This file is indexed.

/usr/lib/python2.7/dist-packages/dolfin/cpp/fem.py is in python-dolfin 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.11
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.





from sys import version_info
if version_info >= (3,0,0):
    new_instancemethod = lambda func, inst, cls: _fem.SWIG_PyInstanceMethod_New(func)
else:
    from new import instancemethod as new_instancemethod
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_fem', [dirname(__file__)])
        except ImportError:
            import _fem
            return _fem
        if fp is not None:
            try:
                _mod = imp.load_module('_fem', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _fem = swig_import_helper()
    del swig_import_helper
else:
    import _fem
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


def _swig_setattr_nondynamic_method(set):
    def set_attr(self,name,value):
        if (name == "thisown"): return self.this.own(value)
        if hasattr(self,name) or (name == "this"):
            set(self,name,value)
        else:
            raise AttributeError("You cannot add attributes to %s" % self)
    return set_attr


try:
    import weakref
    weakref_proxy = weakref.proxy
except:
    weakref_proxy = lambda x: x


SHARED_PTR_DISOWN = _fem.SHARED_PTR_DISOWN
import ufc

def _attach_base_to_numpy_array(*args):
  return _fem._attach_base_to_numpy_array(*args)
_attach_base_to_numpy_array = _fem._attach_base_to_numpy_array

def dolfin_swigversion(*args):
  return _fem.dolfin_swigversion(*args)
dolfin_swigversion = _fem.dolfin_swigversion
tmp = hex(dolfin_swigversion())
__swigversion__ = "%d.%d.%d"%(tuple(map(int, [tmp[-5], tmp[-3], tmp[-2:]])))
del tmp, dolfin_swigversion


def has_petsc4py(*args):
  return _fem.has_petsc4py(*args)
has_petsc4py = _fem.has_petsc4py
import common
import la
class HierarchicalMeshFunctionUInt(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalMeshFunctionUInt_swiginit(self,_fem.new_HierarchicalMeshFunctionUInt(*args))
    __swig_destroy__ = _fem.delete_HierarchicalMeshFunctionUInt
HierarchicalMeshFunctionUInt.depth = new_instancemethod(_fem.HierarchicalMeshFunctionUInt_depth,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt.has_parent = new_instancemethod(_fem.HierarchicalMeshFunctionUInt_has_parent,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt.has_child = new_instancemethod(_fem.HierarchicalMeshFunctionUInt_has_child,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt._parent = new_instancemethod(_fem.HierarchicalMeshFunctionUInt__parent,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt._child = new_instancemethod(_fem.HierarchicalMeshFunctionUInt__child,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt._root_node = new_instancemethod(_fem.HierarchicalMeshFunctionUInt__root_node,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt._leaf_node = new_instancemethod(_fem.HierarchicalMeshFunctionUInt__leaf_node,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt.set_parent = new_instancemethod(_fem.HierarchicalMeshFunctionUInt_set_parent,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt.clear_child = new_instancemethod(_fem.HierarchicalMeshFunctionUInt_clear_child,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt.set_child = new_instancemethod(_fem.HierarchicalMeshFunctionUInt_set_child,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt._debug = new_instancemethod(_fem.HierarchicalMeshFunctionUInt__debug,None,HierarchicalMeshFunctionUInt)
HierarchicalMeshFunctionUInt_swigregister = _fem.HierarchicalMeshFunctionUInt_swigregister
HierarchicalMeshFunctionUInt_swigregister(HierarchicalMeshFunctionUInt)

class HierarchicalMeshFunctionInt(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalMeshFunctionInt_swiginit(self,_fem.new_HierarchicalMeshFunctionInt(*args))
    __swig_destroy__ = _fem.delete_HierarchicalMeshFunctionInt
HierarchicalMeshFunctionInt.depth = new_instancemethod(_fem.HierarchicalMeshFunctionInt_depth,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt.has_parent = new_instancemethod(_fem.HierarchicalMeshFunctionInt_has_parent,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt.has_child = new_instancemethod(_fem.HierarchicalMeshFunctionInt_has_child,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt._parent = new_instancemethod(_fem.HierarchicalMeshFunctionInt__parent,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt._child = new_instancemethod(_fem.HierarchicalMeshFunctionInt__child,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt._root_node = new_instancemethod(_fem.HierarchicalMeshFunctionInt__root_node,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt._leaf_node = new_instancemethod(_fem.HierarchicalMeshFunctionInt__leaf_node,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt.set_parent = new_instancemethod(_fem.HierarchicalMeshFunctionInt_set_parent,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt.clear_child = new_instancemethod(_fem.HierarchicalMeshFunctionInt_clear_child,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt.set_child = new_instancemethod(_fem.HierarchicalMeshFunctionInt_set_child,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt._debug = new_instancemethod(_fem.HierarchicalMeshFunctionInt__debug,None,HierarchicalMeshFunctionInt)
HierarchicalMeshFunctionInt_swigregister = _fem.HierarchicalMeshFunctionInt_swigregister
HierarchicalMeshFunctionInt_swigregister(HierarchicalMeshFunctionInt)

class HierarchicalMeshFunctionDouble(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalMeshFunctionDouble_swiginit(self,_fem.new_HierarchicalMeshFunctionDouble(*args))
    __swig_destroy__ = _fem.delete_HierarchicalMeshFunctionDouble
HierarchicalMeshFunctionDouble.depth = new_instancemethod(_fem.HierarchicalMeshFunctionDouble_depth,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble.has_parent = new_instancemethod(_fem.HierarchicalMeshFunctionDouble_has_parent,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble.has_child = new_instancemethod(_fem.HierarchicalMeshFunctionDouble_has_child,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble._parent = new_instancemethod(_fem.HierarchicalMeshFunctionDouble__parent,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble._child = new_instancemethod(_fem.HierarchicalMeshFunctionDouble__child,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble._root_node = new_instancemethod(_fem.HierarchicalMeshFunctionDouble__root_node,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble._leaf_node = new_instancemethod(_fem.HierarchicalMeshFunctionDouble__leaf_node,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble.set_parent = new_instancemethod(_fem.HierarchicalMeshFunctionDouble_set_parent,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble.clear_child = new_instancemethod(_fem.HierarchicalMeshFunctionDouble_clear_child,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble.set_child = new_instancemethod(_fem.HierarchicalMeshFunctionDouble_set_child,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble._debug = new_instancemethod(_fem.HierarchicalMeshFunctionDouble__debug,None,HierarchicalMeshFunctionDouble)
HierarchicalMeshFunctionDouble_swigregister = _fem.HierarchicalMeshFunctionDouble_swigregister
HierarchicalMeshFunctionDouble_swigregister(HierarchicalMeshFunctionDouble)

class HierarchicalMeshFunctionBool(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalMeshFunctionBool_swiginit(self,_fem.new_HierarchicalMeshFunctionBool(*args))
    __swig_destroy__ = _fem.delete_HierarchicalMeshFunctionBool
HierarchicalMeshFunctionBool.depth = new_instancemethod(_fem.HierarchicalMeshFunctionBool_depth,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool.has_parent = new_instancemethod(_fem.HierarchicalMeshFunctionBool_has_parent,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool.has_child = new_instancemethod(_fem.HierarchicalMeshFunctionBool_has_child,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool._parent = new_instancemethod(_fem.HierarchicalMeshFunctionBool__parent,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool._child = new_instancemethod(_fem.HierarchicalMeshFunctionBool__child,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool._root_node = new_instancemethod(_fem.HierarchicalMeshFunctionBool__root_node,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool._leaf_node = new_instancemethod(_fem.HierarchicalMeshFunctionBool__leaf_node,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool.set_parent = new_instancemethod(_fem.HierarchicalMeshFunctionBool_set_parent,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool.clear_child = new_instancemethod(_fem.HierarchicalMeshFunctionBool_clear_child,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool.set_child = new_instancemethod(_fem.HierarchicalMeshFunctionBool_set_child,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool._debug = new_instancemethod(_fem.HierarchicalMeshFunctionBool__debug,None,HierarchicalMeshFunctionBool)
HierarchicalMeshFunctionBool_swigregister = _fem.HierarchicalMeshFunctionBool_swigregister
HierarchicalMeshFunctionBool_swigregister(HierarchicalMeshFunctionBool)

class HierarchicalMeshFunctionSizet(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalMeshFunctionSizet_swiginit(self,_fem.new_HierarchicalMeshFunctionSizet(*args))
    __swig_destroy__ = _fem.delete_HierarchicalMeshFunctionSizet
HierarchicalMeshFunctionSizet.depth = new_instancemethod(_fem.HierarchicalMeshFunctionSizet_depth,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet.has_parent = new_instancemethod(_fem.HierarchicalMeshFunctionSizet_has_parent,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet.has_child = new_instancemethod(_fem.HierarchicalMeshFunctionSizet_has_child,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet._parent = new_instancemethod(_fem.HierarchicalMeshFunctionSizet__parent,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet._child = new_instancemethod(_fem.HierarchicalMeshFunctionSizet__child,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet._root_node = new_instancemethod(_fem.HierarchicalMeshFunctionSizet__root_node,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet._leaf_node = new_instancemethod(_fem.HierarchicalMeshFunctionSizet__leaf_node,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet.set_parent = new_instancemethod(_fem.HierarchicalMeshFunctionSizet_set_parent,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet.clear_child = new_instancemethod(_fem.HierarchicalMeshFunctionSizet_clear_child,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet.set_child = new_instancemethod(_fem.HierarchicalMeshFunctionSizet_set_child,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet._debug = new_instancemethod(_fem.HierarchicalMeshFunctionSizet__debug,None,HierarchicalMeshFunctionSizet)
HierarchicalMeshFunctionSizet_swigregister = _fem.HierarchicalMeshFunctionSizet_swigregister
HierarchicalMeshFunctionSizet_swigregister(HierarchicalMeshFunctionSizet)

class HierarchicalMesh(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalMesh_swiginit(self,_fem.new_HierarchicalMesh(*args))
    __swig_destroy__ = _fem.delete_HierarchicalMesh
HierarchicalMesh.depth = new_instancemethod(_fem.HierarchicalMesh_depth,None,HierarchicalMesh)
HierarchicalMesh.has_parent = new_instancemethod(_fem.HierarchicalMesh_has_parent,None,HierarchicalMesh)
HierarchicalMesh.has_child = new_instancemethod(_fem.HierarchicalMesh_has_child,None,HierarchicalMesh)
HierarchicalMesh._parent = new_instancemethod(_fem.HierarchicalMesh__parent,None,HierarchicalMesh)
HierarchicalMesh._child = new_instancemethod(_fem.HierarchicalMesh__child,None,HierarchicalMesh)
HierarchicalMesh._root_node = new_instancemethod(_fem.HierarchicalMesh__root_node,None,HierarchicalMesh)
HierarchicalMesh._leaf_node = new_instancemethod(_fem.HierarchicalMesh__leaf_node,None,HierarchicalMesh)
HierarchicalMesh.set_parent = new_instancemethod(_fem.HierarchicalMesh_set_parent,None,HierarchicalMesh)
HierarchicalMesh.clear_child = new_instancemethod(_fem.HierarchicalMesh_clear_child,None,HierarchicalMesh)
HierarchicalMesh.set_child = new_instancemethod(_fem.HierarchicalMesh_set_child,None,HierarchicalMesh)
HierarchicalMesh._debug = new_instancemethod(_fem.HierarchicalMesh__debug,None,HierarchicalMesh)
HierarchicalMesh_swigregister = _fem.HierarchicalMesh_swigregister
HierarchicalMesh_swigregister(HierarchicalMesh)

import mesh
class HierarchicalFunctionSpace(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalFunctionSpace_swiginit(self,_fem.new_HierarchicalFunctionSpace(*args))
    __swig_destroy__ = _fem.delete_HierarchicalFunctionSpace
HierarchicalFunctionSpace.depth = new_instancemethod(_fem.HierarchicalFunctionSpace_depth,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace.has_parent = new_instancemethod(_fem.HierarchicalFunctionSpace_has_parent,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace.has_child = new_instancemethod(_fem.HierarchicalFunctionSpace_has_child,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace._parent = new_instancemethod(_fem.HierarchicalFunctionSpace__parent,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace._child = new_instancemethod(_fem.HierarchicalFunctionSpace__child,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace._root_node = new_instancemethod(_fem.HierarchicalFunctionSpace__root_node,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace._leaf_node = new_instancemethod(_fem.HierarchicalFunctionSpace__leaf_node,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace.set_parent = new_instancemethod(_fem.HierarchicalFunctionSpace_set_parent,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace.clear_child = new_instancemethod(_fem.HierarchicalFunctionSpace_clear_child,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace.set_child = new_instancemethod(_fem.HierarchicalFunctionSpace_set_child,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace._debug = new_instancemethod(_fem.HierarchicalFunctionSpace__debug,None,HierarchicalFunctionSpace)
HierarchicalFunctionSpace_swigregister = _fem.HierarchicalFunctionSpace_swigregister
HierarchicalFunctionSpace_swigregister(HierarchicalFunctionSpace)

class HierarchicalFunction(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalFunction_swiginit(self,_fem.new_HierarchicalFunction(*args))
    __swig_destroy__ = _fem.delete_HierarchicalFunction
HierarchicalFunction.depth = new_instancemethod(_fem.HierarchicalFunction_depth,None,HierarchicalFunction)
HierarchicalFunction.has_parent = new_instancemethod(_fem.HierarchicalFunction_has_parent,None,HierarchicalFunction)
HierarchicalFunction.has_child = new_instancemethod(_fem.HierarchicalFunction_has_child,None,HierarchicalFunction)
HierarchicalFunction._parent = new_instancemethod(_fem.HierarchicalFunction__parent,None,HierarchicalFunction)
HierarchicalFunction._child = new_instancemethod(_fem.HierarchicalFunction__child,None,HierarchicalFunction)
HierarchicalFunction._root_node = new_instancemethod(_fem.HierarchicalFunction__root_node,None,HierarchicalFunction)
HierarchicalFunction._leaf_node = new_instancemethod(_fem.HierarchicalFunction__leaf_node,None,HierarchicalFunction)
HierarchicalFunction.set_parent = new_instancemethod(_fem.HierarchicalFunction_set_parent,None,HierarchicalFunction)
HierarchicalFunction.clear_child = new_instancemethod(_fem.HierarchicalFunction_clear_child,None,HierarchicalFunction)
HierarchicalFunction.set_child = new_instancemethod(_fem.HierarchicalFunction_set_child,None,HierarchicalFunction)
HierarchicalFunction._debug = new_instancemethod(_fem.HierarchicalFunction__debug,None,HierarchicalFunction)
HierarchicalFunction_swigregister = _fem.HierarchicalFunction_swigregister
HierarchicalFunction_swigregister(HierarchicalFunction)

import function
class HierarchicalForm(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalForm_swiginit(self,_fem.new_HierarchicalForm(*args))
    __swig_destroy__ = _fem.delete_HierarchicalForm
HierarchicalForm.depth = new_instancemethod(_fem.HierarchicalForm_depth,None,HierarchicalForm)
HierarchicalForm.has_parent = new_instancemethod(_fem.HierarchicalForm_has_parent,None,HierarchicalForm)
HierarchicalForm.has_child = new_instancemethod(_fem.HierarchicalForm_has_child,None,HierarchicalForm)
HierarchicalForm._parent = new_instancemethod(_fem.HierarchicalForm__parent,None,HierarchicalForm)
HierarchicalForm._child = new_instancemethod(_fem.HierarchicalForm__child,None,HierarchicalForm)
HierarchicalForm._root_node = new_instancemethod(_fem.HierarchicalForm__root_node,None,HierarchicalForm)
HierarchicalForm._leaf_node = new_instancemethod(_fem.HierarchicalForm__leaf_node,None,HierarchicalForm)
HierarchicalForm.set_parent = new_instancemethod(_fem.HierarchicalForm_set_parent,None,HierarchicalForm)
HierarchicalForm.clear_child = new_instancemethod(_fem.HierarchicalForm_clear_child,None,HierarchicalForm)
HierarchicalForm.set_child = new_instancemethod(_fem.HierarchicalForm_set_child,None,HierarchicalForm)
HierarchicalForm._debug = new_instancemethod(_fem.HierarchicalForm__debug,None,HierarchicalForm)
HierarchicalForm_swigregister = _fem.HierarchicalForm_swigregister
HierarchicalForm_swigregister(HierarchicalForm)

