This file is indexed.

/usr/lib/python2.7/dist-packages/dolfin/fem/norms.py is in python-dolfin 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""This module provides a simple way to compute various norms of
:py:class:`Vectors <dolfin.cpp.Vector>` and :py:class:`Functions
<dolfin.functions.function.Function>`, including the standard
:math:`L^2`-norm and other norms."""

# Copyright (C) 2008 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2008-03-19
# Last changed: 2009-12-11

__all__ = ["norm", "errornorm"]

from ufl import inner, grad, div, curl, dx, FiniteElement, VectorElement, Coefficient
from math import sqrt

import dolfin.cpp as cpp

from dolfin.cpp import GenericVector, GenericFunction, Function, Mesh, error, Vector
from dolfin.fem.assembling import assemble
from dolfin.fem.interpolation import interpolate
from dolfin.functions.function import Function
from dolfin.functions.functionspace import FunctionSpace, VectorFunctionSpace

dim_to_shape = {1: "interval", 2: "triangle", 3: "tetrahedron"}

def norm(v, norm_type="L2", mesh=None):
    """
    Return the norm of a given vector or function.

    *Arguments*
        v
            a :py:class:`Vector <dolfin.cpp.Vector>` or
            a :py:class:`Function <dolfin.functions.function.Function>`.
        norm_type
            see below for alternatives.
        mesh
            optional :py:class:`Mesh <dolfin.cpp.Mesh>` on
            which to compute the norm.

    If the norm type is not specified, the standard :math:`L^2` -norm
    is computed. Possible norm types include:

    *Vectors*

    ================   =================  ================
    Norm               Usage
    ================   =================  ================
    :math:`l^2`        norm(x, 'l2')      Default
    :math:`l^1`        norm(x, 'l1')
    :math:`l^\infty`   norm(x, 'linf')
    ================   =================  ================

    *Functions*

    ================  =================  =================================
    Norm              Usage              Includes the :math:`L^2` -term
    ================  =================  =================================
    :math:`L^2`       norm(v, 'L2')      Yes
    :math:`H^1`       norm(v, 'H1')      Yes
    :math:`H^1_0`     norm(v, 'H10')     No
    :math:`H` (div)   norm(v, 'Hdiv')    Yes
    :math:`H` (div)   norm(v, 'Hdiv0')   No
    :math:`H` (curl)  norm(v, 'Hcurl')   Yes
    :math:`H` (curl)  norm(v, 'Hcurl0')  No
    ================  =================  =================================

    *Examples of usage*

    .. code-block:: python

        v = Function(V)
        x = v.vector()

        print norm(x, 'linf')   # print the infinity norm of vector x

        n = norm(v)             # compute L^2 norm of v
        print norm(v, 'Hdiv')   # print H(div) norm of v
        n = norm(v, 'H1', mesh) # compute H^1 norm of v on given mesh

    """

    if not isinstance(v, (GenericVector, GenericFunction)):
        raise TypeError, "expected a GenericVector or GenericFunction"

    # Check arguments
    if not isinstance(norm_type, str):
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Norm type must be a string, not " + str(type(norm_type)))
    if mesh is not None and not isinstance(mesh, Mesh):
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Expecting a Mesh, not " + str(type(mesh)))

    # Select norm type
    if isinstance(v, GenericVector):
        return v.norm(norm_type.lower())

    elif (isinstance(v, Coefficient) and isinstance(v, GenericFunction)):
        if norm_type.lower() == "l2":
            M = inner(v, v)*dx()
        elif norm_type.lower() == "h1":
            M = inner(v, v)*dx() + inner(grad(v), grad(v))*dx()
        elif norm_type.lower() == "h10":
            M = inner(grad(v), grad(v))*dx()
        elif norm_type.lower() == "hdiv":
            M = inner(v, v)*dx() + div(v)*div(v)*dx()
        elif norm_type.lower() == "hdiv0":
            M = div(v)*div(v)*dx()
        elif norm_type.lower() == "hcurl":
            M = inner(v, v)*dx() + inner(curl(v), curl(v))*dx()
        elif norm_type.lower() == "hcurl0":
            M = inner(curl(v), curl(v))*dx()
        else:
            cpp.dolfin_error("norms.py",
                             "compute norm",
                             "Unknown norm type (\"%s\") for functions" % str(norm_type))
    else:
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Unknown object type. Must be a vector or a function")

