This file is indexed.

/usr/lib/python2.7/dist-packages/dolfin/functions/function.py is in python-dolfin 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
"""This module handles the Function class in Python.
"""
# Copyright (C) 2009 Johan Hake
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2009-10-06
# Last changed: 2011-04-18

__all__ = ["Function", "TestFunction", "TrialFunction", "Argument",
           "TestFunctions", "TrialFunctions"]

import types

# Import UFL and SWIG-generated extension module (DOLFIN C++)
import ufl
import dolfin.cpp as cpp
import numpy

from dolfin.functions.functionspace import FunctionSpaceBase
from dolfin.functions.constant import Constant

def _assign_error():
    cpp.dolfin_error("function.py",
                     "assign function",
                     "Expects only linear combinations of Functions in "\
                     "the same FunctionSpaces")

def _check_mul_and_division(e, linear_comb, scalar_weight=1.0, multi_index=None):
    """
    Utility func for checking division and multiplication of a Function
    with scalars in linear combinations of Functions
    """
    from ufl.constantvalue import ScalarValue
    from ufl.classes import ComponentTensor, MultiIndex, Indexed
    from ufl.algebra import Division, Product, Sum
    #ops = e.operands()

    # FIXME: What should be checked!?
    same_multi_index = lambda x, y: len(x.free_indices()) == len(y.free_indices()) \
                and x.index_dimensions().values() == y.index_dimensions().values()

    assert(isinstance(scalar_weight, float))

    # Split passed expression into scalar and expr
    if isinstance(e, Product):
        for i, op in enumerate(e.operands()):
            if isinstance(op, ScalarValue) or \
                   (isinstance(op, Constant) and op.value_size()==1):
                scalar = op
                expr = e.operands()[1-i]
                break
        else:
            _assign_error()

        scalar_weight *= float(scalar)
    elif isinstance(e, Division):
        expr, scalar = e.operands()
        if not (isinstance(scalar, ScalarValue) or \
                isinstance(scalar, Constant) and scalar.value_rank()==1):
            _assign_error()
        scalar_weight /= float(scalar)
    else:
        _assign_error()

    # If a CoefficientTensor is passed we expect the expr to be either a
    # Function or another ComponentTensor, where the latter wil result
    # in a recursive call
    if multi_index:
        assert(isinstance(multi_index, MultiIndex))
        assert(isinstance(expr, Indexed))

        # Unpack Indexed and check equality with passed multi_index
        expr, multi_index2 = expr.operands()
        assert(isinstance(multi_index2, MultiIndex))
        if not same_multi_index(multi_index, multi_index2):
            _assign_error()

    if isinstance(expr, Function):
        linear_comb.append((expr, scalar_weight))

    elif isinstance(expr, (ComponentTensor, Product, Division, Sum)):
        # If componentTensor we need to unpack the MultiIndices
        if isinstance(expr, ComponentTensor):
            expr, multi_index = expr.operands()
            if not same_multi_index(multi_index, multi_index2):
                _error()

        if isinstance(expr, (Product, Division)):
            linear_comb = _check_mul_and_division(expr, linear_comb, \
                                                  scalar_weight, multi_index)
        elif isinstance(expr, Sum):
            linear_comb = _check_and_extract_functions(expr, linear_comb, \
                                                       scalar_weight, multi_index)
        else:
            _assign_error()
    else:
        _assign_error()

    return linear_comb

def _check_and_extract_functions(e, linear_comb=None, scalar_weight=1.0,
                                 multi_index=None):
    """
    Utility func for extracting Functions and scalars in linear
    combinations of Functions
    """
    from ufl.algebra import Sum, Product, Division
    from ufl.classes import ComponentTensor
    linear_comb = linear_comb or []

    # First check u
    if isinstance(e, Function):
        linear_comb.append((e, scalar_weight))
        return linear_comb

    # Second check a*u*b, u/a/b, a*u/b where a and b are scalars
    elif isinstance(e, (Product, Division)):
        linear_comb = _check_mul_and_division(e, linear_comb, scalar_weight, multi_index)
        return linear_comb

