficients
0.0, # objective fixed value
array(aptrb),
array(aptre),
array(asub),
array(acof),
bkc,
blc,
buc,
bkx,
blx,
bux)
task.putobjsense(mosek.objsense.minimize)
task.optimize()
task.solutionsummary (mosek.streamtype.msg);
prosta, solsta = task.getsolutionstatus(mosek.soltype.bas)
x, z = zeros(n, float), zeros(m, float)
task.getsolutionslice(mosek.soltype.bas, mosek.solitem.xx, 0, n, x)
task.getsolutionslice(mosek.soltype.bas, mosek.solitem.suc, 0, m, z)
x, z = matrix(x), matrix(z)
if p is not 0:
yu, yl = zeros(p, float), zeros(p, float)
task.getsolutionslice(mosek.soltype.bas, mosek.solitem.suc, m,
m+p, yu)
task.getsolutionslice(mosek.soltype.bas, mosek.solitem.slc, m,
m+p, yl)
y = matrix(yu) - matrix(yl)
else:
y = matrix(0.0, (0,1))
if (solsta is mosek.solsta.unknown):
return (solsta, None, None, None)
else:
return (solsta, x, z, y)
def conelp(c, G, h, dims = None):
"""
Solves a pair of primal and dual SOCPs
minimize c'*x
subject to G*x + s = h
s >= 0
maximize -h'*z
subject to G'*z + c = 0
z >= 0
using MOSEK 6.0.
The inequalities are with respect to a cone C defined as the Cartesian
product of N + 1 cones:
C = C_0 x C_1 x .... x C_N x C_{N+1}.
The first cone C_0 is the nonnegative orthant of dimension ml.
The other cones are second order cones of dimension mq[0], ...,
mq[N-1]. The second order cone of dimension m is defined as
{ (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }.
The formats of G and h are identical to that used in solvers.conelp(),
except that only componentwise and second order cone inequalities are
(dims['s'] must be zero, if defined).
Input arguments.
c is a dense 'd' matrix of size (n,1).
dims is a dictionary with the dimensions of the components of C.
It has three fields.
- dims['l'] = ml, the dimension of the nonnegative orthant C_0.
(ml >= 0.)
- dims['q'] = mq = [ mq[0], mq[1], ..., mq[N-1] ], a list of N
integers with the dimensions of the second order cones C_1, ...,
C_N. (N >= 0 and mq[k] >= 1.)
The default value of dims is {'l': G.size[0], 'q': []}.
G is a dense or sparse 'd' matrix of size (K,n), where
K = ml + mq[0] + ... + mq[N-1].
Each column of G describes a vector
v = ( v_0, v_1, ..., v_N, vec(v_{N+1}) )
in V = R^ml x R^mq[0] x ... x R^mq[N-1] stored as a column vector.
h is a dense 'd' matrix of size (K,1), representing a vector in V,
in the same format as the columns of G.
Return values
solsta is a MOSEK solution status key.
If solsta is mosek.solsta.optimal,
then (x, zl, zq) contains the primal-dual solution.
If solsta is moseksolsta.prim_infeas_cer,
then (x, zl, zq) is a certificate of dual infeasibility.
If solsta is moseksolsta.dual_infeas_cer,
then (x, zl, zq) is a certificate of primal infeasibility.
If solsta is mosek.solsta.unknown,
then (x, zl, zq) are all None
Other return values for solsta include:
mosek.solsta.dual_feas
mosek.solsta.near_dual_feas
mosek.solsta.near_optimal
mosek.solsta.near_prim_and_dual_feas
mosek.solsta.near_prim_feas
mosek.solsta.prim_and_dual_feas
mosek.solsta.prim_feas
in which case the (x,y,z) value may not be well-defined,
c.f., section 17.48 of the MOSEK Python API manual.
x, z the primal-dual solution.
Options are passed to MOSEK solvers via the msk.options dictionary,
e.g., the following turns off output from the MOSEK solvers
>>> msk.options = {mosek.iparam.log:0}
see chapter 15 of the MOSEK Python API manual.