class HierarchicalLinearVariationalProblem(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalLinearVariationalProblem_swiginit(self,_fem.new_HierarchicalLinearVariationalProblem(*args))
    __swig_destroy__ = _fem.delete_HierarchicalLinearVariationalProblem
HierarchicalLinearVariationalProblem.depth = new_instancemethod(_fem.HierarchicalLinearVariationalProblem_depth,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem.has_parent = new_instancemethod(_fem.HierarchicalLinearVariationalProblem_has_parent,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem.has_child = new_instancemethod(_fem.HierarchicalLinearVariationalProblem_has_child,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem._parent = new_instancemethod(_fem.HierarchicalLinearVariationalProblem__parent,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem._child = new_instancemethod(_fem.HierarchicalLinearVariationalProblem__child,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem._root_node = new_instancemethod(_fem.HierarchicalLinearVariationalProblem__root_node,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem._leaf_node = new_instancemethod(_fem.HierarchicalLinearVariationalProblem__leaf_node,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem.set_parent = new_instancemethod(_fem.HierarchicalLinearVariationalProblem_set_parent,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem.clear_child = new_instancemethod(_fem.HierarchicalLinearVariationalProblem_clear_child,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem.set_child = new_instancemethod(_fem.HierarchicalLinearVariationalProblem_set_child,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem._debug = new_instancemethod(_fem.HierarchicalLinearVariationalProblem__debug,None,HierarchicalLinearVariationalProblem)
HierarchicalLinearVariationalProblem_swigregister = _fem.HierarchicalLinearVariationalProblem_swigregister
HierarchicalLinearVariationalProblem_swigregister(HierarchicalLinearVariationalProblem)

class HierarchicalNonlinearVariationalProblem(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalNonlinearVariationalProblem_swiginit(self,_fem.new_HierarchicalNonlinearVariationalProblem(*args))
    __swig_destroy__ = _fem.delete_HierarchicalNonlinearVariationalProblem
HierarchicalNonlinearVariationalProblem.depth = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem_depth,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem.has_parent = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem_has_parent,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem.has_child = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem_has_child,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem._parent = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem__parent,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem._child = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem__child,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem._root_node = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem__root_node,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem._leaf_node = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem__leaf_node,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem.set_parent = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem_set_parent,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem.clear_child = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem_clear_child,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem.set_child = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem_set_child,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem._debug = new_instancemethod(_fem.HierarchicalNonlinearVariationalProblem__debug,None,HierarchicalNonlinearVariationalProblem)
HierarchicalNonlinearVariationalProblem_swigregister = _fem.HierarchicalNonlinearVariationalProblem_swigregister
HierarchicalNonlinearVariationalProblem_swigregister(HierarchicalNonlinearVariationalProblem)

class HierarchicalDirichletBC(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalDirichletBC_swiginit(self,_fem.new_HierarchicalDirichletBC(*args))
    __swig_destroy__ = _fem.delete_HierarchicalDirichletBC
HierarchicalDirichletBC.depth = new_instancemethod(_fem.HierarchicalDirichletBC_depth,None,HierarchicalDirichletBC)
HierarchicalDirichletBC.has_parent = new_instancemethod(_fem.HierarchicalDirichletBC_has_parent,None,HierarchicalDirichletBC)
HierarchicalDirichletBC.has_child = new_instancemethod(_fem.HierarchicalDirichletBC_has_child,None,HierarchicalDirichletBC)
HierarchicalDirichletBC._parent = new_instancemethod(_fem.HierarchicalDirichletBC__parent,None,HierarchicalDirichletBC)
HierarchicalDirichletBC._child = new_instancemethod(_fem.HierarchicalDirichletBC__child,None,HierarchicalDirichletBC)
HierarchicalDirichletBC._root_node = new_instancemethod(_fem.HierarchicalDirichletBC__root_node,None,HierarchicalDirichletBC)
HierarchicalDirichletBC._leaf_node = new_instancemethod(_fem.HierarchicalDirichletBC__leaf_node,None,HierarchicalDirichletBC)
HierarchicalDirichletBC.set_parent = new_instancemethod(_fem.HierarchicalDirichletBC_set_parent,None,HierarchicalDirichletBC)
HierarchicalDirichletBC.clear_child = new_instancemethod(_fem.HierarchicalDirichletBC_clear_child,None,HierarchicalDirichletBC)
HierarchicalDirichletBC.set_child = new_instancemethod(_fem.HierarchicalDirichletBC_set_child,None,HierarchicalDirichletBC)
HierarchicalDirichletBC._debug = new_instancemethod(_fem.HierarchicalDirichletBC__debug,None,HierarchicalDirichletBC)
HierarchicalDirichletBC_swigregister = _fem.HierarchicalDirichletBC_swigregister
HierarchicalDirichletBC_swigregister(HierarchicalDirichletBC)

class GenericDofMap(common.Variable):
    """
    This class provides a generic interface for dof maps

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    def is_view(self, *args):
        """
        True if dof map is a view into another map (is a sub-dofmap)

        """
        return _fem.GenericDofMap_is_view(self, *args)

    def global_dimension(self, *args):
        """
        Return the dimension of the global finite element function
        space

        """
        return _fem.GenericDofMap_global_dimension(self, *args)

    def cell_dimension(self, *args):
        """
        Return the dimension of the local finite element function
        space on a cell

        """
        return _fem.GenericDofMap_cell_dimension(self, *args)

    def max_cell_dimension(self, *args):
        """
        Return the maximum dimension of the local finite element
        function space

        """
        return _fem.GenericDofMap_max_cell_dimension(self, *args)

    def num_entity_dofs(self, *args):
        """
        Return the number of dofs for a given entity dimension

        """
        return _fem.GenericDofMap_num_entity_dofs(self, *args)

    def num_facet_dofs(self, *args):
        """
        Return number of facet dofs

        """
        return _fem.GenericDofMap_num_facet_dofs(self, *args)

    def restriction(self, *args):
        """
        Restriction if any. If the dofmap is not restricted, a null
        pointer is returned.

        """
        return _fem.GenericDofMap_restriction(self, *args)

    def ownership_range(self, *args):
        """
        Return the ownership range (dofs in this range are owned by
        this process)

        """
        return _fem.GenericDofMap_ownership_range(self, *args)

    def off_process_owner(self, *args):
        """
        Return map from nonlocal-dofs (that appear in local dof map)
        to owning process

        """
        return _fem.GenericDofMap_off_process_owner(self, *args)

    def cell_dofs(self, *args):
        """
        Local-to-global mapping of dofs on a cell

        """
        return _fem.GenericDofMap_cell_dofs(self, *args)

    def tabulate_facet_dofs(self, *args):
        """
        Tabulate local-local facet dofs

        """
        return _fem.GenericDofMap_tabulate_facet_dofs(self, *args)

    def tabulate_entity_dofs(self, *args):
        """
        Tabulate the local-to-local mapping of dofs on entity
        (dim, local_entity)

        """
        return _fem.GenericDofMap_tabulate_entity_dofs(self, *args)

    def dof_to_vertex_map(self, *args):
        """
        Return a map between vertices and dofs

        """
        return _fem.GenericDofMap_dof_to_vertex_map(self, *args)

    def vertex_to_dof_map(self, *args):
        """
        Return a map between vertices and dofs

        """
        return _fem.GenericDofMap_vertex_to_dof_map(self, *args)

    def tabulate_all_coordinates(self, *args):
        """
        Tabulate the coordinates of all dofs owned by this
        process. This function is typically used by preconditioners
        that require the spatial coordinates of dofs, for example
        for re-partitioning or nullspace computations. The format for
        the return vector is [x0, y0, z0, x1, y1, z1, . . .].

        """
        return _fem.GenericDofMap_tabulate_all_coordinates(self, *args)

    def copy(self, *args):
        """
        Create a copy of the dof map

        """
        return _fem.GenericDofMap_copy(self, *args)

    def create(self, *args):
        """
        Create a new dof map on new mesh

        """
        return _fem.GenericDofMap_create(self, *args)

    def extract_sub_dofmap(self, *args):
        """
        Extract sub dofmap component

        """
        return _fem.GenericDofMap_extract_sub_dofmap(self, *args)

    def collapse(self, *args):
        """
        Create a "collapsed" a dofmap (collapses from a sub-dofmap view)

        """
        return _fem.GenericDofMap_collapse(self, *args)

    def dofs(self, *args):
        """
        Return list of global dof indices on this process

        """
        return _fem.GenericDofMap_dofs(self, *args)

    def set(self, *args):
        """
        Set dof entries in vector to a specified value. Parallel
        layout of vector must be consistent with dof map range. This
        function is typically used to construct the null space of a
        matrix operator

        """
        return _fem.GenericDofMap_set(self, *args)

    def set_x(self, *args):
        """
        Set dof entries in vector to the value*x[i], where x[i] is the
        spatial coordinate of the dof. Parallel layout of vector must
        be consistent with dof map range. This function is typically
        used to construct the null space of a matrix operator, e.g. rigid
        body rotations.

        """
        return _fem.GenericDofMap_set_x(self, *args)

    def shared_dofs(self, *args):
        """
        Return map from shared dofs to the processes (not including
        the current process) that share it.

        """
        return _fem.GenericDofMap_shared_dofs(self, *args)

    def neighbours(self, *args):
        """
        Return set of processes that share dofs with the this process

        """
        return _fem.GenericDofMap_neighbours(self, *args)

    constrained_domain = _swig_property(_fem.GenericDofMap_constrained_domain_get, _fem.GenericDofMap_constrained_domain_set)
    block_size = _swig_property(_fem.GenericDofMap_block_size_get, _fem.GenericDofMap_block_size_set)
    def tabulate_coordinates(self, cell, coordinates=None):
        """ Tabulate the coordinates of all dofs on a cell

        *Arguments*
            cell (_Cell_)
                 The cell.
            coordinates (NumPy array)
                 Optional argument: The coordinates of all dofs on a cell.
        *Returns*
            coordinates
                 The coordinates of all dofs on a cell.
        """
        import numpy as np

        # Check coordinate argument
        shape = (self.max_cell_dimension(), self.geometric_dimension())
        if coordinates is None:
            coordinates = np.zeros(shape, 'd')
        if not isinstance(coordinates, np.ndarray) or \
           not (coordinates.flags.c_contiguous and \
                coordinates.dtype == np.dtype('d') and \
                coordinates.shape==shape):
            raise TypeError, "expected a C-contiguous numpy array " \
                  "of 'double' (dtype='d') with shape %s"%str(shape)

        # Call the extended method
        self._tabulate_coordinates(coordinates, cell)
        return coordinates

    __swig_destroy__ = _fem.delete_GenericDofMap
GenericDofMap.is_view = new_instancemethod(_fem.GenericDofMap_is_view,None,GenericDofMap)
GenericDofMap.global_dimension = new_instancemethod(_fem.GenericDofMap_global_dimension,None,GenericDofMap)
GenericDofMap.cell_dimension = new_instancemethod(_fem.GenericDofMap_cell_dimension,None,GenericDofMap)
GenericDofMap.max_cell_dimension = new_instancemethod(_fem.GenericDofMap_max_cell_dimension,None,GenericDofMap)
GenericDofMap.num_entity_dofs = new_instancemethod(_fem.GenericDofMap_num_entity_dofs,None,GenericDofMap)
GenericDofMap.geometric_dimension = new_instancemethod(_fem.GenericDofMap_geometric_dimension,None,GenericDofMap)
GenericDofMap.num_facet_dofs = new_instancemethod(_fem.GenericDofMap_num_facet_dofs,None,GenericDofMap)
GenericDofMap.restriction = new_instancemethod(_fem.GenericDofMap_restriction,None,GenericDofMap)
GenericDofMap.ownership_range = new_instancemethod(_fem.GenericDofMap_ownership_range,None,GenericDofMap)
GenericDofMap.off_process_owner = new_instancemethod(_fem.GenericDofMap_off_process_owner,None,GenericDofMap)
GenericDofMap.cell_dofs = new_instancemethod(_fem.GenericDofMap_cell_dofs,None,GenericDofMap)
GenericDofMap.tabulate_facet_dofs = new_instancemethod(_fem.GenericDofMap_tabulate_facet_dofs,None,GenericDofMap)
GenericDofMap.tabulate_entity_dofs = new_instancemethod(_fem.GenericDofMap_tabulate_entity_dofs,None,GenericDofMap)
GenericDofMap.dof_to_vertex_map = new_instancemethod(_fem.GenericDofMap_dof_to_vertex_map,None,GenericDofMap)
GenericDofMap.vertex_to_dof_map = new_instancemethod(_fem.GenericDofMap_vertex_to_dof_map,None,GenericDofMap)
GenericDofMap.tabulate_all_coordinates = new_instancemethod(_fem.GenericDofMap_tabulate_all_coordinates,None,GenericDofMap)
GenericDofMap.copy = new_instancemethod(_fem.GenericDofMap_copy,None,GenericDofMap)
GenericDofMap.create = new_instancemethod(_fem.GenericDofMap_create,None,GenericDofMap)
GenericDofMap.extract_sub_dofmap = new_instancemethod(_fem.GenericDofMap_extract_sub_dofmap,None,GenericDofMap)
GenericDofMap.collapse = new_instancemethod(_fem.GenericDofMap_collapse,None,GenericDofMap)
GenericDofMap.dofs = new_instancemethod(_fem.GenericDofMap_dofs,None,GenericDofMap)
GenericDofMap.set = new_instancemethod(_fem.GenericDofMap_set,None,GenericDofMap)
GenericDofMap.set_x = new_instancemethod(_fem.GenericDofMap_set_x,None,GenericDofMap)
GenericDofMap.shared_dofs = new_instancemethod(_fem.GenericDofMap_shared_dofs,None,GenericDofMap)
GenericDofMap.neighbours = new_instancemethod(_fem.GenericDofMap_neighbours,None,GenericDofMap)
GenericDofMap._tabulate_coordinates = new_instancemethod(_fem.GenericDofMap__tabulate_coordinates,None,GenericDofMap)
GenericDofMap_swigregister = _fem.GenericDofMap_swigregister
GenericDofMap_swigregister(GenericDofMap)

class DofMap(GenericDofMap):
    """
    This class handles the mapping of degrees of freedom. It builds
    a dof map based on a ufc::dofmap on a specific mesh. It will
    reorder the dofs when running in parallel. Sub-dofmaps, both
    views and copies, are supported.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * DofMap\ (ufc_dofmap, mesh)

          Create dof map on mesh (mesh is not stored)
          
          *Arguments*
              ufc_dofmap (ufc::dofmap)
                  The ufc::dofmap.
              mesh (:py:class:`Mesh`)
                  The mesh.

        * DofMap\ (ufc_dofmap, mesh, constrained_domain)

          Create a periodic dof map on mesh (mesh is not stored)
          
          *Arguments*
              ufc_dofmap (ufc::dofmap)
                  The ufc::dofmap.
              mesh (:py:class:`Mesh`)
                  The mesh.
              conatrained_boundary (:py:class:`SubDomain`)
                  The subdomain marking the constrained (tied) boudaries.

        * DofMap\ (ufc_dofmap, restriction)

          Create restricted dof map on mesh
          
          *Arguments*
              ufc_dofmap (ufc::dofmap)
                  The ufc::dofmap.
              restriction (:py:class:`Restriction`)
                  The restriction.

        """
        _fem.DofMap_swiginit(self,_fem.new_DofMap(*args))
    __swig_destroy__ = _fem.delete_DofMap
    def is_restricted(self, *args):
        """
        True if dof map is restricted

        *Returns*
            bool
                True if dof map is restricted

        """
        return _fem.DofMap_is_restricted(self, *args)

    def data(self, *args):
        """
        Return the underlying dof map data. Intended for internal library
        use only.

        *Returns*
            std::vector<std::vector<dolfin::la_index> >
                The local-to-global map for each cell.

        """
        return _fem.DofMap_data(self, *args)

DofMap.is_restricted = new_instancemethod(_fem.DofMap_is_restricted,None,DofMap)
DofMap.data = new_instancemethod(_fem.DofMap_data,None,DofMap)
DofMap_swigregister = _fem.DofMap_swigregister
DofMap_swigregister(DofMap)


def dof_to_vertex_map(*args):
  """
    Return a map between dofs indices and vertex indices

    Only works for FunctionSpace with dofs exclusively on vertices.
    For MixedFunctionSpaces vertex index is offset with the number
    of dofs per vertex. In parallel the returned map only maps local
    (to processor) dofs.

    *Arguments*
        space (:py:class:`FunctionSpace`)
            The FunctionSpace for what the dof to vertex map should be computed for

    *Returns*
        numpy.array(int)
            The dof to vertex map

    """
  return _fem.dof_to_vertex_map(*args)

def vertex_to_dof_map(*args):
  """
    Return a map between vertex indices and dofs indices

    Only works for FunctionSpace with dofs exclusively on vertices.
    For MixedFunctionSpaces dof index is offset with the number of
    dofs per vertex.