    # Get mesh
    if isinstance(v, Function) and mesh is None:
        mesh = v.function_space().mesh()

    # Assemble value
    r = assemble(M, mesh=mesh, form_compiler_parameters={"representation": "quadrature"})

    # Check value
    if r < 0.0:
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Square of norm is negative, might be a round-off error")
    elif r == 0.0:
        return 0.0
    else:
        return sqrt(r)

def errornorm(u, uh, norm_type="l2", degree_rise=3, mesh=None):
    """
    Compute and return the error :math:`e = u - u_h` in the given norm.

    *Arguments*
        u, uh
            :py:class:`Functions <dolfin.functions.function.Function>`
        norm_type
            Type of norm. The :math:`L^2` -norm is default.
            For other norms, see :py:func:`norm <dolfin.fem.norms.norm>`.
        degree_rise
            The number of degrees above that of u_h used in the
            interpolation; i.e. the degree of piecewise polynomials used
            to approximate :math:`u` and :math:`u_h` will be the degree
            of :math:`u_h` + degree_raise.
        mesh
            Optional :py:class:`Mesh <dolfin.cpp.Mesh>` on
            which to compute the error norm.

    In simple cases, one may just define

    .. code-block:: python

        e = u - uh

    and evalute for example the square of the error in the :math:`L^2` -norm by

    .. code-block:: python

        assemble(e*e*dx(), mesh)

    However, this is not stable w.r.t. round-off errors considering that
    the form compiler may expand the expression above to::

        e*e*dx() = u*u*dx() - 2*u*uh*dx() + uh*uh*dx()

    and this might get further expanded into thousands of terms for
    higher order elements. Thus, the error will be evaluated by adding
    a large number of terms which should sum up to something close to
    zero (if the error is small).

    This module computes the error by first interpolating both
    :math:`u` and :math:`u_h` to a common space (of high accuracy),
    then subtracting the two fields (which is easy since they are
    expressed in the same basis) and then evaluating the integral.

    """

    # Check argument
    if not isinstance(u, cpp.GenericFunction):
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Expecting a Function or Expression for u")
    if not isinstance(uh, cpp.Function):
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Expecting a Function for uh")

    # Get mesh
    if isinstance(u, Function) and mesh is None:
        mesh = u.function_space().mesh()
    if isinstance(uh, Function) and mesh is None:
        mesh = uh.function_space().mesh()
    if mesh is None:
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Missing mesh")

    # Get rank
    if not u.value_rank() == uh.value_rank():
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Value ranks don't match")
    rank = u.value_rank()

    # Check that uh is associated with a finite element
    if uh.ufl_element().degree() is None:
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Function uh must have a finite element")

    # Degree for interpolation space. Raise degree with respect to uh.
    degree = uh.ufl_element().degree() + degree_rise

    # Check degree of 'exact' solution u
    degree_u = u.ufl_element().degree()
    if degree_u is not None and degree_u < degree:
        cpp.warning("Degree of exact solution may be inadequate for accurate result in errornorm.")

    # Create function space
    if rank == 0:
        V = FunctionSpace(mesh, "Discontinuous Lagrange", degree)
    elif rank == 1:
        V = VectorFunctionSpace(mesh, "Discontinuous Lagrange", degree)
    else:
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Can't handle elements of rank %d" % rank)

    # Interpolate functions into finite element space
    pi_u = interpolate(u, V)
    pi_uh = interpolate(uh, V)

    # Compute the difference
    e = Function(V)
    e.assign(pi_u)
    e.vector().axpy(-1.0, pi_uh.vector())

    # Compute norm
    return norm(e, norm_type=norm_type, mesh=mesh)