"""
if dims is None:
(solsta, x, y, z) = lp(c, G, h)
return (solsta, x, z, None)
try:
if len(dims['s']) > 0: raise ValueError("dims['s'] must be zero")
except:
pass
N, n = G.size
ml, mq = dims['l'], dims['q']
cdim = ml + sum(mq)
if cdim is 0: raise ValueError("ml+mq cannot be 0")
# Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
indq = [ dims['l'] ]
for k in dims['q']: indq = indq + [ indq[-1] + k ]
if type(h) is not matrix or h.typecode != 'd' or h.size[1] != 1:
raise TypeError("'h' must be a 'd' matrix with 1 column")
if type(G) is matrix or type(G) is spmatrix:
if G.typecode != 'd' or G.size[0] != cdim:
raise TypeError("'G' must be a 'd' matrix with %d rows " %cdim)
if h.size[0] != cdim:
raise TypeError("'h' must have %d rows" %cdim)
else:
raise TypeError("'G' must be a matrix")
if min(dims['q'])<1: raise TypeError(
"dimensions of quadratic cones must be positive")
bkc = n*[ mosek.boundkey.fx ]
blc = array(-c)
buc = array(-c)
bkx = ml*[ mosek.boundkey.lo ] + sum(mq)*[ mosek.boundkey.fr ]
blx = ml*[ 0.0 ] + sum(mq)*[ -inf ]
bux = N*[ +inf ]
c = array(-h)
colptr, asub, acof = sparse([G.T]).CCS
aptrb, aptre = colptr[:-1], colptr[1:]
task = env.Task(0,0)
task.set_Stream (mosek.streamtype.log, streamprinter)
# set MOSEK options
for (param, val) in options.items():
if str(param)[:6] == "iparam":
task.putintparam(param, val)
elif str(param)[:6] == "dparam":
task.putdouparam(param, val)
elif str(param)[:6] == "sparam":
task.putstrparam(param, val)
else:
raise ValueError("invalid MOSEK parameter: "+str(param))
task.inputdata (n, # number of constraints
N, # number of variables
c, # linear objective coefficients
0.0, # objective fixed value
array(aptrb),
array(aptre),
array(asub),
array(acof),
bkc,
blc,
buc,
bkx,
blx,
bux)
task.putobjsense(mosek.objsense.maximize)
for k in range(len(mq)):
task.appendcone(mosek.conetype.quad, 0.0,
array(range(ml+sum(mq[:k]),ml+sum(mq[:k+1]))))
task.optimize()
task.solutionsummary (mosek.streamtype.msg);
prosta, solsta = task.getsolutionstatus(mosek.soltype.itr)
xu, xl, zq = zeros(n, float), zeros(n, float), zeros(sum(mq), float)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.slc, 0, n, xl)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, 0, n, xu)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, ml, N, zq)
x = matrix(xu-xl)
zq = matrix(zq)
if ml:
zl = zeros(ml, float)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, 0, ml,
zl)
zl = matrix(zl)
else:
zl = matrix(0.0, (0,1))
if (solsta is mosek.solsta.unknown):
return (solsta, None, None)
else:
return (solsta, x, matrix([zl, zq]))
def socp(c, Gl = None, hl = None, Gq = None, hq = None):
"""
Solves a pair of primal and dual SOCPs
minimize c'*x
subject to Gl*x + sl = hl
Gq[k]*x + sq[k] = hq[k], k = 0, ..., N-1
sl >= 0,
sq[k] >= 0, k = 0, ..., N-1
maximize -hl'*zl - sum_k hq[k]'*zq[k]
subject to Gl'*zl + sum_k Gq[k]'*zq[k] + c = 0
zl >= 0, zq[k] >= 0, k = 0, ..., N-1.
using MOSEK 6.0.
solsta, x, zl, zq = socp(c, Gl = None, hl = None, Gq = None, hq = None)
Return values
solsta is a MOSEK solution status key.
If solsta is mosek.solsta.optimal,
then (x, zl, zq) contains the primal-dual solution.