    *Arguments*
        space (:py:class:`FunctionSpace`)
            The FunctionSpace for what the vertex to dof map should be computed for

    *Returns*
        std::vector<dolfin::la_index>
            The vertex to dof map

    """
  return _fem.vertex_to_dof_map(*args)
class Equation(object):
    """
    This class represents a variational equation lhs == rhs.
    The equation can be either linear or nonlinear:

    1. Linear (a == L), in which case a must be a bilinear form
       and L must be a linear form.

    2. Nonlinear (F == 0), in which case F must be a linear form.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * Equation\ (a, L)

          Create equation a == L

        * Equation\ (F, rhs)

          Create equation F == 0

        """
        _fem.Equation_swiginit(self,_fem.new_Equation(*args))
    __swig_destroy__ = _fem.delete_Equation
    def is_linear(self, *args):
        """
        Check whether equation is linear

        """
        return _fem.Equation_is_linear(self, *args)

    def lhs(self, *args):
        """
        Return form for left-hand side

        """
        return _fem.Equation_lhs(self, *args)

    def rhs(self, *args):
        """
        Return form for right-hand side

        """
        return _fem.Equation_rhs(self, *args)

    def rhs_int(self, *args):
        """
        Return value for right-hand side

        """
        return _fem.Equation_rhs_int(self, *args)

Equation.is_linear = new_instancemethod(_fem.Equation_is_linear,None,Equation)
Equation.lhs = new_instancemethod(_fem.Equation_lhs,None,Equation)
Equation.rhs = new_instancemethod(_fem.Equation_rhs,None,Equation)
Equation.rhs_int = new_instancemethod(_fem.Equation_rhs_int,None,Equation)
Equation_swigregister = _fem.Equation_swigregister
Equation_swigregister(Equation)

class FiniteElement(object):
    """
    This is a wrapper for a UFC finite element (ufc::finite_element).

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Create finite element from UFC finite element (data may be shared)

        """
        _fem.FiniteElement_swiginit(self,_fem.new_FiniteElement(*args))
    __swig_destroy__ = _fem.delete_FiniteElement
    def signature(self, *args):
        """
        Return a string identifying the finite element

        """
        return _fem.FiniteElement_signature(self, *args)

    def cell_shape(self, *args):
        """
        Return the cell shape

        """
        return _fem.FiniteElement_cell_shape(self, *args)

    def space_dimension(self, *args):
        """
        Return the dimension of the finite element function space

        """
        return _fem.FiniteElement_space_dimension(self, *args)

    def value_rank(self, *args):
        """
        Return the rank of the value space

        """
        return _fem.FiniteElement_value_rank(self, *args)

    def value_dimension(self, *args):
        """
        Return the dimension of the value space for axis i

        """
        return _fem.FiniteElement_value_dimension(self, *args)

    def evaluate_basis(self, *args):
        """
        Evaluate basis function i at given point in cell

        """
        return _fem.FiniteElement_evaluate_basis(self, *args)

    def evaluate_basis_all(self, *args):
        """
        Evaluate all basis functions at given point in cell

        """
        return _fem.FiniteElement_evaluate_basis_all(self, *args)

    def evaluate_basis_derivatives(self, *args):
        """
        Evaluate order n derivatives of basis function i at given point in cell

        """
        return _fem.FiniteElement_evaluate_basis_derivatives(self, *args)

    def evaluate_basis_derivatives_all(self, *args):
        """
        Evaluate order n derivatives of all basis functions at given
        point in cell

        """
        return _fem.FiniteElement_evaluate_basis_derivatives_all(self, *args)

    def evaluate_dof(self, *args):
        """
        **Overloaded versions**

        * evaluate_dof\ (i, function, vertex_coordinates, cell_orientation, c)

          Evaluate linear functional for dof i on the function f

        * evaluate_dof\ (i, function, c)

          Evaluate linear functional for dof i on the function f

        """
        return _fem.FiniteElement_evaluate_dof(self, *args)

    def evaluate_dofs(self, *args):
        """
        **Overloaded versions**

        * evaluate_dofs\ (values, f, vertex_coordinates, cell_orientation, c)

          Evaluate linear functionals for all dofs on the function f

        * evaluate_dofs\ (values, f, c)

          Evaluate linear functionals for all dofs on the function f

        """
        return _fem.FiniteElement_evaluate_dofs(self, *args)

    def interpolate_vertex_values(self, *args):
        """
        Interpolate vertex values from dof values

        """
        return _fem.FiniteElement_interpolate_vertex_values(self, *args)

    def map_from_reference_cell(self, *args):
        """
        Map coordinate xhat from reference cell to coordinate x in cell

        """
        return _fem.FiniteElement_map_from_reference_cell(self, *args)

    def map_to_reference_cell(self, *args):
        """
        Map from coordinate x in cell to coordinate xhat in reference cell

        """
        return _fem.FiniteElement_map_to_reference_cell(self, *args)

    def num_sub_elements(self, *args):
        """
        Return the number of sub elements (for a mixed element)

        """
        return _fem.FiniteElement_num_sub_elements(self, *args)

    def hash(self, *args):
        """
        Return simple hash of the signature string

        """
        return _fem.FiniteElement_hash(self, *args)

    def create_sub_element(self, *args):
        """
        Create a new finite element for sub element i (for a mixed element)

        """
        return _fem.FiniteElement_create_sub_element(self, *args)

    def create(self, *args):
        """
        Create a new class instance

        """
        return _fem.FiniteElement_create(self, *args)

    def extract_sub_element(self, *args):
        """
        Extract sub finite element for component

        """
        return _fem.FiniteElement_extract_sub_element(self, *args)

FiniteElement.signature = new_instancemethod(_fem.FiniteElement_signature,None,FiniteElement)
FiniteElement.cell_shape = new_instancemethod(_fem.FiniteElement_cell_shape,None,FiniteElement)
FiniteElement.topological_dimension = new_instancemethod(_fem.FiniteElement_topological_dimension,None,FiniteElement)
FiniteElement.geometric_dimension = new_instancemethod(_fem.FiniteElement_geometric_dimension,None,FiniteElement)
FiniteElement.space_dimension = new_instancemethod(_fem.FiniteElement_space_dimension,None,FiniteElement)
FiniteElement.value_rank = new_instancemethod(_fem.FiniteElement_value_rank,None,FiniteElement)
FiniteElement.value_dimension = new_instancemethod(_fem.FiniteElement_value_dimension,None,FiniteElement)
FiniteElement.evaluate_basis = new_instancemethod(_fem.FiniteElement_evaluate_basis,None,FiniteElement)
FiniteElement.evaluate_basis_all = new_instancemethod(_fem.FiniteElement_evaluate_basis_all,None,FiniteElement)
FiniteElement.evaluate_basis_derivatives = new_instancemethod(_fem.FiniteElement_evaluate_basis_derivatives,None,FiniteElement)
FiniteElement.evaluate_basis_derivatives_all = new_instancemethod(_fem.FiniteElement_evaluate_basis_derivatives_all,None,FiniteElement)
FiniteElement.evaluate_dof = new_instancemethod(_fem.FiniteElement_evaluate_dof,None,FiniteElement)
FiniteElement.evaluate_dofs = new_instancemethod(_fem.FiniteElement_evaluate_dofs,None,FiniteElement)
FiniteElement.interpolate_vertex_values = new_instancemethod(_fem.FiniteElement_interpolate_vertex_values,None,FiniteElement)
FiniteElement.map_from_reference_cell = new_instancemethod(_fem.FiniteElement_map_from_reference_cell,None,FiniteElement)
FiniteElement.map_to_reference_cell = new_instancemethod(_fem.FiniteElement_map_to_reference_cell,None,FiniteElement)
FiniteElement.num_sub_elements = new_instancemethod(_fem.FiniteElement_num_sub_elements,None,FiniteElement)
FiniteElement.hash = new_instancemethod(_fem.FiniteElement_hash,None,FiniteElement)
FiniteElement.create_sub_element = new_instancemethod(_fem.FiniteElement_create_sub_element,None,FiniteElement)
FiniteElement.create = new_instancemethod(_fem.FiniteElement_create,None,FiniteElement)
FiniteElement.extract_sub_element = new_instancemethod(_fem.FiniteElement_extract_sub_element,None,FiniteElement)
FiniteElement_swigregister = _fem.FiniteElement_swigregister
FiniteElement_swigregister(FiniteElement)

class BasisFunction(ufc.function):
    """
    This class represents a finite element basis function. It can be
    used for computation of basis function values and derivatives.

    Evaluation of basis functions is also possible through the use
    of the functions ``evaluate_basis`` and ``evaluate_basis_derivatives``
    available in the :py:class:`FiniteElement` class. The BasisFunction class
    relies on these functions for evaluation but also implements the
    ufc::function interface which allows evaluate_dof to be
    evaluated for a basis function (on a possibly different
    element).

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Create basis function with given index on element on given cell

        *Arguments*
            index (int)
                The index of the basis function.
            element (:py:class:`FiniteElement`)
                The element to create basis function on.
            cell (ufc::cell)
                The cell.

        """
        _fem.BasisFunction_swiginit(self,_fem.new_BasisFunction(*args))
    __swig_destroy__ = _fem.delete_BasisFunction
    def eval(self, *args):
        """
        Evaluate basis function at given point

        *Arguments*
            values (float)
                The values of the function at the point.
            x (float)
                The coordinates of the point.

        """
        return _fem.BasisFunction_eval(self, *args)

    def eval_derivatives(self, *args):
        """
        Evaluate all order n derivatives at given point

        *Arguments*
            values (float)
                The values of derivatives at the point.
            x (float)
                The coordinates of the point.
            n (int)
                The order of derivation.

        """
        return _fem.BasisFunction_eval_derivatives(self, *args)

BasisFunction.eval = new_instancemethod(_fem.BasisFunction_eval,None,BasisFunction)
BasisFunction.eval_derivatives = new_instancemethod(_fem.BasisFunction_eval_derivatives,None,BasisFunction)
BasisFunction_swigregister = _fem.BasisFunction_swigregister
BasisFunction_swigregister(BasisFunction)

class DirichletBC(HierarchicalDirichletBC,common.Variable):
    """
    This class specifies the interface for setting (strong)
    Dirichlet boundary conditions for partial differential
    equations,

    .. math::

        u = g \hbox{ on } G,

    where :math:`u` is the solution to be computed, :math:`g` is a function
    and :math:`G` is a sub domain of the mesh.

    A DirichletBC is specified by the function g, the function space
    (trial space) and boundary indicators on (a subset of) the mesh
    boundary.

    The boundary indicators may be specified in a number of
    different ways.

    The simplest approach is to specify the boundary by a :py:class:`SubDomain`
    object, using the inside() function to specify on which facets
    the boundary conditions should be applied.

    Alternatively, the boundary may be specified by a :py:class:`MeshFunction`
    labeling all mesh facets together with a number that specifies
    which facets should be included in the boundary.

    The third option is to attach the boundary information to the
    mesh. This is handled automatically when exporting a mesh from
    for example VMTK.

    The 'method' variable may be used to specify the type of method
    used to identify degrees of freedom on the boundary. Available
    methods are: topological approach (default), geometric approach,
    and pointwise approach. The topological approach is faster, but
    will only identify degrees of freedom that are located on a
    facet that is entirely on the boundary. In particular, the
    topological approach will not identify degrees of freedom for
    discontinuous elements (which are all internal to the cell). A
    remedy for this is to use the geometric approach. In the
    geometric approach, each dof on each facet that matches the
    boundary condition will be checked. To apply pointwise boundary
    conditions e.g. pointloads, one will have to use the pointwise
    approach which in turn is the slowest of the three possible
    methods. The three possibilties are "topological", "geometric"
    and "pointwise".

    The 'check_midpoint' variable can be used to decide whether or
    not the midpoint of each facet should be checked when a
    user-defined :py:class:`SubDomain` is used to define the domain of the
    boundary condition. By default, midpoints are always checked.
    Note that this variable may be of importance close to corners,
    in which case it is sometimes important to check the midpoint to
    avoid including facets "on the diagonal close" to a corner. This
    variable is also of importance for curved boundaries (like on a
    sphere or cylinder), in which case it is important *not* to
    check the midpoint which will be located in the interior of a
    domain defined relative to a radius.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * DirichletBC\ (V, g, sub_domain, method="topological", check_midpoint=true)

          Create boundary condition for subdomain
          
          *Arguments*
              V (:py:class:`FunctionSpace`)
                  The function space.
              g (:py:class:`GenericFunction`)
                  The value.
              sub_domain (:py:class:`SubDomain`)
                  The subdomain.
              method (str)
                  Optional argument: A string specifying
                  the method to identify dofs.

        * DirichletBC\ (V, g, sub_domain, method="topological", check_midpoint=true)

          Create boundary condition for subdomain
          
          *Arguments*
              V (:py:class:`FunctionSpace`)
                  The function space
              g (:py:class:`GenericFunction`)
                  The value
              sub_domain (:py:class:`SubDomain`)
                  The subdomain
              method (str)
                  Optional argument: A string specifying
                  the method to identify dofs

        * DirichletBC\ (V, g, sub_domains, sub_domain, method="topological")

          Create boundary condition for subdomain specified by index
          
          *Arguments*
              V (:py:class:`FunctionSpace`)
                  The function space.
              g (:py:class:`GenericFunction`)
                  The value.
              sub_domains (:py:class:`MeshFunction`)
                  Subdomain markers
              sub_domain (int)
                  The subdomain index (number)
              method (str)
                  Optional argument: A string specifying the
                  method to identify dofs.

        * DirichletBC\ (V, g, sub_domains, sub_domain, method="topological")

          Create boundary condition for subdomain specified by index
          
          *Arguments*
              V (:py:class:`FunctionSpace`)
                  The function space.
              g (:py:class:`GenericFunction`)
                  The value.
              sub_domains (:py:class:`MeshFunction`)
                  Subdomain markers
              sub_domain (int)
                  The subdomain index (number)
              method (str)
                  Optional argument: A string specifying the
                  method to identify dofs.

        * DirichletBC\ (V, g, sub_domain, method="topological")

          Create boundary condition for boundary data included in the mesh
          
          *Arguments*
              V (:py:class:`FunctionSpace`)
                  The function space.
              g (:py:class:`GenericFunction`)
                  The value.
              sub_domain (int)
                  The subdomain index (number)
              method (str)
                  Optional argument: A string specifying the
                  method to identify dofs.

        * DirichletBC\ (V, g, sub_domain, method="topological")

          Create boundary condition for boundary data included in the mesh
          
          *Arguments*
              V (:py:class:`FunctionSpace`)
                  The function space.
              g (:py:class:`GenericFunction`)
                  The value.
              sub_domain (int)
                  The subdomain index (number)
              method (str)
                  Optional argument: A string specifying the
                  method to identify dofs.

        * DirichletBC\ (V, g, markers, method="topological")

          Create boundary condition for subdomain by boundary markers
          (cells, local facet numbers)
          
          *Arguments*
              V (:py:class:`FunctionSpace`)
                  The function space.
              g (:py:class:`GenericFunction`)
                  The value.
              markers (numpy.array((int, int)))
                  Subdomain markers (cells, local facet number)
              method (str)
                  Optional argument: A string specifying the
                  method to identify dofs.

        * DirichletBC\ (bc)

          Copy constructor
          
          *Arguments*
              bc (:py:class:`DirichletBC`)
                  The object to be copied.

        """
        _fem.DirichletBC_swiginit(self,_fem.new_DirichletBC(*args))
    __swig_destroy__ = _fem.delete_DirichletBC
    def apply(self, *args):
        """
        **Overloaded versions**

        * apply\ (A)

          Apply boundary condition to a matrix
          
          *Arguments*
              A (:py:class:`GenericMatrix`)
                  The matrix to apply boundary condition to.

        * apply\ (b)

          Apply boundary condition to a vector
          
          *Arguments*
              b (:py:class:`GenericVector`)
                  The vector to apply boundary condition to.

        * apply\ (A, b)

          Apply boundary condition to a linear system
          
          *Arguments*
              A (:py:class:`GenericMatrix`)
                  The matrix to apply boundary condition to.
              b (:py:class:`GenericVector`)
                  The vector to apply boundary condition to.

        * apply\ (b, x)

          Apply boundary condition to vectors for a nonlinear problem
          
          *Arguments*
              b (:py:class:`GenericVector`)
                  The vector to apply boundary conditions to.
              x (:py:class:`GenericVector`)
                  Another vector (nonlinear problem).

        * apply\ (A, b, x)

          Apply boundary condition to a linear system for a nonlinear problem
          
          *Arguments*
              A (:py:class:`GenericMatrix`)
                  The matrix to apply boundary conditions to.
              b (:py:class:`GenericVector`)
                  The vector to apply boundary conditions to.
              x (:py:class:`GenericVector`)
                  Another vector (nonlinear problem).