    # Third check a*u*b, u/a/b, a*u/b where a and b are scalars and u is a Tensor
    elif isinstance(e, ComponentTensor):
        e, multi_index = e.operands()
        linear_comb = _check_mul_and_division(e, linear_comb, scalar_weight, multi_index)
        return linear_comb

    # If not Product or Division we expect Sum
    elif isinstance(e, Sum):
        for op in e.operands():
            linear_comb = _check_and_extract_functions(op, linear_comb, \
                                                       scalar_weight, multi_index)

    else:
        _assign_error()

    return linear_comb

def _check_and_contract_linear_comb(expr, self, multi_index):
    """
    Utility func for checking and contracting linear combinations of
    Functions
    """
    linear_comb = _check_and_extract_functions(expr, multi_index=multi_index)
    funcs = []
    weights = []
    funcspace = None
    for func, weight in linear_comb:
        funcspace = funcspace or func.function_space()
        if func not in funcspace:
            _assign_error()
        try:
            # Check if the exact same Function is already present
            ind = funcs.index(func)
            weights[ind] += weight
        except:
            funcs.append(func)
            weights.append(weight)

    # Check that rhs does not include self
    for ind, func in enumerate(funcs):
        if func == self:
            # If so make a copy
            funcs[ind] = self.copy(deepcopy=True)
            break

    return zip(funcs, weights)

class MetaNoEvalOverloading(type):
    def __init__(mcs, name, bases, dictionary):
        if "eval" in dictionary:
            raise TypeError("cannot overload 'eval'")

class Function(ufl.Coefficient, cpp.Function):
    """
    This class represents a function :math:`u_h` in a finite
    element function space :math:`V_h`, given by

    .. math::

        u_h = \sum_{i=1}^n U_i \phi_i,

    where :math:`\{\phi_i\}_{i=1}^n` is a basis for :math:`V_h`,
    and :math:`U` is a vector of expansion coefficients for
    :math:`u_h`.

    *Arguments*
        There is a maximum of three arguments. The first argument must be a
        Function or a :py:class:`FunctionSpace
        <dolfin.functions.functionspace.FunctionSpace>`.

        If instantiated from another Function, the (optional)
        second argument must be an integer denoting the number
        of sub functions to extract.

        In addition can a name argument be passed overruling the default name

    *Examples*
        Create a Function:

        - from a :py:class:`FunctionSpace
          <dolfin.functions.functionspace.FunctionSpace>` ``V``

          .. code-block:: python

              f = Function(V)

        - from another Function ``f``

          .. code-block:: python

              g = Function(f)

        - from a :py:class:`FunctionSpace
          <dolfin.functions.functionspace.FunctionSpace>` ``V`` and a
          :py:class:`GenericVector <dolfin.cpp.GenericVector>` ``v``

          .. code-block:: python

              g = Function(V, v)

        - from a :py:class:`FunctionSpace
          <dolfin.functions.functionspace.FunctionSpace>` and a
          filename containg a :py:class:`GenericVector
          <dolfin.cpp.GenericVector>`

          .. code-block:: python

              g = Function(V, 'MyVectorValues.xml')

    """

    __metaclass__ = MetaNoEvalOverloading

    def __init__(self, *args, **kwargs):
        """Initialize Function."""
        # Check arguments
        if len(args) == 0:
            raise TypeError("expected 1 or more arguments")

        if not isinstance(args[0], (FunctionSpaceBase, cpp.Function)):
            raise TypeError("expected a FunctionSpace or a Function as argument 1")

        # If using the copy constuctor
        if isinstance(args[0], Function):
            other = args[0]
            # If using the copy constuctor
            if len(args) == 1:
                # Instantiate base classes
                cpp.Function.__init__(self, other)
                ufl.Coefficient.__init__(self, other._element)
                return

            # If using sub-function constructor
            elif len(args) == 2 and isinstance(args[1], int):
                i = args[1]
                num_sub_spaces = other.function_space().num_sub_spaces()

                if num_sub_spaces == 1:
                    raise RuntimeError("No subfunctions to extract")
                if not i < num_sub_spaces:
                    raise RuntimeError("Can only extract subfunctions "
                                       "with i = 0..%d"% num_sub_spaces)
                cpp.Function.__init__(self, other, i)
                ufl.Coefficient.__init__(self, self.function_space().ufl_element())
                return
            else:
                raise TypeError("expected one or two arguments when "
                                "instantiating from another Function")