If solsta is mosek.solsta.prim_infeas_cer,
then (x, zl, zq) is a certificate of dual infeasibility.
If solsta is mosek.solsta.dual_infeas_cer,
then (x, zl, zq) is a certificate of primal infeasibility.
If solsta is mosek.solsta.unknown,
then (x, zl, zq) are all None
Other return values for solsta include:
mosek.solsta.dual_feas
mosek.solsta.near_dual_feas
mosek.solsta.near_optimal
mosek.solsta.near_prim_and_dual_feas
mosek.solsta.near_prim_feas
mosek.solsta.prim_and_dual_feas
mosek.solsta.prim_feas
in which case the (x,y,z) value may not be well-defined,
c.f., section 17.48 of the MOSEK Python API manual.
x, zl, zq the primal-dual solution.
Options are passed to MOSEK solvers via the msk.options dictionary,
e.g., the following turns off output from the MOSEK solvers
>>> msk.options = {mosek.iparam.log: 0}
see chapter 15 of the MOSEK Python API manual.
"""
if type(c) is not matrix or c.typecode != 'd' or c.size[1] != 1:
raise TypeError("'c' must be a dense column matrix")
n = c.size[0]
if n < 1: raise ValueError("number of variables must be at least 1")
if Gl is None: Gl = spmatrix([], [], [], (0,n), tc='d')
if (type(Gl) is not matrix and type(Gl) is not spmatrix) or \
Gl.typecode != 'd' or Gl.size[1] != n:
raise TypeError("'Gl' must be a dense or sparse 'd' matrix "\
"with %d columns" %n)
ml = Gl.size[0]
if hl is None: hl = matrix(0.0, (0,1))
if type(hl) is not matrix or hl.typecode != 'd' or \
hl.size != (ml,1):
raise TypeError("'hl' must be a dense 'd' matrix of " \
"size (%d,1)" %ml)
if Gq is None: Gq = []
if type(Gq) is not list or [ G for G in Gq if (type(G) is not matrix
and type(G) is not spmatrix) or G.typecode != 'd' or
G.size[1] != n ]:
raise TypeError("'Gq' must be a list of sparse or dense 'd' "\
"matrices with %d columns" %n)
mq = [ G.size[0] for G in Gq ]
a = [ k for k in range(len(mq)) if mq[k] == 0 ]
if a: raise TypeError("the number of rows of Gq[%d] is zero" %a[0])
if hq is None: hq = []
if type(hq) is not list or len(hq) != len(mq) or [ h for h in hq if
(type(h) is not matrix and type(h) is not spmatrix) or
h.typecode != 'd' ]:
raise TypeError("'hq' must be a list of %d dense or sparse "\
"'d' matrices" %len(mq))
a = [ k for k in range(len(mq)) if hq[k].size != (mq[k], 1) ]
if a:
k = a[0]
raise TypeError("'hq[%d]' has size (%d,%d). Expected size "\
"is (%d,1)." %(k, hq[k].size[0], hq[k].size[1], mq[k]))
N = ml + sum(mq)
h = matrix(0.0, (N,1))
if type(Gl) is matrix or [ Gk for Gk in Gq if type(Gk) is matrix ]:
G = matrix(0.0, (N, n))
else:
G = spmatrix([], [], [], (N, n), 'd')
h[:ml] = hl
G[:ml,:] = Gl
ind = ml
for k in range(len(mq)):
h[ind : ind + mq[k]] = hq[k]
G[ind : ind + mq[k], :] = Gq[k]
ind += mq[k]
bkc = n*[ mosek.boundkey.fx ]
blc = array(-c)
buc = array(-c)
bkx = ml*[ mosek.boundkey.lo ] + sum(mq)*[ mosek.boundkey.fr ]