        """
        return _fem.DirichletBC_apply(self, *args)

    def get_boundary_values(self, *args):
        """
        Get Dirichlet dofs and values. If a method other than 'pointwise' is
        used in parallel, the map may not be complete for local vertices since
        a vertex can have a bc applied, but the partition might not have a
        facet on the boundary. To ensure all local boundary dofs are marked,
        it is necessary to call gather() on the returned boundary values.

        *Arguments*
            boundary_values (boost::unordered_map<std::size_t, double>)
                Map from dof to boundary value.
            method (str)
                Optional argument: A string specifying which
                method to use.

        """
        return _fem.DirichletBC_get_boundary_values(self, *args)

    def gather(self, *args):
        """
        Get boundary values from neighbour processes. If a method other than
        "pointwise" is used, this is necessary to ensure all boundary dofs are
        marked on all processes.

        *Arguments*
            boundary_values (boost::unordered_map<std::size_t, double>)
                Map from dof to boundary value.

        """
        return _fem.DirichletBC_gather(self, *args)

    def zero(self, *args):
        """
        Make rows of matrix associated with boundary condition zero,
        useful for non-diagonal matrices in a block matrix.

        *Arguments*
            A (:py:class:`GenericMatrix`)
                The matrix

        """
        return _fem.DirichletBC_zero(self, *args)

    def zero_columns(self, *args):
        """
        Make columns of matrix associated with boundary condition
        zero, and update a (right-hand side) vector to reflect the
        changes. Useful for non-diagonals.

        *Arguments*
            A (:py:class:`GenericMatrix`)
                The matrix
            b (:py:class:`GenericVector`)
                The vector
            diag_val (float)
                This parameter would normally be -1, 0 or 1.

        """
        return _fem.DirichletBC_zero_columns(self, *args)

    def markers(self, *args):
        """
        Return boundary markers

        *Returns*
            numpy.array((int, int))
                Boundary markers (facets stored as pairs of cells and
                local facet numbers).

        """
        return _fem.DirichletBC_markers(self, *args)

    def _function_space(self, *args):
        """
        Return function space V

        *Returns*
            _FunctionSPace_
                The function space to which boundary conditions are applied.

        """
        return _fem.DirichletBC__function_space(self, *args)

    def value(self, *args):
        """
        Return boundary value g

        *Returns*
            :py:class:`GenericFunction`
                The boundary values.

        """
        return _fem.DirichletBC_value(self, *args)

    def user_sub_domain(self, *args):
        """
        Return shared pointer to subdomain

        *Returns*
            :py:class:`SubDomain`
                Shared pointer to subdomain.

        """
        return _fem.DirichletBC_user_sub_domain(self, *args)

    def is_compatible(self, *args):
        """
        Check if given function is compatible with boundary condition
        (checking only vertex values)

        *Arguments*
            v (:py:class:`GenericFunction`)
                The function to check for compability
                with boundary condition.

        *Returns*
            bool
                True if compatible.

        """
        return _fem.DirichletBC_is_compatible(self, *args)

    def set_value(self, *args):
        """
        **Overloaded versions**

        * set_value\ (g)

          Set value g for boundary condition, domain remains unchanged
          
          *Arguments*
              g (:py:class:`GenericFunction`)
                  The value.

        * set_value\ (g)

          Set value g for boundary condition, domain remains unchanged
          
          *Arguments*
              g (:py:class:`GenericFunction`)
                  The value.

        """
        return _fem.DirichletBC_set_value(self, *args)

    def homogenize(self, *args):
        """
        Set value to 0.0

        """
        return _fem.DirichletBC_homogenize(self, *args)

    def method(self, *args):
        """
        Return method used for computing Dirichet dofs

        *Returns*
            str
                Method used for computing Dirichet dofs ("topological",
                "geometric" or "pointwise").

        """
        return _fem.DirichletBC_method(self, *args)

    def default_parameters(*args):
        """
        Default parameter values

        """
        return _fem.DirichletBC_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
    _user_sub_domain = _swig_property(_fem.DirichletBC__user_sub_domain_get, _fem.DirichletBC__user_sub_domain_set)
    def function_space(self):
        "Return the FunctionSpace"
        from dolfin.functions.functionspace import FunctionSpaceFromCpp
        return FunctionSpaceFromCpp(self._function_space())

DirichletBC.apply = new_instancemethod(_fem.DirichletBC_apply,None,DirichletBC)
DirichletBC.get_boundary_values = new_instancemethod(_fem.DirichletBC_get_boundary_values,None,DirichletBC)
DirichletBC.gather = new_instancemethod(_fem.DirichletBC_gather,None,DirichletBC)
DirichletBC.zero = new_instancemethod(_fem.DirichletBC_zero,None,DirichletBC)
DirichletBC.zero_columns = new_instancemethod(_fem.DirichletBC_zero_columns,None,DirichletBC)
DirichletBC.markers = new_instancemethod(_fem.DirichletBC_markers,None,DirichletBC)
DirichletBC._function_space = new_instancemethod(_fem.DirichletBC__function_space,None,DirichletBC)
DirichletBC.value = new_instancemethod(_fem.DirichletBC_value,None,DirichletBC)
DirichletBC.user_sub_domain = new_instancemethod(_fem.DirichletBC_user_sub_domain,None,DirichletBC)
DirichletBC.is_compatible = new_instancemethod(_fem.DirichletBC_is_compatible,None,DirichletBC)
DirichletBC.set_value = new_instancemethod(_fem.DirichletBC_set_value,None,DirichletBC)
DirichletBC.homogenize = new_instancemethod(_fem.DirichletBC_homogenize,None,DirichletBC)
DirichletBC.method = new_instancemethod(_fem.DirichletBC_method,None,DirichletBC)
DirichletBC_swigregister = _fem.DirichletBC_swigregister
DirichletBC_swigregister(DirichletBC)

def DirichletBC_default_parameters(*args):
  """
    Default parameter values

    """
  return _fem.DirichletBC_default_parameters(*args)

class PointSource(object):
    """
    This class provides an easy mechanism for adding a point source
    (Dirac delta function) to the right-hand side vector in a
    variational problem. The associated function space must be
    scalar in order for the inner product with the (scalar) Dirac
    delta function to be well defined.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * PointSource\ (V, p, magnitude=1.0)

          Create point source at given point of given magnitude

        * PointSource\ (V, p, magnitude=1.0)

          Create point source at given point of given magnitude

        """
        _fem.PointSource_swiginit(self,_fem.new_PointSource(*args))
    __swig_destroy__ = _fem.delete_PointSource
    def apply(self, *args):
        """
        Apply (add) point source to right-hand side vector

        """
        return _fem.PointSource_apply(self, *args)

PointSource.apply = new_instancemethod(_fem.PointSource_apply,None,PointSource)
PointSource_swigregister = _fem.PointSource_swigregister
PointSource_swigregister(PointSource)


def assemble_system(*args):
  """
    **Overloaded versions**

    * assemble_system\ (A, b, a, L)

      Assemble system (A, b)

    * assemble_system\ (A, b, a, L, bc)

      Assemble system (A, b) and apply Dirichlet boundary condition

    * assemble_system\ (A, b, a, L, bcs)

      Assemble system (A, b) and apply Dirichlet boundary conditions

    * assemble_system\ (A, b, a, L, bcs, x0)

      Assemble system (A, b) on sub domains and apply Dirichlet boundary
      conditions

    """
  return _fem.assemble_system(*args)

def assemble(*args):
  """
    **Overloaded versions**

    * assemble\ (A, a)

      Assemble tensor

    * assemble\ (a)

      Assemble scalar

    """
  return _fem.assemble(*args)
class LocalSolver(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def solve(self, *args):
        """
        Solve local (cell-wise) problem and copy result into global
        vector x.

        """
        return _fem.LocalSolver_solve(self, *args)

    def __init__(self, *args): 
        _fem.LocalSolver_swiginit(self,_fem.new_LocalSolver(*args))
    __swig_destroy__ = _fem.delete_LocalSolver
LocalSolver.solve = new_instancemethod(_fem.LocalSolver_solve,None,LocalSolver)
LocalSolver_swigregister = _fem.LocalSolver_swigregister
LocalSolver_swigregister(LocalSolver)

class Form(HierarchicalForm):
    """
    Base class for UFC code generated by FFC for DOLFIN with option -l.

    A note on the order of trial and test spaces: FEniCS numbers
    argument spaces starting with the leading dimension of the
    corresponding tensor (matrix). In other words, the test space is
    numbered 0 and the trial space is numbered 1. However, in order
    to have a notation that agrees with most existing finite element
    literature, in particular

        a = a(u, v)

    the spaces are numbered from right to

        a: V_1 x V_0 -> R

    .. note::

        Figure out how to write this in math mode without it getting
        messed up in the Python version.

    This is reflected in the ordering of the spaces that should be
    supplied to generated subclasses. In particular, when a bilinear
    form is initialized, it should be initialized as

    .. code-block:: c++

        a(V_1, V_0) = ...

    where ``V_1`` is the trial space and ``V_0`` is the test space.
    However, when a form is initialized by a list of argument spaces
    (the variable ``function_spaces`` in the constructors below, the
    list of spaces should start with space number 0 (the test space)
    and then space number 1 (the trial space).

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * Form\ (rank, num_coefficients)

          Create form of given rank with given number of coefficients
          
          *Arguments*
              rank (int)
                  The rank.
              num_coefficients (int)
                  The number of coefficients.

        * Form\ (ufc_form, function_spaces, coefficients)

          Create form (shared data)
          
          *Arguments*
              ufc_form (ufc::form)
                  The UFC form.
              function_spaces (list of :py:class:`FunctionSpace`)
                  Vector of function spaces.
              coefficients (list of :py:class:`GenericFunction`)
                  Vector of coefficients.

        """
        _fem.Form_swiginit(self,_fem.new_Form(*args))
    __swig_destroy__ = _fem.delete_Form
    def rank(self, *args):
        """
        Return rank of form (bilinear form = 2, linear form = 1,
        functional = 0, etc)

        *Returns*
            int
                The rank of the form.

        """
        return _fem.Form_rank(self, *args)

    def num_coefficients(self, *args):
        """
        Return number of coefficients

        *Returns*
            int
                The number of coefficients.

        """
        return _fem.Form_num_coefficients(self, *args)

    def coloring(self, *args):
        """
        Return coloring type for colored (multi-threaded) assembly of form
        over a mesh entity of a given dimension

        *Arguments*
            entity_dim (int)
                Dimension.

        *Returns*
            numpy.array(int)
                Coloring type.

        """
        return _fem.Form_coloring(self, *args)

    def set_mesh(self, *args):
        """
        Set mesh, necessary for functionals when there are no function spaces

        *Arguments*
            mesh (:py:class:`Mesh`)
                The mesh.

        """
        return _fem.Form_set_mesh(self, *args)

    def mesh(self, *args):
        """
        Extract common mesh from form

        *Returns*
            :py:class:`Mesh`
                The mesh.

        """
        return _fem.Form_mesh(self, *args)

    def mesh_shared_ptr(self, *args):
        """
        Return mesh shared pointer (if any)

        *Returns*
            :py:class:`Mesh`
                The mesh shared pointer.

        """
        return _fem.Form_mesh_shared_ptr(self, *args)

    def _function_space(self, *args):
        """
        Return function space for given argument

        *Arguments*
            i (int)
                Index

        *Returns*
            :py:class:`FunctionSpace`
                Function space shared pointer.

        """
        return _fem.Form__function_space(self, *args)

    def function_spaces(self, *args):
        """
        Return function spaces for arguments

        *Returns*
            list of :py:class:`FunctionSpace`
                Vector of function space shared pointers.

        """
        return _fem.Form_function_spaces(self, *args)

    def set_coefficient(self, *args):
        """
        **Overloaded versions**

        * set_coefficient\ (i, coefficient)

          Set coefficient with given number (shared pointer version)
          
          *Arguments*
              i (int)
                  The given number.
              coefficient (:py:class:`GenericFunction`)
                  The coefficient.

        * set_coefficient\ (name, coefficient)

          Set coefficient with given name (shared pointer version)
          
          *Arguments*
              name (str)
                  The name.
              coefficient (:py:class:`GenericFunction`)
                  The coefficient.

        """
        return _fem.Form_set_coefficient(self, *args)

    def set_coefficients(self, *args):
        """
        Set all coefficients in given map, possibly a subset (shared
        pointer version)

        *Arguments*
            coefficients (:py:class:`GenericFunction`)
                The map of coefficients.

        """
        return _fem.Form_set_coefficients(self, *args)

    def coefficient(self, *args):
        """
        **Overloaded versions**

        * coefficient\ (i)

          Return coefficient with given number
          
          *Arguments*
              i (int)
                  Index
          
          *Returns*
              :py:class:`GenericFunction`
                  The coefficient.

        * coefficient\ (name)

          Return coefficient with given name
          
          *Arguments*
              name (str)
                  The name.
          
          *Returns*
              :py:class:`GenericFunction`
                  The coefficient.

        """
        return _fem.Form_coefficient(self, *args)

    def coefficients(self, *args):
        """
        Return all coefficients

        *Returns*
            list of :py:class:`GenericFunction`
                All coefficients.

        """
        return _fem.Form_coefficients(self, *args)

    def coefficient_number(self, *args):
        """
        Return the number of the coefficient with this name

        *Arguments*
            name (str)
                The name.

        *Returns*
            int
                The number of the coefficient with the given name.

        """
        return _fem.Form_coefficient_number(self, *args)

    def coefficient_name(self, *args):
        """
        Return the name of the coefficient with this number

        *Arguments*
            i (int)
                The number

        *Returns*
            str
                The name of the coefficient with the given number.

        """
        return _fem.Form_coefficient_name(self, *args)

    def cell_domains(self, *args):
        """
        Return cell domains (zero pointer if no domains have been
        specified)

        *Returns*
            :py:class:`MeshFunction`
                The cell domains.

        """
        return _fem.Form_cell_domains(self, *args)

    def exterior_facet_domains(self, *args):
        """
        Return exterior facet domains (zero pointer if no domains have
        been specified)

        *Returns*
            :py:class:`MeshFunction`
                The exterior facet domains.

        """
        return _fem.Form_exterior_facet_domains(self, *args)

    def interior_facet_domains(self, *args):
        """
        Return interior facet domains (zero pointer if no domains have
        been specified)

        *Returns*
            :py:class:`MeshFunction`
                The interior facet domains.

        """
        return _fem.Form_interior_facet_domains(self, *args)

    def set_cell_domains(self, *args):
        """
        Set cell domains

        *Arguments*
            cell_domains (:py:class:`MeshFunction`)
                The cell domains.

        """
        return _fem.Form_set_cell_domains(self, *args)

    def set_exterior_facet_domains(self, *args):
        """
        Set exterior facet domains

        *Arguments*
            exterior_facet_domains (:py:class:`MeshFunction`)
                The exterior facet domains.

        """
        return _fem.Form_set_exterior_facet_domains(self, *args)

    def set_interior_facet_domains(self, *args):
        """
        Set interior facet domains

        *Arguments*
            interior_facet_domains (:py:class:`MeshFunction`)
                The interior facet domains.

        """
        return _fem.Form_set_interior_facet_domains(self, *args)

    def ufc_form(self, *args):
        """
        Return UFC form shared pointer

        *Returns*
            ufc::form
                The UFC form.