        # If creating a dolfin.Function from a cpp.Function
        elif isinstance(args[0], cpp.Function):
            if  len(args) == 1:

                # Lets be agressive in abusing dynamic typing shall we...
                self.__class__ = Function
                self.__dict__ = args[0].__dict__

                # Instantiate base classes
                V = args[0].function_space()
                ufl.Coefficient.__init__(self, V.ufl_element())
                return
            else:
                raise TypeError("expected only one argument when passing cpp.Function"
                                "to dolfin.Function constructor")

        V = args[0]

        # Instantiate ufl base class
        ufl.Coefficient.__init__(self, V.ufl_element())

        # Passing only the FunctionSpace
        if len(args) == 1:
            # Instantiate cpp base classes
            cpp.Function.__init__(self, V)
        elif len(args) == 2:
            # If passing FunctionSpace together with cpp.Function
            # Attached passed FunctionSpace and initialize the cpp.Function
            # using the passed Function
            if isinstance(args[1], cpp.Function):
                if args[1].function_space().dim() != V.dim():
                    raise ValueError("non matching dimensions on passed FunctionSpaces")

                cpp.Function.__init__(self, args[1])
            else:
                cpp.Function.__init__(self, *args)
        else:
            raise TypeError("too many arguments")

        # Set name as given or automatic
        name = kwargs.get("name") or "f_%d" % self.count()
        self.rename(name, "a Function")

    def _sub(self, i, deepcopy = False):
        cpp.deprecation("Using Function._sub", "1.3.0",
                        "Use Function.sub instead")
        self.sub(i, deepcopy)


    def sub(self, i, deepcopy = False):
        """
        Return a sub function.

        The sub functions are numbered from i = 0..N-1, where N is the
        total number of sub spaces.

        *Arguments*
            i : int
                The number of the sub function

        """
        if not isinstance(i, int):
            raise TypeError("expects an 'int' as first argument")
        num_sub_spaces = self.function_space().num_sub_spaces()
        if num_sub_spaces == 1:
            raise RuntimeError("No subfunctions to extract")
        if not i < num_sub_spaces:
            raise RuntimeError("Can only extract subfunctions with i = 0..%d"% num_sub_spaces)

        # Create and instantiate the Function
        if deepcopy:
            return Function(self.function_space().sub(i), cpp.Function.sub(self, i))
        else:
            return Function(self, i)

    def assign(self, rhs):
        """
        Assign either a Function or linear combination of Functions.

        *Arguments*
            rhs (_Function_)
                A Function or a linear combination of Functions. If a linear
                combination is passed all Functions need to be in the same
                FunctionSpaces.
        """
        from ufl.operatorbase import AlgebraOperator
        from ufl.classes import ComponentTensor
        multi_index = None
        if isinstance(rhs, (cpp.Function, cpp.Expression, cpp.FunctionAXPY)):
            # Avoid self assignment
            if self == rhs:
                return

            self._assign(rhs)
        elif isinstance(rhs, (AlgebraOperator, ComponentTensor)):
            if isinstance(rhs, ComponentTensor):
                rhs, multi_index = rhs.operands()
            linear_comb = _check_and_contract_linear_comb(rhs, self, multi_index)
            assert(linear_comb)

            # If the assigned Function lives in a different FunctionSpace
            # we cannot operate on this function directly
            same_func_space = linear_comb[0][0] in self.function_space()
            func, weight = linear_comb.pop()

            # Assign values from first func
            if not same_func_space:
                self._assign(func)
                vector = self.vector()
            else:
                vector = self.vector()
                vector[:] = func.vector()

            # If first weight is not 1 scale
            if weight != 1.0:
                vector *= weight

            # AXPY the other functions
            for func, weight in linear_comb:
                if weight == 0.0:
                    continue
                vector.axpy(weight, func.vector())

        else:
            cpp.dolfin_error("function.py",
                             "function assignment",
                             "Expects a Function or linear combinations of "\
                             "Functions in the same FunctionSpaces")

    def split(self, deepcopy=False):
        """
        Extract any sub functions.