blx = ml*[ 0.0 ] + sum(mq)*[ -inf ]
bux = N*[ +inf ]
c = -h
colptr, asub, acof = sparse([G.T]).CCS
aptrb, aptre = colptr[:-1], colptr[1:]
task = env.Task(0,0)
task.set_Stream (mosek.streamtype.log, streamprinter)
# set MOSEK options
for (param, val) in options.items():
if str(param)[:6] == "iparam":
task.putintparam(param, val)
elif str(param)[:6] == "dparam":
task.putdouparam(param, val)
elif str(param)[:6] == "sparam":
task.putstrparam(param, val)
else:
raise ValueError("invalid MOSEK parameter: "+str(param))
task.inputdata (n, # number of constraints
N, # number of variables
array(c), # linear objective coefficients
0.0, # objective fixed value
array(aptrb),
array(aptre),
array(asub),
array(acof),
bkc,
blc,
buc,
bkx,
blx,
bux)
task.putobjsense(mosek.objsense.maximize)
for k in range(len(mq)):
task.appendcone(mosek.conetype.quad, 0.0,
array(range(ml+sum(mq[:k]),ml+sum(mq[:k+1]))))
task.optimize()
task.solutionsummary (mosek.streamtype.msg);
prosta, solsta = task.getsolutionstatus(mosek.soltype.itr)
xu, xl, zq = zeros(n, float), zeros(n, float), zeros(sum(mq), float)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.slc, 0, n, xl)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, 0, n, xu)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, ml, N, zq)
x = matrix(xu-xl)
zq = [ matrix(zq[sum(mq[:k]):sum(mq[:k+1])]) for k in range(len(mq)) ]
if ml:
zl = zeros(ml, float)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, 0, ml,
zl)
zl = matrix(zl)
else:
zl = matrix(0.0, (0,1))
if (solsta is mosek.solsta.unknown):
return (solsta, None, None, None)
else:
return (solsta, x, zl, zq)
def qp(P, q, G=None, h=None, A=None, b=None):
"""
Solves a quadratic program
minimize (1/2)*x'*P*x + q'*x
subject to G*x <= h
A*x = b.
using MOSEK 6.0.
solsta, x, z, y = qp(P, q, G=None, h=None, A=None, b=None)
Return values
solsta is a MOSEK solution status key.
If solsta is mosek.solsta.optimal,
then (x, y, z) contains the primal-dual solution.
If solsta is mosek.solsta.prim_infeas_cer,
then (x, y, z) is a certificate of primal infeasibility.
If solsta is mosek.solsta.dual_infeas_cer,
then (x, y, z) is a certificate of dual infeasibility.
If solsta is mosek.solsta.unknown, then (x, y, z) are all None.
Other return values for solsta include:
mosek.solsta.dual_feas
mosek.solsta.near_dual_feas
mosek.solsta.near_optimal
mosek.solsta.near_prim_and_dual_feas
mosek.solsta.near_prim_feas
mosek.solsta.prim_and_dual_feas
mosek.solsta.prim_feas
in which case the (x,y,z) value may not be well-defined,
c.f., section 17.48 of the MOSEK Python API manual.
x, z, y the primal-dual solution.
Options are passed to MOSEK solvers via the msk.options dictionary,
e.g., the following turns off output from the MOSEK solvers
>>> msk.options = {mosek.iparam.log: 0}
see chapter 15 of the MOSEK Python API manual.