        """
        return _fem.Form_ufc_form(self, *args)

    def check(self, *args):
        """
        Check function spaces and coefficients

        """
        return _fem.Form_check(self, *args)

    def function_space(self, i):
        """
        Return function space for given argument

         *Arguments*
             i (std::size_t)
                 Index

         *Returns*
             _FunctionSpace_
                 Function space shared pointer.
        """
        from dolfin.functions.functionspace import FunctionSpaceFromCpp
        return FunctionSpaceFromCpp(self._function_space(i))

Form.rank = new_instancemethod(_fem.Form_rank,None,Form)
Form.num_coefficients = new_instancemethod(_fem.Form_num_coefficients,None,Form)
Form.coloring = new_instancemethod(_fem.Form_coloring,None,Form)
Form.set_mesh = new_instancemethod(_fem.Form_set_mesh,None,Form)
Form.mesh = new_instancemethod(_fem.Form_mesh,None,Form)
Form.mesh_shared_ptr = new_instancemethod(_fem.Form_mesh_shared_ptr,None,Form)
Form._function_space = new_instancemethod(_fem.Form__function_space,None,Form)
Form.function_spaces = new_instancemethod(_fem.Form_function_spaces,None,Form)
Form.set_coefficient = new_instancemethod(_fem.Form_set_coefficient,None,Form)
Form.set_coefficients = new_instancemethod(_fem.Form_set_coefficients,None,Form)
Form.coefficient = new_instancemethod(_fem.Form_coefficient,None,Form)
Form.coefficients = new_instancemethod(_fem.Form_coefficients,None,Form)
Form.coefficient_number = new_instancemethod(_fem.Form_coefficient_number,None,Form)
Form.coefficient_name = new_instancemethod(_fem.Form_coefficient_name,None,Form)
Form.cell_domains = new_instancemethod(_fem.Form_cell_domains,None,Form)
Form.exterior_facet_domains = new_instancemethod(_fem.Form_exterior_facet_domains,None,Form)
Form.interior_facet_domains = new_instancemethod(_fem.Form_interior_facet_domains,None,Form)
Form.set_cell_domains = new_instancemethod(_fem.Form_set_cell_domains,None,Form)
Form.set_exterior_facet_domains = new_instancemethod(_fem.Form_set_exterior_facet_domains,None,Form)
Form.set_interior_facet_domains = new_instancemethod(_fem.Form_set_interior_facet_domains,None,Form)
Form.ufc_form = new_instancemethod(_fem.Form_ufc_form,None,Form)
Form.check = new_instancemethod(_fem.Form_check,None,Form)
Form_swigregister = _fem.Form_swigregister
Form_swigregister(Form)

class AssemblerBase(object):
    """
    This class provides some common functions used in
    assembler classes.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.AssemblerBase_swiginit(self,_fem.new_AssemblerBase(*args))
    reset_sparsity = _swig_property(_fem.AssemblerBase_reset_sparsity_get, _fem.AssemblerBase_reset_sparsity_set)
    add_values = _swig_property(_fem.AssemblerBase_add_values_get, _fem.AssemblerBase_add_values_set)
    finalize_tensor = _swig_property(_fem.AssemblerBase_finalize_tensor_get, _fem.AssemblerBase_finalize_tensor_set)
    keep_diagonal = _swig_property(_fem.AssemblerBase_keep_diagonal_get, _fem.AssemblerBase_keep_diagonal_set)
    __swig_destroy__ = _fem.delete_AssemblerBase
AssemblerBase.init_global_tensor = new_instancemethod(_fem.AssemblerBase_init_global_tensor,None,AssemblerBase)
AssemblerBase_swigregister = _fem.AssemblerBase_swigregister
AssemblerBase_swigregister(AssemblerBase)

class Assembler(AssemblerBase):
    """
    This class provides automated assembly of linear systems, or
    more generally, assembly of a sparse tensor from a given
    variational form.

    Subdomains for cells and facets may be specified by assigning
    subdomain indicators specified by :py:class:`MeshFunction` to the :py:class:`Form`
    being assembled:

       .. code-block:: c++

           form.dx = cell_domains
           form.ds = exterior_facet_domains
           form.dS = interior_facet_domains

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Constructor

        """
        _fem.Assembler_swiginit(self,_fem.new_Assembler(*args))
    def assemble(self, *args):
        """
        Assemble tensor from given form

        *Arguments*
            A (:py:class:`GenericTensor`)
                The tensor to assemble.
            a (:py:class:`Form`)
                The form to assemble the tensor from.

        """
        return _fem.Assembler_assemble(self, *args)

    def assemble_cells(self, *args):
        """
        Assemble tensor from given form over cells. This function is
        provided for users who wish to build a customized assembler.

        """
        return _fem.Assembler_assemble_cells(self, *args)

    def assemble_exterior_facets(self, *args):
        """
        Assemble tensor from given form over exterior facets. This
        function is provided for users who wish to build a customized
        assembler.

        """
        return _fem.Assembler_assemble_exterior_facets(self, *args)

    def assemble_interior_facets(self, *args):
        """
        Assemble tensor from given form over interior facets. This
        function is provided for users who wish to build a customized
        assembler.

        """
        return _fem.Assembler_assemble_interior_facets(self, *args)

    __swig_destroy__ = _fem.delete_Assembler
Assembler.assemble = new_instancemethod(_fem.Assembler_assemble,None,Assembler)
Assembler.assemble_cells = new_instancemethod(_fem.Assembler_assemble_cells,None,Assembler)
Assembler.assemble_exterior_facets = new_instancemethod(_fem.Assembler_assemble_exterior_facets,None,Assembler)
Assembler.assemble_interior_facets = new_instancemethod(_fem.Assembler_assemble_interior_facets,None,Assembler)
Assembler_swigregister = _fem.Assembler_swigregister
Assembler_swigregister(Assembler)

class SparsityPatternBuilder(object):
    """
    This class provides functions to compute the sparsity pattern.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def build(*args):
        """
        Build sparsity pattern for assembly of given form

        """
        return _fem.SparsityPatternBuilder_build(*args)

    build = staticmethod(build)
    def build_ccfem(*args):
        """
        Build sparsity pattern for assembly of given CCFEM form

        """
        return _fem.SparsityPatternBuilder_build_ccfem(*args)

    build_ccfem = staticmethod(build_ccfem)
    def __init__(self, *args): 
        _fem.SparsityPatternBuilder_swiginit(self,_fem.new_SparsityPatternBuilder(*args))
    __swig_destroy__ = _fem.delete_SparsityPatternBuilder
SparsityPatternBuilder_swigregister = _fem.SparsityPatternBuilder_swigregister
SparsityPatternBuilder_swigregister(SparsityPatternBuilder)

def SparsityPatternBuilder_build(*args):
  """
    Build sparsity pattern for assembly of given form

    """
  return _fem.SparsityPatternBuilder_build(*args)

def SparsityPatternBuilder_build_ccfem(*args):
  """
    Build sparsity pattern for assembly of given CCFEM form

    """
  return _fem.SparsityPatternBuilder_build_ccfem(*args)

class SystemAssembler(AssemblerBase):
    """
    This class provides an assembler for systems of the form
    Ax = b. It differs from the default DOLFIN assembler in that it
    applies boundary conditions at the time of assembly, which
    preserves any symmetries in A.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * SystemAssembler\ (a, L)

          Constructor

        * SystemAssembler\ (a, L, bc)

          Constructor

        * SystemAssembler\ (a, L, bcs)

          Constructor

        * SystemAssembler\ (a, L)

          Constructor

        * SystemAssembler\ (a, L, bc)

          Constructor

        * SystemAssembler\ (a, L, bcs)

          Constructor

        """
        _fem.SystemAssembler_swiginit(self,_fem.new_SystemAssembler(*args))
    def assemble(self, *args):
        """
        **Overloaded versions**

        * assemble\ (A, b)

          Assemble system (A, b)

        * assemble\ (A)

          Assemble matrix A

        * assemble\ (b)

          Assemble vector b

        * assemble\ (A, b, x0)

          Assemble system (A, b) for (negative) increment dx, where
          x = x0 - dx is solution to system a == -L subject to bcs.
          Suitable for use inside a (quasi-)Newton solver.

        * assemble\ (b, x0)

          Assemble rhs vector b for (negative) increment dx, where
          x = x0 - dx is solution to system a == -L subject to bcs.
          Suitable for use inside a (quasi-)Newton solver.

        """
        return _fem.SystemAssembler_assemble(self, *args)

    __swig_destroy__ = _fem.delete_SystemAssembler
SystemAssembler.assemble = new_instancemethod(_fem.SystemAssembler_assemble,None,SystemAssembler)
SystemAssembler_swigregister = _fem.SystemAssembler_swigregister
SystemAssembler_swigregister(SystemAssembler)

class LinearVariationalProblem(HierarchicalLinearVariationalProblem):
    """
    This class represents a linear variational problem:

    Find u in V such that

        a(u, v) = L(v)  for all v in V^,

    where V is the trial space and V^ is the test space.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * LinearVariationalProblem\ (a, L, u)

          Create linear variational problem without boundary conditions

        * LinearVariationalProblem\ (a, L, u, bc)

          Create linear variational problem with a single boundary condition

        * LinearVariationalProblem\ (a, L, u, bcs)

          Create linear variational problem with a list of boundary conditions

        * LinearVariationalProblem\ (a, L, u, bcs)

          Create linear variational problem with a list of boundary conditions
          (shared pointer version)

        """
        _fem.LinearVariationalProblem_swiginit(self,_fem.new_LinearVariationalProblem(*args))
    def bilinear_form(self, *args):
        """
        Return bilinear form

        """
        return _fem.LinearVariationalProblem_bilinear_form(self, *args)

    def linear_form(self, *args):
        """
        Return linear form

        """
        return _fem.LinearVariationalProblem_linear_form(self, *args)

    def _solution(self, *args):
        """
        **Overloaded versions**

        * solution\ ()

          Return solution variable

        * solution\ ()

          Return solution variable (const version)

        """
        return _fem.LinearVariationalProblem__solution(self, *args)

    def bcs(self, *args):
        """
        Return boundary conditions

        """
        return _fem.LinearVariationalProblem_bcs(self, *args)

    def _trial_space(self, *args):
        """
        Return trial space

        """
        return _fem.LinearVariationalProblem__trial_space(self, *args)

    def _test_space(self, *args):
        """
        Return test space

        """
        return _fem.LinearVariationalProblem__test_space(self, *args)

    def solution(self):
        """
        Return the solution
        """
        from dolfin.functions.function import Function
        return Function(self._solution())

    def trial_space(self):
        """
        Return the trial space
        """
        from dolfin.functions.functionspace import FunctionSpaceFromCpp
        return FunctionSpaceFromCpp(self._trial_space())

    def test_space(self):
        """
        Return the test space
        """
        from dolfin.functions.functionspace import FunctionSpaceFromCpp
        return FunctionSpaceFromCpp(self._test_space())


    __swig_destroy__ = _fem.delete_LinearVariationalProblem
LinearVariationalProblem.bilinear_form = new_instancemethod(_fem.LinearVariationalProblem_bilinear_form,None,LinearVariationalProblem)
LinearVariationalProblem.linear_form = new_instancemethod(_fem.LinearVariationalProblem_linear_form,None,LinearVariationalProblem)
LinearVariationalProblem._solution = new_instancemethod(_fem.LinearVariationalProblem__solution,None,LinearVariationalProblem)
LinearVariationalProblem.bcs = new_instancemethod(_fem.LinearVariationalProblem_bcs,None,LinearVariationalProblem)
LinearVariationalProblem._trial_space = new_instancemethod(_fem.LinearVariationalProblem__trial_space,None,LinearVariationalProblem)
LinearVariationalProblem._test_space = new_instancemethod(_fem.LinearVariationalProblem__test_space,None,LinearVariationalProblem)
LinearVariationalProblem_swigregister = _fem.LinearVariationalProblem_swigregister
LinearVariationalProblem_swigregister(LinearVariationalProblem)

class LinearVariationalSolver(common.Variable):
    """
    This class implements a solver for linear variational problems.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * LinearVariationalSolver\ (problem)

          Create linear variational solver for given problem

        * LinearVariationalSolver\ (problem)

          Create linear variational solver for given problem (shared pointer version)

        """
        _fem.LinearVariationalSolver_swiginit(self,_fem.new_LinearVariationalSolver(*args))
    def solve(self, *args):
        """
        Solve variational problem

        """
        return _fem.LinearVariationalSolver_solve(self, *args)

    def default_parameters(*args):
        """
        Default parameter values

        """
        return _fem.LinearVariationalSolver_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
    __swig_destroy__ = _fem.delete_LinearVariationalSolver
LinearVariationalSolver.solve = new_instancemethod(_fem.LinearVariationalSolver_solve,None,LinearVariationalSolver)
LinearVariationalSolver_swigregister = _fem.LinearVariationalSolver_swigregister
LinearVariationalSolver_swigregister(LinearVariationalSolver)

def LinearVariationalSolver_default_parameters(*args):
  """
    Default parameter values

    """
  return _fem.LinearVariationalSolver_default_parameters(*args)

class NonlinearVariationalProblem(HierarchicalNonlinearVariationalProblem):
    """
    This class represents a nonlinear variational problem:

    Find u in V such that

        F(u; v) = 0  for all v in V^,

    where V is the trial space and V^ is the test space.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * NonlinearVariationalProblem\ (F, u)

          Create nonlinear variational problem without boundary conditions.
          The Jacobian form is not specified which requires the use of a
          nonlinear solver that does not rely on the Jacobian.

        * NonlinearVariationalProblem\ (F, u, J)

          Create nonlinear variational problem without boundary conditions.
          The Jacobian form is specified which allows the use of a nonlinear
          solver that relies on the Jacobian (using Newton's method).

        * NonlinearVariationalProblem\ (F, u, bc)

          Create nonlinear variational problem with a single boundary condition.
          The Jacobian form is not specified which requires the use of a
          nonlinear solver that does not rely on the Jacobian.

        * NonlinearVariationalProblem\ (F, u, bc, J)

          Create nonlinear variational problem with a single boundary condition.
          The Jacobian form is specified which allows the use of a nonlinear
          solver that relies on the Jacobian (using Newton's method).

        * NonlinearVariationalProblem\ (F, u, bcs)

          Create nonlinear variational problem with a list of boundary conditions.
          The Jacobian form is not specified which requires the use of a
          nonlinear solver that does not rely on the Jacobian.

        * NonlinearVariationalProblem\ (F, u, bcs, J)

          Create nonlinear variational problem with a list of boundary conditions.
          The Jacobian form is specified which allows the use of a nonlinear
          solver that relies on the Jacobian (using Newton's method).

        * NonlinearVariationalProblem\ (F, u, bcs)

          Create nonlinear variational problem, shared pointer version.
          The Jacobian form is not specified which requires the use of a
          nonlinear solver that does not rely on the Jacobian.

        * NonlinearVariationalProblem\ (F, u, bcs, J)

          Create nonlinear variational problem, shared pointer version.
          The Jacobian form is specified which allows the use of a nonlinear
          solver that relies on the Jacobian (using Newton's method).

        """
        _fem.NonlinearVariationalProblem_swiginit(self,_fem.new_NonlinearVariationalProblem(*args))
    def set_bounds(self, *args):
        """
        **Overloaded versions**

        * set_bounds\ (lb, ub)

          Set the bounds for bound constrained solver

        * set_bounds\ (lb, ub)

          Set the bounds for bound constrained solver

        * set_bounds\ (lb_func, ub_func)

          Set the bounds for bound constrained solver

        * set_bounds\ (lb_func, ub_func)

          Set the bounds for bound constrained solver

        """
        return _fem.NonlinearVariationalProblem_set_bounds(self, *args)

    def residual_form(self, *args):
        """
        Return residual form

        """
        return _fem.NonlinearVariationalProblem_residual_form(self, *args)

    def jacobian_form(self, *args):
        """
        Return Jacobian form

        """
        return _fem.NonlinearVariationalProblem_jacobian_form(self, *args)

    def _solution(self, *args):
        """
        **Overloaded versions**

        * solution\ ()

          Return solution variable

        * solution\ ()

          Return solution variable (const version)

        """
        return _fem.NonlinearVariationalProblem__solution(self, *args)

    def bcs(self, *args):
        """
        Return boundary conditions

        """
        return _fem.NonlinearVariationalProblem_bcs(self, *args)

    def _trial_space(self, *args):
        """
        Return trial space

        """
        return _fem.NonlinearVariationalProblem__trial_space(self, *args)

    def _test_space(self, *args):
        """
        Return test space

        """
        return _fem.NonlinearVariationalProblem__test_space(self, *args)

    def lower_bound(self, *args):
        """
        Return lower bound

        """
        return _fem.NonlinearVariationalProblem_lower_bound(self, *args)

    def upper_bound(self, *args):
        """
        Return upper bound

        """
        return _fem.NonlinearVariationalProblem_upper_bound(self, *args)

    def has_jacobian(self, *args):
        """
        Check whether Jacobian has been defined

        """
        return _fem.NonlinearVariationalProblem_has_jacobian(self, *args)

    def has_lower_bound(self, *args):
        """
        Check whether lower bound has been defined

        """
        return _fem.NonlinearVariationalProblem_has_lower_bound(self, *args)

    def has_upper_bound(self, *args):
        """
        Check whether upper bound have has defined

        """
        return _fem.NonlinearVariationalProblem_has_upper_bound(self, *args)

    def solution(self):
        """
        Return the solution
        """
        from dolfin.functions.function import Function
        return Function(self._solution())

    def trial_space(self):
        """
        Return the trial space
        """
        from dolfin.functions.functionspace import FunctionSpaceFromCpp
        return FunctionSpaceFromCpp(self._trial_space())

    def test_space(self):
        """
        Return the test space
        """
        from dolfin.functions.functionspace import FunctionSpaceFromCpp
        return FunctionSpaceFromCpp(self._test_space())