        A sub function can be extracted from a discrete function that
        is in a :py:class:`MixedFunctionSpace
        <dolfin.functions.functionspace.MixedFunctionSpace>` or in a
        :py:class:`VectorFunctionSpace
        <dolfin.functions.functionspace.VectorFunctionSpace>`. The sub
        function resides in the subspace of the mixed space.

        *Arguments*
            deepcopy
                Copy sub function vector instead of sharing

        """

        num_sub_spaces = self.function_space().num_sub_spaces()
        if num_sub_spaces == 1:
            raise RuntimeError("No subfunctions to extract")
        return tuple(self.sub(i, deepcopy) for i in xrange(num_sub_spaces))

    def ufl_element(self):
        """Return ufl element"""
        return self._element

    def __str__(self):
        """Return a pretty print representation of it self.
        """
        return self.name()

    def __repr__(self):
        """Return a str repr of it self.

        Must use ufl.__repr__ for this"""
        return ufl.Coefficient.__repr__(self)

    def str(self, verbose=False):
        """Return an informative str representation of itself"""
        # FIXME: We might change this using rank and dimension instead
        return "<Function in %s>" % str(self.function_space())

    def ufl_evaluate(self, x, component, derivatives):
        """Function used by ufl to evaluate the Function"""
        import numpy
        import ufl
        assert derivatives == () # TODO: Handle derivatives

        if component:
            shape = self.shape()
            assert len(shape) == len(component)
            value_size = ufl.common.product(shape)
            index = ufl.common.component_to_index(component, shape)
            values = numpy.zeros(value_size)
            self(*x, values=values)
            return values[index]
        else:
            # Scalar evaluation
            return self(*x)

    def __float__(self):
        if self.shape() != ():
            raise RuntimeError("Cannot convert nonscalar function to float.")
        elm = self.ufl_element()
        if elm.family() != "Real":
            raise RuntimeError("Cannot convert spatially varying function to float.")
        # Gather value directly from vector in a parallell safe way
        vec = self.vector()
        indices = numpy.zeros(1, dtype='intc')
        values = vec.gather(indices)
        return float(values[0])

    def __call__(self, *args, **kwargs):
        """
        Evaluates the Function.

        *Examples*
            1) Using an iterable as x:

              .. code-block:: python

                  fs = Expression("sin(x[0])*cos(x[1])*sin(x[3])")
                  x0 = (1.,0.5,0.5)
                  x1 = [1.,0.5,0.5]
                  x2 = numpy.array([1.,0.5,0.5])
                  v0 = fs(x0)
                  v1 = fs(x1)
                  v2 = fs(x2)

            2) Using multiple scalar args for x, interpreted as a
            point coordinate

              .. code-block:: python

                  v0 = f(1.,0.5,0.5)

            3) Using a Point

              .. code-block:: python

                  p0 = Point(1.,0.5,0.5)
                  v0 = f(p0)

            3) Passing return array

              .. code-block:: python

                  fv = Expression(("sin(x[0])*cos(x[1])*sin(x[3])",
                               "2.0","0.0"))
                  x0 = numpy.array([1.,0.5,0.5])
                  v0 = numpy.zeros(3)
                  fv(x0, values = v0)

              .. note::

                  A longer values array may be passed. In this way one can fast
                  fill up an array with different evaluations.