"""
if (type(P) is not matrix and type(P) is not spmatrix) or \
P.typecode != 'd' or P.size[0] != P.size[1]:
raise TypeError("'P' must be a square dense or sparse 'd' matrix ")
n = P.size[0]
if n < 1: raise ValueError("number of variables must be at least 1")
if type(q) is not matrix or q.typecode != 'd' or q.size != (n,1):
raise TypeError("'q' must be a 'd' matrix of size (%d,1)" %n)
if G is None: G = spmatrix([], [], [], (0,n), 'd')
if (type(G) is not matrix and type(G) is not spmatrix) or \
G.typecode != 'd' or G.size[1] != n:
raise TypeError("'G' must be a dense or sparse 'd' matrix "\
"with %d columns" %n)
m = G.size[0]
if h is None: h = matrix(0.0, (0,1))
if type(h) is not matrix or h.typecode != 'd' or h.size != (m,1):
raise TypeError("'h' must be a 'd' matrix of size (%d,1)" %m)
if A is None: A = spmatrix([], [], [], (0,n), 'd')
if (type(A) is not matrix and type(A) is not spmatrix) or \
A.typecode != 'd' or A.size[1] != n:
raise TypeError("'A' must be a dense or sparse 'd' matrix "\
"with %d columns" %n)
p = A.size[0]
if b is None: b = matrix(0.0, (0,1))
if type(b) is not matrix or b.typecode != 'd' or b.size != (p,1):
raise TypeError("'b' must be a dense matrix of size (%d,1)" %p)
if m+p is 0: raise ValueError("m + p must be greater than 0")
c = array(q)
bkc = m*[ mosek.boundkey.up ] + p*[ mosek.boundkey.fx ]
blc = m*[ -inf ] + [ bi for bi in b ]
buc = matrix([h, b])
bkx = n*[mosek.boundkey.fr]
blx = n*[ -inf ]
bux = n*[ +inf ]
colptr, asub, acof = sparse([G,A]).CCS
aptrb, aptre = colptr[:-1], colptr[1:]
task = env.Task(0,0)
task.set_Stream (mosek.streamtype.log, streamprinter)
# set MOSEK options
for (param, val) in options.items():
if str(param)[:6] == "iparam":
task.putintparam(param, val)
elif str(param)[:6] == "dparam":
task.putdouparam(param, val)
elif str(param)[:6] == "sparam":
task.putstrparam(param, val)
else:
raise ValueError("invalid MOSEK parameter: "+str(param))
task.inputdata (m+p, # number of constraints
n, # number of variables
array(c), # linear objective coefficients
0.0, # objective fixed value
array(aptrb),
array(aptre),
array(asub),
array(acof),
bkc,
blc,
buc,
bkx,
blx,
bux)
Ps = sparse(P)
I, J = Ps.I, Ps.J
tril = [ k for k in range(len(I)) if I[k] >= J[k] ]
task.putqobj(array(I[tril]), array(J[tril]), array(Ps.V[tril]))
task.putobjsense(mosek.objsense.minimize)
task.optimize()
task.solutionsummary (mosek.streamtype.msg);
prosta, solsta = task.getsolutionstatus(mosek.soltype.itr)
x = zeros(n, float)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, 0, n, x)
x = matrix(x)
if m is not 0:
z = zeros(m, float)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, 0, m,
z)
z = matrix(z)
else:
z = matrix(0.0, (0,1))
if p is not 0:
yu, yl = zeros(p, float), zeros(p, float)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, m, m+p,
yu)
task.getsolutionslice(mosek.soltype.itr, mosek.solitem.slc, m, m+p,
yl)
y = matrix(yu) - matrix(yl)
else:
y = matrix(0.0, (0,1))
if (solsta is mosek.solsta.unknown):
return (solsta, None, None, None)
else:
return (solsta, x, z, y)
def ilp(c, G, h, A=None, b=None, I=None):
"""
Solves the mixed integer LP
minimize c'*x
subject to G*x + s = h
A*x = b
s >= 0
xi integer, forall i in I
using MOSEK 6.0.
solsta, x = ilp(c, G, h, A=None, b=None, I=None).
Input arguments
G is m x n, h is m x 1, A is p x n, b is p x 1. G and A must be
dense or sparse 'd' matrices. h and b are dense 'd' matrices
with one column. The default values for A and b are empty
matrices with zero rows.
I is a Python set with indices of integer elements of x. By
default all elements in x are constrained to be integer, i.e.,
the default value of I is I = set(range(n))
Dual variables are not returned for MOSEK.
Return values
solsta is a MOSEK solution status key.
If solsta is mosek.solsta.integer_optimal, then x contains
the solution.
If solsta is mosek.solsta.unknown, then x is None.