    __swig_destroy__ = _fem.delete_NonlinearVariationalProblem
NonlinearVariationalProblem.set_bounds = new_instancemethod(_fem.NonlinearVariationalProblem_set_bounds,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.residual_form = new_instancemethod(_fem.NonlinearVariationalProblem_residual_form,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.jacobian_form = new_instancemethod(_fem.NonlinearVariationalProblem_jacobian_form,None,NonlinearVariationalProblem)
NonlinearVariationalProblem._solution = new_instancemethod(_fem.NonlinearVariationalProblem__solution,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.bcs = new_instancemethod(_fem.NonlinearVariationalProblem_bcs,None,NonlinearVariationalProblem)
NonlinearVariationalProblem._trial_space = new_instancemethod(_fem.NonlinearVariationalProblem__trial_space,None,NonlinearVariationalProblem)
NonlinearVariationalProblem._test_space = new_instancemethod(_fem.NonlinearVariationalProblem__test_space,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.lower_bound = new_instancemethod(_fem.NonlinearVariationalProblem_lower_bound,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.upper_bound = new_instancemethod(_fem.NonlinearVariationalProblem_upper_bound,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.has_jacobian = new_instancemethod(_fem.NonlinearVariationalProblem_has_jacobian,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.has_lower_bound = new_instancemethod(_fem.NonlinearVariationalProblem_has_lower_bound,None,NonlinearVariationalProblem)
NonlinearVariationalProblem.has_upper_bound = new_instancemethod(_fem.NonlinearVariationalProblem_has_upper_bound,None,NonlinearVariationalProblem)
NonlinearVariationalProblem_swigregister = _fem.NonlinearVariationalProblem_swigregister
NonlinearVariationalProblem_swigregister(NonlinearVariationalProblem)

class NonlinearVariationalSolver(common.Variable):
    """
    This class implements a solver for nonlinear variational problems.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * NonlinearVariationalSolver\ (problem)

          Create nonlinear variational solver for given problem

        * NonlinearVariationalSolver\ (problem)

          Create nonlinear variational solver for given problem (shared pointer version)

        """
        _fem.NonlinearVariationalSolver_swiginit(self,_fem.new_NonlinearVariationalSolver(*args))
    def solve(self, *args):
        """
        **Overloaded versions**

        * solve\ (lb, ub)

          Solve variational problem with bound constraints defined by GenericVectors
          
          *Arguments*
              lb (:py:class:`GenericVector`)
                  The linear solver.
              ub (:py:class:`GenericVector`)
                  The factory.
          *Returns*
              (int, bool)
                  Pair of number of Newton iterations, and whether
                  iteration converged)

        * solve\ (lb, ub)

          Solve variational problem with bound constraints defined by GenericVectors (shared pointer version)
          
          *Arguments*
              lb (_boost::shared_ptr<const GenericVector>_)
                  The linear solver.
              ub (_boost::shared_ptr<const GenericVector>_)
                  The factory.
          *Returns*
              (int, bool)
                  Pair of number of Newton iterations, and whether
                  iteration converged)

        * solve\ (lb, ub)

          Solve variational problem with bound constraints defined by Functions
          
          *Arguments*
              lb (:py:class:`Function`)
                  The linear solver.
              ub (:py:class:`Function`)
                  The factory.
          *Returns*
              (int, bool)
                  Pair of number of Newton iterations, and whether
                  iteration converged)

        * solve\ (lb, ub)

          Solve variational problem with bound constraints defined by Functions (shared pointer version)
          
          *Arguments*
              lb (_boost::shared_ptr<const Function>_)
                  The linear solver.
              ub (_boost::shared_ptr<const Function>_)
                  The factory.
          *Returns*
              (int, bool)
                  Pair of number of Newton iterations, and whether
                  iteration converged)

        * solve\ ()

          Solve variational problem
          
          *Returns*
              (int, bool)
                  Pair of number of Newton iterations, and whether
                  iteration converged)

        """
        return _fem.NonlinearVariationalSolver_solve(self, *args)

    def default_parameters(*args):
        """
        Default parameter values

        """
        return _fem.NonlinearVariationalSolver_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
    __swig_destroy__ = _fem.delete_NonlinearVariationalSolver
NonlinearVariationalSolver.solve = new_instancemethod(_fem.NonlinearVariationalSolver_solve,None,NonlinearVariationalSolver)
NonlinearVariationalSolver_swigregister = _fem.NonlinearVariationalSolver_swigregister
NonlinearVariationalSolver_swigregister(NonlinearVariationalSolver)

def NonlinearVariationalSolver_default_parameters(*args):
  """
    Default parameter values

    """
  return _fem.NonlinearVariationalSolver_default_parameters(*args)

class CCFEMForm(object):
    """
    This class represents a variational form on a cut and composite
    finite element function space (CCFEM) defined on one or more
    possibly intersecting meshes.

    FIXME: Document usage of class with add() followed by build()

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * CCFEMForm\ (function_space)

          Create empty linear CCFEM variational form (shared pointer version)

        * CCFEMForm\ (function_space)

          Create empty linear CCFEM variational form (reference version)

        * CCFEMForm\ (function_space_0, function_space_1)

          Create empty bilinear CCFEM variational form (shared pointer version)

        * CCFEMForm\ (function_space_0, function_space_1)

          Create empty bilinear CCFEM variational form (reference version)

        """
        _fem.CCFEMForm_swiginit(self,_fem.new_CCFEMForm(*args))
    __swig_destroy__ = _fem.delete_CCFEMForm
    def rank(self, *args):
        """
        Return rank of form (bilinear form = 2, linear form = 1,
        functional = 0, etc)

        *Returns*
            int
                The rank of the form.

        """
        return _fem.CCFEMForm_rank(self, *args)

    def num_parts(self, *args):
        """
        Return the number of forms (parts) of the CCFEM form

        *Returns*
            int
                The number of forms (parts) of the CCFEM form.

        """
        return _fem.CCFEMForm_num_parts(self, *args)

    def part(self, *args):
        """
        Return form (part) number i

        *Returns*
            :py:class:`Form`
                Form (part) number i.

        """
        return _fem.CCFEMForm_part(self, *args)

    def function_space(self, *args):
        """
        Return function space for given argument

        *Arguments*
            i (int)
                Index

        *Returns*
            :py:class:`CCFEMFunctionSpace`
                Function space shared pointer.

        """
        return _fem.CCFEMForm_function_space(self, *args)

    def add(self, *args):
        """
        **Overloaded versions**

        * add\ (form)

          Add form (shared pointer version)
          
          *Arguments*
              form (:py:class:`Form`)
                  The form.

        * add\ (form)

          Add form (reference version)
          
          *Arguments*
              form (:py:class:`Form`)
                  The form.

        """
        return _fem.CCFEMForm_add(self, *args)

    def build(self, *args):
        """
        Build CCFEM form

        """
        return _fem.CCFEMForm_build(self, *args)

    def clear(self, *args):
        """
        Clear CCFEM form

        """
        return _fem.CCFEMForm_clear(self, *args)

CCFEMForm.rank = new_instancemethod(_fem.CCFEMForm_rank,None,CCFEMForm)
CCFEMForm.num_parts = new_instancemethod(_fem.CCFEMForm_num_parts,None,CCFEMForm)
CCFEMForm.part = new_instancemethod(_fem.CCFEMForm_part,None,CCFEMForm)
CCFEMForm.function_space = new_instancemethod(_fem.CCFEMForm_function_space,None,CCFEMForm)
CCFEMForm.add = new_instancemethod(_fem.CCFEMForm_add,None,CCFEMForm)
CCFEMForm.build = new_instancemethod(_fem.CCFEMForm_build,None,CCFEMForm)
CCFEMForm.clear = new_instancemethod(_fem.CCFEMForm_clear,None,CCFEMForm)
CCFEMForm_swigregister = _fem.CCFEMForm_swigregister
CCFEMForm_swigregister(CCFEMForm)

class CCFEMDofMap(GenericDofMap):
    """
    This class handles the mapping of degrees of freedom for CCFEM
    function spaces.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Constructor

        """
        _fem.CCFEMDofMap_swiginit(self,_fem.new_CCFEMDofMap(*args))
    __swig_destroy__ = _fem.delete_CCFEMDofMap
    def num_parts(self, *args):
        """
        Return the number dofmaps (parts) of the CCFEM dofmap

        *Returns*
            int
                The number of dofmaps (parts) of the CCFEM dofmap

        """
        return _fem.CCFEMDofMap_num_parts(self, *args)

    def part(self, *args):
        """
        Return dofmap (part) number i

        *Returns*
            :py:class:`GenericDofMap`
                Dofmap (part) number i

        """
        return _fem.CCFEMDofMap_part(self, *args)

    def set_current_part(self, *args):
        """
        Set current part. This will make the CCFEM dofmap act as a
        dofmap for the part of the CCFEM function space defined on the
        current part (mesh).

        *Arguments*
            part (int)
                The number of the part.

        """
        return _fem.CCFEMDofMap_set_current_part(self, *args)

    def add(self, *args):
        """
        **Overloaded versions**

        * add\ (dofmap)

          Add dofmap (shared pointer version)
          
          *Arguments*
              dofmap (:py:class:`GenericDofMap`)
                  The dofmap.

        * add\ (dofmap)

          Add dofmap (reference version)
          
          *Arguments*
              dofmap (:py:class:`DofMap`)
                  The dofmap.

        """
        return _fem.CCFEMDofMap_add(self, *args)

    def build(self, *args):
        """
        Build CCFEM dofmap

        """
        return _fem.CCFEMDofMap_build(self, *args)

    def clear(self, *args):
        """
        Clear CCFEM dofmap

        """
        return _fem.CCFEMDofMap_clear(self, *args)

CCFEMDofMap.num_parts = new_instancemethod(_fem.CCFEMDofMap_num_parts,None,CCFEMDofMap)
CCFEMDofMap.part = new_instancemethod(_fem.CCFEMDofMap_part,None,CCFEMDofMap)
CCFEMDofMap.set_current_part = new_instancemethod(_fem.CCFEMDofMap_set_current_part,None,CCFEMDofMap)
CCFEMDofMap.add = new_instancemethod(_fem.CCFEMDofMap_add,None,CCFEMDofMap)
CCFEMDofMap.build = new_instancemethod(_fem.CCFEMDofMap_build,None,CCFEMDofMap)
CCFEMDofMap.clear = new_instancemethod(_fem.CCFEMDofMap_clear,None,CCFEMDofMap)
CCFEMDofMap_swigregister = _fem.CCFEMDofMap_swigregister
CCFEMDofMap_swigregister(CCFEMDofMap)

class CCFEMAssembler(object):
    """
    This class implements functionality for finite element assembly
    over cut and composite finite element (CCFEM) function spaces.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Constructor

        """
        _fem.CCFEMAssembler_swiginit(self,_fem.new_CCFEMAssembler(*args))
    def assemble(self, *args):
        """
        Assemble tensor from given form

        *Arguments*
            A (:py:class:`GenericTensor`)
                The tensor to assemble.
            a (:py:class:`Form`)
                The form to assemble the tensor from.

        """
        return _fem.CCFEMAssembler_assemble(self, *args)

    __swig_destroy__ = _fem.delete_CCFEMAssembler
CCFEMAssembler.assemble = new_instancemethod(_fem.CCFEMAssembler_assemble,None,CCFEMAssembler)
CCFEMAssembler_swigregister = _fem.CCFEMAssembler_swigregister
CCFEMAssembler_swigregister(CCFEMAssembler)

class OpenMpAssembler(AssemblerBase):
    """
    This class provides automated assembly of linear systems, or
    more generally, assembly of a sparse tensor from a given
    variational form.

    The MeshFunction arguments can be used to specify assembly over
    subdomains of the mesh cells, exterior facets or interior
    facets. Either a null pointer or an empty MeshFunction may be
    used to specify that the tensor should be assembled over the
    entire set of cells or facets.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Constructor

        """
        _fem.OpenMpAssembler_swiginit(self,_fem.new_OpenMpAssembler(*args))
    def assemble(self, *args):
        """
        Assemble tensor from given form

        """
        return _fem.OpenMpAssembler_assemble(self, *args)

    __swig_destroy__ = _fem.delete_OpenMpAssembler
OpenMpAssembler.assemble = new_instancemethod(_fem.OpenMpAssembler_assemble,None,OpenMpAssembler)
OpenMpAssembler_swigregister = _fem.OpenMpAssembler_swigregister
OpenMpAssembler_swigregister(OpenMpAssembler)

class VariationalProblem(object):
    """
    This class is deprecated and is only here to give an informative error
    message to users about the new interface.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * VariationalProblem\ (form_0, form_1)

          Deprecated

        * VariationalProblem\ (form_0, form_1, bc)

          Deprecated

        * VariationalProblem\ (form_0, form_1, bcs)

          Deprecated

        * VariationalProblem\ (form_0, form_1, bcs)

          Deprecated

        """
        _fem.VariationalProblem_swiginit(self,_fem.new_VariationalProblem(*args))
    __swig_destroy__ = _fem.delete_VariationalProblem
    def solve(self, *args):
        """
        **Overloaded versions**

        * solve\ (u)

          Deprecated

        * solve\ (u0, u1)

          Deprecated

        * solve\ (u0, u1, u2)

          Deprecated

        * solve\ (u, tol, M)

          Deprecated

        * solve\ (u, tol, M, ec)

          Deprecated

        """
        return _fem.VariationalProblem_solve(self, *args)

VariationalProblem.solve = new_instancemethod(_fem.VariationalProblem_solve,None,VariationalProblem)
VariationalProblem_swigregister = _fem.VariationalProblem_swigregister
VariationalProblem_swigregister(VariationalProblem)

HierarchicalLinearVariationalProblem.leaf_node = HierarchicalLinearVariationalProblem._leaf_node
HierarchicalLinearVariationalProblem.root_node = HierarchicalLinearVariationalProblem._root_node
HierarchicalLinearVariationalProblem.child = HierarchicalLinearVariationalProblem._child
HierarchicalLinearVariationalProblem.parent = HierarchicalLinearVariationalProblem._parent

HierarchicalNonlinearVariationalProblem.leaf_node = HierarchicalNonlinearVariationalProblem._leaf_node
HierarchicalNonlinearVariationalProblem.root_node = HierarchicalNonlinearVariationalProblem._root_node
HierarchicalNonlinearVariationalProblem.child = HierarchicalNonlinearVariationalProblem._child
HierarchicalNonlinearVariationalProblem.parent = HierarchicalNonlinearVariationalProblem._parent

HierarchicalForm.leaf_node = HierarchicalForm._leaf_node
HierarchicalForm.root_node = HierarchicalForm._root_node
HierarchicalForm.child = HierarchicalForm._child
HierarchicalForm.parent = HierarchicalForm._parent

HierarchicalDirichletBC.leaf_node = HierarchicalDirichletBC._leaf_node
HierarchicalDirichletBC.root_node = HierarchicalDirichletBC._root_node
HierarchicalDirichletBC.child = HierarchicalDirichletBC._child
HierarchicalDirichletBC.parent = HierarchicalDirichletBC._parent

class MultiStageScheme(common.Variable):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * MultiStageScheme\ (stage_forms, last_stage, stage_solutions, u, t, dt, dt_stage_offset, order, name, human_form)

          Constructor
          FIXME: This constructor is a MESS. Needs clean up...