              .. code-block:: python

                  values = numpy.zeros(9)
                  for i in xrange(0,10,3):
                      fv(x[i:i+3], values = values[i:i+3])

        """

        if len(args)==0:
            raise TypeError("expected at least 1 argument")

        # Test for ufl restriction
        if len(args) == 1 and args[0] in ('+','-'):
            return ufl.Coefficient.__call__(self, *args)

        # Test for ufl mapping
        if len(args) == 2 and isinstance(args[1], dict) and self in args[1]:
            return ufl.Coefficient.__call__(self, *args)

        # Some help variables
        value_size = ufl.common.product(self.ufl_element().value_shape())

        # If values (return argument) is passed, check the type and length
        values = kwargs.get("values", None)
        if values is not None:
            if not isinstance(values, numpy.ndarray):
                raise TypeError("expected a NumPy array for 'values'")
            if len(values) != value_size or \
                   not numpy.issubdtype(values.dtype, 'd'):
                raise TypeError("expected a double NumPy array of length"\
                      " %d for return values."%value_size)
            values_provided = True
        else:
            values_provided = False
            values = numpy.zeros(value_size, dtype='d')

        # Get the dimension of the cell
        dim = self.ufl_element().cell().geometric_dimension()

        # Assume all args are x argument
        x = args

        # If only one x argument has been provided, unpack it if it's an iterable
        if len(x) == 1:
            if isinstance(x[0], cpp.Point):
                x = [x[0][i] for i in xrange(dim)]
            elif hasattr(x[0], '__iter__'):
                x = x[0]

        # Convert it to an 1D numpy array
        try:
            x = numpy.fromiter(x, 'd')
        except (TypeError, ValueError, AssertionError), e:
            raise TypeError("expected scalar arguments for the coordinates")

        if len(x) == 0:
            raise TypeError("coordinate argument too short")

        if len(x) != dim:
            raise TypeError("expected the geometry argument to be of "\
                  "length %d"%dim)

        # The actual evaluation
        self.eval(values, x)

        # If scalar return statement, return scalar value.
        if value_size == 1 and not values_provided:
            return values[0]

        return values

#--- Subclassing of ufl.{Basis, Trial, Test}Function ---

_ufl_dolfin_difference_message = """\
When constructing an Argument, TestFunction or TrialFunction,
you must to provide a FunctionSpace and not a FiniteElement.
The FiniteElement class provided by ufl only represents an
abstract finite element space and is only used in standalone
.ufl files, while the FunctionSpace provides a full discrete
function space over a given mesh and should be used in dolfin
programs in Python.
"""

class Argument(ufl.Argument):
    """UFL value: Representation of an argument to a form.

    This is the overloaded PyDOLFIN variant.
    """
    def __init__(self, V, index=None):
        if not isinstance(V, FunctionSpaceBase):
            if isinstance(V, ufl.FiniteElementBase):
                raise TypeError(_ufl_dolfin_difference_message)
            else:
                raise TypeError("Illegal argument for creation of Argument, not a FunctionSpace: " + str(V))
            raise TypeError("Illegal argument for creation of Argument, not a FunctionSpace: " + str(V))
        ufl.Argument.__init__(self, V.ufl_element(), index)
        self._V = V

    def function_space(self):
        "Return the FunctionSpace"
        return self._V

    def __eq__(self, other):
        """Extending UFL __eq__ here to distinguish test and trial
        functions in different function spaces with same ufl element."""
        return (isinstance(other, Argument) and
                self._count == other._count and
                self._V == other._V)

def TestFunction(V):
    """UFL value: Create a test function argument to a form.

    This is the overloaded PyDOLFIN variant.
    """
    return Argument(V, -2)

def TrialFunction(V):
    """UFL value: Create a trial function argument to a form.

    This is the overloaded PyDOLFIN variant.
    """
    return Argument(V, -1)

#--- TestFunctions and TrialFunctions ---

def Arguments(V):
    """UFL value: Create an Argument in a mixed space, and return a
    tuple with the function components corresponding to the subelements.

    This is the overloaded PyDOLFIN variant.
    """
    return ufl.split(Argument(V))

def TestFunctions(V):
    """UFL value: Create a TestFunction in a mixed space, and return a
    tuple with the function components corresponding to the subelements.

    This is the overloaded PyDOLFIN variant.
    """
    return ufl.split(TestFunction(V))

def TrialFunctions(V):
    """UFL value: Create a TrialFunction in a mixed space, and return a
    tuple with the function components corresponding to the subelements.

    This is the overloaded PyDOLFIN variant.
    """
    return ufl.split(TrialFunction(V))