Other return values for solsta include:
mosek.solsta.near_integer_optimal
in which case the x value may not be well-defined,
c.f., section 17.48 of the MOSEK Python API manual.
x is the solution
Options are passed to MOSEK solvers via the msk.options dictionary,
e.g., the following turns off output from the MOSEK solvers
>>> msk.options = {mosek.iparam.log: 0}
see chapter 15 of the MOSEK Python API manual.
"""
if type(c) is not matrix or c.typecode != 'd' or c.size[1] != 1:
raise TypeError("'c' must be a dense column matrix")
n = c.size[0]
if n < 1: raise ValueError("number of variables must be at least 1")
if (type(G) is not matrix and type(G) is not spmatrix) or \
G.typecode != 'd' or G.size[1] != n:
raise TypeError("'G' must be a dense or sparse 'd' matrix "\
"with %d columns" %n)
m = G.size[0]
if m is 0: raise ValueError("m cannot be 0")
if type(h) is not matrix or h.typecode != 'd' or h.size != (m,1):
raise TypeError("'h' must be a 'd' matrix of size (%d,1)" %m)
if A is None: A = spmatrix([], [], [], (0,n), 'd')
if (type(A) is not matrix and type(A) is not spmatrix) or \
A.typecode != 'd' or A.size[1] != n:
raise TypeError("'A' must be a dense or sparse 'd' matrix "\
"with %d columns" %n)
p = A.size[0]
if b is None: b = matrix(0.0, (0,1))
if type(b) is not matrix or b.typecode != 'd' or b.size != (p,1):
raise TypeError("'b' must be a dense matrix of size (%d,1)" %p)
c = array(c)
if I is None: I = set(range(n))
if type(I) is not set:
raise TypeError("invalid argument for integer index set")
for i in I:
if type(i) is not int:
raise TypeError("invalid integer index set I")
if len(I) > 0 and min(I) < 0: raise IndexError(
"negative element in integer index set I")
if len(I) > 0 and max(I) > n-1: raise IndexError(
"maximum element in in integer index set I is larger than n-1")
bkc = m*[ mosek.boundkey.up ] + p*[ mosek.boundkey.fx ]
blc = m*[ -inf ] + [ bi for bi in b ]
buc = matrix([h, b])
bkx = n*[mosek.boundkey.fr]
blx = n*[ -inf ]
bux = n*[ +inf ]
colptr, asub, acof = sparse([G,A]).CCS
aptrb, aptre = colptr[:-1], colptr[1:]
task = env.Task(0,0)
task.set_Stream (mosek.streamtype.log, streamprinter)
# set MOSEK options
for (param, val) in options.items():
if str(param)[:6] == "iparam":
task.putintparam(param, val)
elif str(param)[:6] == "dparam":
task.putdouparam(param, val)
elif str(param)[:6] == "sparam":
task.putstrparam(param, val)
else:
raise ValueError("invalid MOSEK parameter: "+str(param))
task.inputdata (m+p, # number of constraints
n, # number of variables
array(c), # linear objective coefficients
0.0, # objective fixed value
array(aptrb),
array(aptre),
array(asub),
array(acof),
bkc,
blc,
buc,
bkx,
blx,
bux)
task.putobjsense(mosek.objsense.minimize)
# Define integer variables
if len(I) > 0:
task.putvartypelist(list(I), len(I)*[ mosek.variabletype.type_int ])
task.putintparam (mosek.iparam.mio_mode, mosek.miomode.satisfied)
task.optimize()
task.solutionsummary (mosek.streamtype.msg);
if len(I) > 0:
prosta, solsta = task.getsolutionstatus(mosek.soltype.itg)
else:
prosta, solsta = task.getsolutionstatus(mosek.soltype.bas)
x = zeros(n, float)
if len(I) > 0:
task.getsolutionslice(mosek.soltype.itg, mosek.solitem.xx, 0, n, x)
else:
task.getsolutionslice(mosek.soltype.bas, mosek.solitem.xx, 0, n, x)
x = matrix(x)
if (solsta is mosek.solsta.unknown):
return (solsta, None)
else:
return (solsta, x)
|