        * MultiStageScheme\ (stage_forms, last_stage, stage_solutions, u, t, dt, dt_stage_offset, order, name, human_form, bcs)

          Constructor with Boundary conditions

        """
        _fem.MultiStageScheme_swiginit(self,_fem.new_MultiStageScheme(*args))
    def dt_stage_offset(self, *args):
        """
        Return local timestep

        """
        return _fem.MultiStageScheme_dt_stage_offset(self, *args)

    def order(self, *args):
        """
        Return the order of the scheme

        """
        return _fem.MultiStageScheme_order(self, *args)

    def bcs(self, *args):
        """
        Return boundary conditions

        """
        return _fem.MultiStageScheme_bcs(self, *args)

    def implicit(self, *args):
        """
        **Overloaded versions**

        * implicit\ (stage)

          Return true if stage is implicit

        * implicit\ ()

          Return true if the whole scheme is implicit

        """
        return _fem.MultiStageScheme_implicit(self, *args)

    __swig_destroy__ = _fem.delete_MultiStageScheme
MultiStageScheme.dt_stage_offset = new_instancemethod(_fem.MultiStageScheme_dt_stage_offset,None,MultiStageScheme)
MultiStageScheme.order = new_instancemethod(_fem.MultiStageScheme_order,None,MultiStageScheme)
MultiStageScheme.bcs = new_instancemethod(_fem.MultiStageScheme_bcs,None,MultiStageScheme)
MultiStageScheme.implicit = new_instancemethod(_fem.MultiStageScheme_implicit,None,MultiStageScheme)
MultiStageScheme_swigregister = _fem.MultiStageScheme_swigregister
MultiStageScheme_swigregister(MultiStageScheme)

class RKSolver(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Constructor
        FIXME: Include version where one can pass a Solver and/or Parameters

        """
        _fem.RKSolver_swiginit(self,_fem.new_RKSolver(*args))
    def step(self, *args):
        """
        Step solver with time step dt

        """
        return _fem.RKSolver_step(self, *args)

    def step_interval(self, *args):
        """
        Step solver an interval using dt as time step

        """
        return _fem.RKSolver_step_interval(self, *args)

    __swig_destroy__ = _fem.delete_RKSolver
RKSolver.step = new_instancemethod(_fem.RKSolver_step,None,RKSolver)
RKSolver.step_interval = new_instancemethod(_fem.RKSolver_step_interval,None,RKSolver)
RKSolver_swigregister = _fem.RKSolver_swigregister
RKSolver_swigregister(RKSolver)

class PointIntegralSolver(common.Variable):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Constructor
        FIXME: Include version where one can pass a Solver and/or Parameters

        """
        _fem.PointIntegralSolver_swiginit(self,_fem.new_PointIntegralSolver(*args))
    def step(self, *args):
        """
        Step solver with time step dt

        """
        return _fem.PointIntegralSolver_step(self, *args)

    def step_interval(self, *args):
        """
        Step solver an interval using dt as time step

        """
        return _fem.PointIntegralSolver_step_interval(self, *args)

    def default_parameters(*args):
        """
        Default parameter values

        """
        return _fem.PointIntegralSolver_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
    __swig_destroy__ = _fem.delete_PointIntegralSolver
PointIntegralSolver.step = new_instancemethod(_fem.PointIntegralSolver_step,None,PointIntegralSolver)
PointIntegralSolver.step_interval = new_instancemethod(_fem.PointIntegralSolver_step_interval,None,PointIntegralSolver)
PointIntegralSolver_swigregister = _fem.PointIntegralSolver_swigregister
PointIntegralSolver_swigregister(PointIntegralSolver)

def PointIntegralSolver_default_parameters(*args):
  """
    Default parameter values

    """
  return _fem.PointIntegralSolver_default_parameters(*args)

class HierarchicalErrorControl(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        _fem.HierarchicalErrorControl_swiginit(self,_fem.new_HierarchicalErrorControl(*args))
    __swig_destroy__ = _fem.delete_HierarchicalErrorControl
HierarchicalErrorControl.depth = new_instancemethod(_fem.HierarchicalErrorControl_depth,None,HierarchicalErrorControl)
HierarchicalErrorControl.has_parent = new_instancemethod(_fem.HierarchicalErrorControl_has_parent,None,HierarchicalErrorControl)
HierarchicalErrorControl.has_child = new_instancemethod(_fem.HierarchicalErrorControl_has_child,None,HierarchicalErrorControl)
HierarchicalErrorControl._parent = new_instancemethod(_fem.HierarchicalErrorControl__parent,None,HierarchicalErrorControl)
HierarchicalErrorControl._child = new_instancemethod(_fem.HierarchicalErrorControl__child,None,HierarchicalErrorControl)
HierarchicalErrorControl._root_node = new_instancemethod(_fem.HierarchicalErrorControl__root_node,None,HierarchicalErrorControl)
HierarchicalErrorControl._leaf_node = new_instancemethod(_fem.HierarchicalErrorControl__leaf_node,None,HierarchicalErrorControl)
HierarchicalErrorControl.set_parent = new_instancemethod(_fem.HierarchicalErrorControl_set_parent,None,HierarchicalErrorControl)
HierarchicalErrorControl.clear_child = new_instancemethod(_fem.HierarchicalErrorControl_clear_child,None,HierarchicalErrorControl)
HierarchicalErrorControl.set_child = new_instancemethod(_fem.HierarchicalErrorControl_set_child,None,HierarchicalErrorControl)
HierarchicalErrorControl._debug = new_instancemethod(_fem.HierarchicalErrorControl__debug,None,HierarchicalErrorControl)
HierarchicalErrorControl_swigregister = _fem.HierarchicalErrorControl_swigregister
HierarchicalErrorControl_swigregister(HierarchicalErrorControl)

class GenericAdaptiveVariationalSolver(common.Variable):
    """
    An abstract class for goal-oriented adaptive solution of
    variational problems.


    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _fem.delete_GenericAdaptiveVariationalSolver
    def solve(self, *args):
        """
        Solve such that the functional error is less than the given
        tolerance. Note that each call to solve is based on the
        leaf-node of the variational problem

        *Arguments*
            tol (float)
                The error tolerance

        """
        return _fem.GenericAdaptiveVariationalSolver_solve(self, *args)

    def solve_primal(self, *args):
        """
        Solve the primal problem. Must be overloaded in subclass.

        *Returns*
            :py:class:`Function`
                The solution to the primal problem

        """
        return _fem.GenericAdaptiveVariationalSolver_solve_primal(self, *args)

    def extract_bcs(self, *args):
        """
        Extract the boundary conditions for the primal problem. Must
        be overloaded in subclass.

        *Returns*
            list of :py:class:`DirichletBC`
                The primal boundary conditions

        """
        return _fem.GenericAdaptiveVariationalSolver_extract_bcs(self, *args)

    def evaluate_goal(self, *args):
        """
        Evaluate the goal functional. Must be overloaded in subclass.

        *Arguments*
           M (:py:class:`Form`)
               The functional to be evaluated
           u (:py:class:`Function`)
               The function of which to evaluate the functional

        *Returns*
            float
                The value of M evaluated at u

        """
        return _fem.GenericAdaptiveVariationalSolver_evaluate_goal(self, *args)

    def adapt_problem(self, *args):
        """
        Adapt the problem to other mesh. Must be overloaded in subclass.

        *Arguments*
           mesh (:py:class:`Mesh`)
               The other mesh

        """
        return _fem.GenericAdaptiveVariationalSolver_adapt_problem(self, *args)

    def adaptive_data(self, *args):
        """
        Return stored adaptive data

        *Returns*
           list of :py:class:`Parameters`
               The data stored in the adaptive loop

        """
        return _fem.GenericAdaptiveVariationalSolver_adaptive_data(self, *args)

    def default_parameters(*args):
        """
        Default parameter values:

            "max_iterations"     (int)
            "max_dimension"      (int)
            "plot_mesh"          (bool)
            "save_data"          (bool)
            "data_label"         (std::string)
            "reference"          (double)
            "marking_strategy"   (std::string)
            "marking_fraction"   (double)

        """
        return _fem.GenericAdaptiveVariationalSolver_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
    def summary(self, *args):
        """
        Present summary of all adaptive data and parameters

        """
        return _fem.GenericAdaptiveVariationalSolver_summary(self, *args)

GenericAdaptiveVariationalSolver.solve = new_instancemethod(_fem.GenericAdaptiveVariationalSolver_solve,None,GenericAdaptiveVariationalSolver)
GenericAdaptiveVariationalSolver.solve_primal = new_instancemethod(_fem.GenericAdaptiveVariationalSolver_solve_primal,None,GenericAdaptiveVariationalSolver)
GenericAdaptiveVariationalSolver.extract_bcs = new_instancemethod(_fem.GenericAdaptiveVariationalSolver_extract_bcs,None,GenericAdaptiveVariationalSolver)
GenericAdaptiveVariationalSolver.evaluate_goal = new_instancemethod(_fem.GenericAdaptiveVariationalSolver_evaluate_goal,None,GenericAdaptiveVariationalSolver)
GenericAdaptiveVariationalSolver.adapt_problem = new_instancemethod(_fem.GenericAdaptiveVariationalSolver_adapt_problem,None,GenericAdaptiveVariationalSolver)
GenericAdaptiveVariationalSolver.adaptive_data = new_instancemethod(_fem.GenericAdaptiveVariationalSolver_adaptive_data,None,GenericAdaptiveVariationalSolver)
GenericAdaptiveVariationalSolver.summary = new_instancemethod(_fem.GenericAdaptiveVariationalSolver_summary,None,GenericAdaptiveVariationalSolver)
GenericAdaptiveVariationalSolver_swigregister = _fem.GenericAdaptiveVariationalSolver_swigregister
GenericAdaptiveVariationalSolver_swigregister(GenericAdaptiveVariationalSolver)

def GenericAdaptiveVariationalSolver_default_parameters(*args):
  """
    Default parameter values:

        "max_iterations"     (int)
        "max_dimension"      (int)
        "plot_mesh"          (bool)
        "save_data"          (bool)
        "data_label"         (std::string)
        "reference"          (double)
        "marking_strategy"   (std::string)
        "marking_fraction"   (double)

    """
  return _fem.GenericAdaptiveVariationalSolver_default_parameters(*args)

class AdaptiveLinearVariationalSolver(GenericAdaptiveVariationalSolver):
    """
    A class for goal-oriented adaptive solution of linear
    variational problems.

    For a linear variational problem of the form: find u in V
    satisfying

        a(u, v) = L(v) for all v in :math:`\hat V`

    and a corresponding conforming discrete problem: find u_h in V_h
    satisfying

        a(u_h, v) = L(v) for all v in :math:`\hat V_h`

    and a given goal functional M and tolerance tol, the aim is to
    find a V_H and a u_H in V_H satisfying the discrete problem such
    that

        \|M(u) - M(u_H)\| < tol

    This strategy is based on dual-weighted residual error
    estimators designed and automatically generated for the primal
    problem and subsequent h-adaptivity.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * AdaptiveLinearVariationalSolver\ (problem, goal)

          Create AdaptiveLinearVariationalSolver
          
          *Arguments*
              problem (:py:class:`LinearVariationalProblem`)
                  The primal problem
              goal (:py:class:`GoalFunctional`)
                  The goal functional

        * AdaptiveLinearVariationalSolver\ (problem, goal)

          Create AdaptiveLinearVariationalSolver (shared ptr version)
          
          *Arguments*
              problem (:py:class:`LinearVariationalProblem`)
                  The primal problem
              goal (:py:class:`GoalFunctional`)
                  The goal functional

        * AdaptiveLinearVariationalSolver\ (problem, goal, control)

          Create AdaptiveLinearVariationalSolver from variational
          problem, goal form and error control instance
          
          *Arguments*
              problem (:py:class:`LinearVariationalProblem`)
                  The primal problem
              goal (:py:class:`Form`)
                  The goal functional
              control (:py:class:`ErrorControl`)
                  An error controller object

        """
        _fem.AdaptiveLinearVariationalSolver_swiginit(self,_fem.new_AdaptiveLinearVariationalSolver(*args))
    __swig_destroy__ = _fem.delete_AdaptiveLinearVariationalSolver
AdaptiveLinearVariationalSolver_swigregister = _fem.AdaptiveLinearVariationalSolver_swigregister
AdaptiveLinearVariationalSolver_swigregister(AdaptiveLinearVariationalSolver)

class AdaptiveNonlinearVariationalSolver(GenericAdaptiveVariationalSolver):
    """
    A class for goal-oriented adaptive solution of nonlinear
    variational problems.

    For a nonlinear variational problem of the form: find u in V
    satisfying

        F(u; v) = 0 for all v in :math:`\hat V`

    and a corresponding conforming discrete problem: find u_h in V_h
    satisfying (at least approximately)

        F(u_h; v) = 0 for all v in :math:`\hat V_h`

    and a given goal functional M and tolerance tol, the aim is to
    find a V_H and a u_H in V_H satisfying the discrete problem such
    that

        \|M(u) - M(u_H)\| < tol

    This strategy is based on dual-weighted residual error
    estimators designed and automatically generated for the primal
    problem and subsequent h-adaptivity.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        **Overloaded versions**

        * AdaptiveNonlinearVariationalSolver\ (problem, goal)

          Create AdaptiveNonlinearVariationalSolver
          
          *Arguments*
              problem (:py:class:`NonlinearVariationalProblem`)
                  The primal problem
              goal (:py:class:`GoalFunctional`)
                  The goal functional

        * AdaptiveNonlinearVariationalSolver\ (problem, goal)

          Create AdaptiveNonlinearVariationalSolver (shared ptr version)
          
          *Arguments*
              problem (:py:class:`NonlinearVariationalProblem`)
                  The primal problem
              goal (:py:class:`GoalFunctional`)
                  The goal functional

        * AdaptiveNonlinearVariationalSolver\ (problem, goal, control)

          Create AdaptiveLinearVariationalSolver from variational
          problem, goal form and error control instance
          
          *Arguments*
              problem (:py:class:`NonlinearVariationalProblem`)
                  The primal problem
              goal (:py:class:`Form`)
                  The goal functional
              control (:py:class:`ErrorControl`)
                  An error controller object

        """
        _fem.AdaptiveNonlinearVariationalSolver_swiginit(self,_fem.new_AdaptiveNonlinearVariationalSolver(*args))
    __swig_destroy__ = _fem.delete_AdaptiveNonlinearVariationalSolver
AdaptiveNonlinearVariationalSolver_swigregister = _fem.AdaptiveNonlinearVariationalSolver_swigregister
AdaptiveNonlinearVariationalSolver_swigregister(AdaptiveNonlinearVariationalSolver)

class ErrorControl(HierarchicalErrorControl,common.Variable):
    """
    (Goal-oriented) Error Control class.
    The notation used here follows the notation in "Automated
    goal-oriented error control I: stationary variational problems",
    ME Rognes and A Logg, 2010-2011.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Create error control object

        *Arguments*
            a_star (:py:class:`Form`)
               the bilinear form for the dual problem
            L_star (:py:class:`Form`)
               the linear form for the dual problem
            residual (:py:class:`Form`)
               a functional for the residual (error estimate)
            a_R_T (:py:class:`Form`)
               the bilinear form for the strong cell residual problem
            L_R_T (:py:class:`Form`)
               the linear form for the strong cell residual problem
            a_R_dT (:py:class:`Form`)
               the bilinear form for the strong facet residual problem
            L_R_dT (:py:class:`Form`)
               the linear form for the strong facet residual problem
            eta_T (:py:class:`Form`)
               a linear form over DG_0 for error indicators
            is_linear (bool)
               true iff primal problem is linear

        """
        _fem.ErrorControl_swiginit(self,_fem.new_ErrorControl(*args))
    __swig_destroy__ = _fem.delete_ErrorControl
    def default_parameters(*args):
        """
        Default parameter values:

        """
        return _fem.ErrorControl_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
    def estimate_error(self, *args):
        """
        Estimate the error relative to the goal M of the discrete
        approximation 'u' relative to the variational formulation by
        evaluating the weak residual at an approximation to the dual
        solution.

        *Arguments*
            u (:py:class:`Function`)
               the primal approximation

            bcs (list of :py:class:`DirichletBC`)
                the primal boundary conditions

        *Returns*
            float
                error estimate

        """
        return _fem.ErrorControl_estimate_error(self, *args)

    def compute_indicators(self, *args):
        """
        Compute error indicators

        *Arguments*
            indicators (:py:class:`MeshFunction`)
                the error indicators (to be computed)

            u (:py:class:`Function`)
                the primal approximation

        """
        return _fem.ErrorControl_compute_indicators(self, *args)

    def residual_representation(self, *args):
        """
        Compute strong representation (strong cell and facet
        residuals) of the weak residual.

        *Arguments*
            R_T (:py:class:`Function`)
                the strong cell residual (to be computed)

            R_dT (:py:class:`SpecialFacetFunction`)
                the strong facet residual (to be computed)

            u (:py:class:`Function`)
                the primal approximation

        """
        return _fem.ErrorControl_residual_representation(self, *args)

    def compute_cell_residual(self, *args):
        """
        Compute representation for the strong cell residual
        from the weak residual

        *Arguments*
            R_T (:py:class:`Function`)
                the strong cell residual (to be computed)

            u (:py:class:`Function`)
                the primal approximation

        """
        return _fem.ErrorControl_compute_cell_residual(self, *args)

    def compute_facet_residual(self, *args):
        """
        Compute representation for the strong facet residual from the
        weak residual and the strong cell residual

        *Arguments*
            R_dT (:py:class:`SpecialFacetFunction`)
                the strong facet residual (to be computed)

            u (:py:class:`Function`)
                the primal approximation

            R_T (:py:class:`Function`)
                the strong cell residual

        """
        return _fem.ErrorControl_compute_facet_residual(self, *args)

    def compute_dual(self, *args):
        """
        Compute dual approximation defined by dual variational
        problem and dual boundary conditions given by homogenized primal
        boundary conditions.

        *Arguments*
            z (:py:class:`Function`)
                the dual approximation (to be computed)

            bcs (list of :py:class:`DirichletBC`)
                the primal boundary conditions

        """
        return _fem.ErrorControl_compute_dual(self, *args)

    def compute_extrapolation(self, *args):
        """
        Compute extrapolation with boundary conditions

        *Arguments*
            z (:py:class:`Function`)
                the extrapolated function (to be computed)

            bcs (list of :py:class:`DirichletBC`)
                the dual boundary conditions

        """
        return _fem.ErrorControl_compute_extrapolation(self, *args)

ErrorControl.estimate_error = new_instancemethod(_fem.ErrorControl_estimate_error,None,ErrorControl)
ErrorControl.compute_indicators = new_instancemethod(_fem.ErrorControl_compute_indicators,None,ErrorControl)
ErrorControl.residual_representation = new_instancemethod(_fem.ErrorControl_residual_representation,None,ErrorControl)
ErrorControl.compute_cell_residual = new_instancemethod(_fem.ErrorControl_compute_cell_residual,None,ErrorControl)
ErrorControl.compute_facet_residual = new_instancemethod(_fem.ErrorControl_compute_facet_residual,None,ErrorControl)
ErrorControl.compute_dual = new_instancemethod(_fem.ErrorControl_compute_dual,None,ErrorControl)
ErrorControl.compute_extrapolation = new_instancemethod(_fem.ErrorControl_compute_extrapolation,None,ErrorControl)
ErrorControl_swigregister = _fem.ErrorControl_swigregister
ErrorControl_swigregister(ErrorControl)

def ErrorControl_default_parameters(*args):
  """
    Default parameter values:

    """
  return _fem.ErrorControl_default_parameters(*args)

class Extrapolation(object):
    """
    This class implements an algorithm for extrapolating a function
    on a given function space from an approximation of that function
    on a possibly lower-order function space.

    This can be used to obtain a higher-order approximation of a
    computed dual solution, which is necessary when the computed
    dual approximation is in the test space of the primal problem,
    thereby being orthogonal to the residual.

    It is assumed that the extrapolation is computed on the same
    mesh as the original function.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def extrapolate(*args):
        """
        Compute extrapolation w from v

        """
        return _fem.Extrapolation_extrapolate(*args)

    extrapolate = staticmethod(extrapolate)
    def __init__(self, *args): 
        _fem.Extrapolation_swiginit(self,_fem.new_Extrapolation(*args))
    __swig_destroy__ = _fem.delete_Extrapolation
Extrapolation_swigregister = _fem.Extrapolation_swigregister
Extrapolation_swigregister(Extrapolation)

def Extrapolation_extrapolate(*args):
  """
    Compute extrapolation w from v

    """
  return _fem.Extrapolation_extrapolate(*args)

class LocalAssembler(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def assemble(*args):
        """
        """
        return _fem.LocalAssembler_assemble(*args)

    assemble = staticmethod(assemble)
    def assemble_cell(*args):
        """
        """
        return _fem.LocalAssembler_assemble_cell(*args)

    assemble_cell = staticmethod(assemble_cell)
    def assemble_exterior_facet(*args):
        """
        """
        return _fem.LocalAssembler_assemble_exterior_facet(*args)

    assemble_exterior_facet = staticmethod(assemble_exterior_facet)
    def assemble_interior_facet(*args):
        """
        """
        return _fem.LocalAssembler_assemble_interior_facet(*args)

    assemble_interior_facet = staticmethod(assemble_interior_facet)
    def __init__(self, *args): 
        _fem.LocalAssembler_swiginit(self,_fem.new_LocalAssembler(*args))
    __swig_destroy__ = _fem.delete_LocalAssembler
LocalAssembler_swigregister = _fem.LocalAssembler_swigregister
LocalAssembler_swigregister(LocalAssembler)

def LocalAssembler_assemble(*args):
  """
    """
  return _fem.LocalAssembler_assemble(*args)

def LocalAssembler_assemble_cell(*args):
  """
    """
  return _fem.LocalAssembler_assemble_cell(*args)

def LocalAssembler_assemble_exterior_facet(*args):
  """
    """
  return _fem.LocalAssembler_assemble_exterior_facet(*args)

def LocalAssembler_assemble_interior_facet(*args):
  """
    """
  return _fem.LocalAssembler_assemble_interior_facet(*args)

class TimeSeries(common.Variable):
    """
    This class stores a time series of objects to file(s) in a
    binary format which is efficient for reading and writing.

    When objects are retrieved, the object stored at the time
    closest to the given time will be used.

    A new time series will check if values have been stored to
    file before (for a series with the same name) and in that
    case reuse those values. If new values are stored, old
    values will be cleared.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Create empty time series

        *Arguments*
            name (str)
                The time series name
            compressed (bool)
                Use compressed file format (default false)
            store_connectivity (bool)
                Store all computed connectivity (default false)

        """
        _fem.TimeSeries_swiginit(self,_fem.new_TimeSeries(*args))
    __swig_destroy__ = _fem.delete_TimeSeries
    def store(self, *args):
        """
        **Overloaded versions**

        * store\ (vector, t)

          Store vector at given time
          
          *Arguments*
              vector (:py:class:`GenericVector`)
                  The vector to be stored.
              t (float)
                  The time.

        * store\ (mesh, t)

          Store mesh at given time
          
          *Arguments*
              mesh (:py:class:`Mesh`)
                  The mesh to be stored.
              t (float)
                  The time.

        """
        return _fem.TimeSeries_store(self, *args)

    def retrieve(self, *args):
        """
        **Overloaded versions**

        * retrieve\ (vector, t, interpolate=true)

          Retrieve vector at given time
          
          *Arguments*
              vector (:py:class:`GenericVector`)
                  The vector (values to be retrieved).
              t (float)
                  The time.
              interpolate (bool)
                  Optional argument: If true (default), interpolate
                  time samples closest to t if t is not present.

        * retrieve\ (mesh, t)

          Retrieve mesh at given time
          
          *Arguments*
              mesh (:py:class:`Mesh`)
                  The mesh (values to be retrieved).
              t (float)
                  The time.

        """
        return _fem.TimeSeries_retrieve(self, *args)

    def vector_times(self, *args):
        """
        Return array of sample times for vectors

        *Returns*
            numpy.array(float)
                The times.

        """
        return _fem.TimeSeries_vector_times(self, *args)

    def mesh_times(self, *args):
        """
        Return array of sample times for meshes

        *Returns*
            numpy.array(float)
                The times.

        """
        return _fem.TimeSeries_mesh_times(self, *args)

    def clear(self, *args):
        """
        Clear time series

        """
        return _fem.TimeSeries_clear(self, *args)

    def filename_data(*args):
        """
        Return filename for data

        *Arguments*
            series_name (str)
                The time series name
            type_name (str)
                The type of data
            index (int)
                The index
            compressed (bool)
                True if compressed file format

        *Returns*
            str
                The filename

        """
        return _fem.TimeSeries_filename_data(*args)

    filename_data = staticmethod(filename_data)
    def filename_times(*args):
        """
        Return filename for times

        *Arguments*
            series_name (str)
                The time series name
            type_name (str)
                The type of data
            compressed (bool)
                True if compressed file format

        *Returns*
            str
                The filename

        """
        return _fem.TimeSeries_filename_times(*args)

    filename_times = staticmethod(filename_times)
    def default_parameters(*args):
        """
        Default parameter values

        """
        return _fem.TimeSeries_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
TimeSeries.store = new_instancemethod(_fem.TimeSeries_store,None,TimeSeries)
TimeSeries.retrieve = new_instancemethod(_fem.TimeSeries_retrieve,None,TimeSeries)
TimeSeries.vector_times = new_instancemethod(_fem.TimeSeries_vector_times,None,TimeSeries)
TimeSeries.mesh_times = new_instancemethod(_fem.TimeSeries_mesh_times,None,TimeSeries)
TimeSeries.clear = new_instancemethod(_fem.TimeSeries_clear,None,TimeSeries)
TimeSeries_swigregister = _fem.TimeSeries_swigregister
TimeSeries_swigregister(TimeSeries)

def TimeSeries_filename_data(*args):
  """
    Return filename for data

    *Arguments*
        series_name (str)
            The time series name
        type_name (str)
            The type of data
        index (int)
            The index
        compressed (bool)
            True if compressed file format

    *Returns*
        str
            The filename

    """
  return _fem.TimeSeries_filename_data(*args)

def TimeSeries_filename_times(*args):
  """
    Return filename for times

    *Arguments*
        series_name (str)
            The time series name
        type_name (str)
            The type of data
        compressed (bool)
            True if compressed file format

    *Returns*
        str
            The filename

    """
  return _fem.TimeSeries_filename_times(*args)

def TimeSeries_default_parameters(*args):
  """
    Default parameter values

    """
  return _fem.TimeSeries_default_parameters(*args)

class TimeSeriesHDF5(common.Variable):
    """
    This class stores a time series of objects to file(s) in a
    binary format which is efficient for reading and writing.

    When objects are retrieved, the object stored at the time
    closest to the given time will be used.

    A new time series will check if values have been stored to
    file before (for a series with the same name) and in that
    case reuse those values. If new values are stored, old
    values will be cleared.

    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Create empty time series

        *Arguments*
            name (str)
                The time series name

        """
        _fem.TimeSeriesHDF5_swiginit(self,_fem.new_TimeSeriesHDF5(*args))
    __swig_destroy__ = _fem.delete_TimeSeriesHDF5
    def store(self, *args):
        """
        **Overloaded versions**

        * store\ (vector, t)

          Store vector at given time
          
          *Arguments*
              vector (:py:class:`GenericVector`)
                  The vector to be stored.
              t (float)
                  The time.

        * store\ (mesh, t)

          Store mesh at given time
          
          *Arguments*
              mesh (:py:class:`Mesh`)
                  The mesh to be stored.
              t (float)
                  The time.

        """
        return _fem.TimeSeriesHDF5_store(self, *args)

    def retrieve(self, *args):
        """
        **Overloaded versions**

        * retrieve\ (vector, t, interpolate=true)

          Retrieve vector at given time
          
          *Arguments*
              vector (:py:class:`GenericVector`)
                  The vector (values to be retrieved).
              t (float)
                  The time.
              interpolate (bool)
                  Optional argument: If true (default), interpolate
                  time samples closest to t if t is not present.

        * retrieve\ (mesh, t)

          Retrieve mesh at given time
          
          *Arguments*
              mesh (:py:class:`Mesh`)
                  The mesh (values to be retrieved).
              t (float)
                  The time.

        """
        return _fem.TimeSeriesHDF5_retrieve(self, *args)

    def vector_times(self, *args):
        """
        Return array of sample times for vectors

        *Returns*
            numpy.array(float)
                The times.

        """
        return _fem.TimeSeriesHDF5_vector_times(self, *args)

    def mesh_times(self, *args):
        """
        Return array of sample times for meshes

        *Returns*
            numpy.array(float)
                The times.

        """
        return _fem.TimeSeriesHDF5_mesh_times(self, *args)

    def clear(self, *args):
        """
        Clear time series

        """
        return _fem.TimeSeriesHDF5_clear(self, *args)

    def default_parameters(*args):
        """
        Default parameter values

        """
        return _fem.TimeSeriesHDF5_default_parameters(*args)

    default_parameters = staticmethod(default_parameters)
TimeSeriesHDF5.store = new_instancemethod(_fem.TimeSeriesHDF5_store,None,TimeSeriesHDF5)
TimeSeriesHDF5.retrieve = new_instancemethod(_fem.TimeSeriesHDF5_retrieve,None,TimeSeriesHDF5)
TimeSeriesHDF5.vector_times = new_instancemethod(_fem.TimeSeriesHDF5_vector_times,None,TimeSeriesHDF5)
TimeSeriesHDF5.mesh_times = new_instancemethod(_fem.TimeSeriesHDF5_mesh_times,None,TimeSeriesHDF5)
TimeSeriesHDF5.clear = new_instancemethod(_fem.TimeSeriesHDF5_clear,None,TimeSeriesHDF5)
TimeSeriesHDF5_swigregister = _fem.TimeSeriesHDF5_swigregister
TimeSeriesHDF5_swigregister(TimeSeriesHDF5)

def TimeSeriesHDF5_default_parameters(*args):
  """
    Default parameter values

    """
  return _fem.TimeSeriesHDF5_default_parameters(*args)


def adapt_markers(*args):
  """
    Helper function for refinement of boundary conditions

    """
  return _fem.adapt_markers(*args)

def adapt(*args):
  """
    **Overloaded versions**

    * adapt\ (mesh)

      Refine mesh uniformly

    * adapt\ (mesh, cell_markers)

      Refine mesh based on cell markers

    * adapt\ (space)

      Refine function space uniformly

    * adapt\ (space, cell_markers)

      Refine function space based on cell markers

    * adapt\ (space, adapted_mesh)

      Refine function space based on refined mesh

    * adapt\ (function, adapted_mesh, interpolate=true)

      Adapt Function based on adapted mesh
      
      *Arguments*
          function (:py:class:`Function`)
              The function that should be adapted
          adapted_mesh (:py:class:`Mesh`)
              The new mesh
          interpolate (bool)
              Optional argument, default is true. If false, the
              function's function space is adapted, but the values are
              not interpolated.
      
      *Returns*
          :py:class:`Function`
              The adapted function

    * adapt\ (function, adapted_mesh)

      Refine GenericFunction based on refined mesh

    * adapt\ (mesh_function, adapted_mesh)

      Refine mesh function<std::size_t> based on mesh

    * adapt\ (bc, adapted_mesh, S)

      Refine Dirichlet bc based on refined mesh

    * adapt\ (form, adapted_mesh, adapt_coefficients=true)

      Adapt form based on adapted mesh
      
      *Arguments*
          form (:py:class:`Form`)
              The form that should be adapted
          adapted_mesh (:py:class:`Mesh`)
              The new mesh
          adapt_coefficients (bool)
              Optional argument, default is true. If false, the form
              coefficients are not explictly adapted, but pre-adapted
              coefficients will be transferred.
      
      *Returns*
          :py:class:`Form`
              The adapted form

    * adapt\ (problem, adapted_mesh)

      Refine linear variational problem based on mesh

    * adapt\ (problem, adapted_mesh)

      Refine nonlinear variational problem based on mesh

    * adapt\ (ec, adapted_mesh, adapt_coefficients=true)

      Adapt error control object based on adapted mesh
      
      *Arguments*
          ec (:py:class:`ErrorControl`)
              The error control object to be adapted
          adapted_mesh (:py:class:`Mesh`)
              The new mesh
          adapt_coefficients (bool)
              Optional argument, default is true. If false, any form
              coefficients are not explictly adapted, but pre-adapted
              coefficients will be transferred.
      
      *Returns*
          :py:class:`ErrorControl`
              The adapted error control object

    """
  return _fem.adapt(*args)

def mark(*args):
  """
    Mark cells based on indicators and given marking strategy

    *Arguments*
        markers (:py:class:`MeshFunction`)
            the cell markers (to be computed)

        indicators (:py:class:`MeshFunction`)
            error indicators (one per cell)

        strategy (str)
            the marking strategy

        fraction (float)
            the marking fraction

    """
  return _fem.mark(*args)

def dorfler_mark(*args):
  """
    Mark cells using Dorfler marking

    *Arguments*
        markers (:py:class:`MeshFunction`)
            the cell markers (to be computed)

        indicators (:py:class:`MeshFunction`)
            error indicators (one per cell)

        fraction (float)
            the marking fraction

    """
  return _fem.dorfler_mark(*args)

def fem_solve(*args):
  """
    **Overloaded versions**

    * solve\ (equation, u, tol, M)

      Solve linear variational problem a(u, v) == L(v) without
      essential boundary conditions

    * solve\ (equation, u, bc, tol, M)

      Solve linear variational problem a(u, v) == L(v) with single
      boundary condition

    * solve\ (equation, u, bcs, tol, M)

      Solve linear variational problem a(u, v) == L(v) with list of
      boundary conditions

    * solve\ (equation, u, J, tol, M)

      Solve nonlinear variational problem F(u; v) = 0 without
      essential boundary conditions

    * solve\ (equation, u, bc, J, tol, M)

      Solve linear variational problem F(u; v) = 0 with single
      boundary condition

    * solve\ (equation, u, bcs, J, tol, M)

      Solve linear variational problem F(u; v) = 0 with list of
      boundary conditions

    """
  return _fem.fem_solve(*args)
HierarchicalErrorControl.leaf_node = HierarchicalErrorControl._leaf_node
HierarchicalErrorControl.root_node = HierarchicalErrorControl._root_node
HierarchicalErrorControl.child = HierarchicalErrorControl._child
HierarchicalErrorControl.parent = HierarchicalErrorControl._parent