This file is indexed.

/usr/lib/python2.7/dist-packages/dolfin/functions/functionspace.py is in python-dolfin 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
"""
This module contains functionality for function spaces in particular
discrete function spaces defined over meshes in terms of finite
elements.
"""

# Copyright (C) 2008 Johan Hake
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg 2008
# Modified by Martin Alnes 2008
# Modified by Kent-Andre Mardal 2009
# Modified by Marie E. Rognes 2012
#
# First added:  2008-11-03
# Last changed: 2012-12-04

__all__ = ["FunctionSpace", "MixedFunctionSpace",
           "VectorFunctionSpace", "TensorFunctionSpace",
           "FunctionSpaceBase","FunctionSpaceFromCpp",
           "create_ufc_function_spaces"]

import copy
import numpy

# Import UFL and SWIG-generated extension module (DOLFIN C++)
import ufl

import dolfin.cpp as cpp
from dolfin.compilemodules.jit import jit

# Mapping from dimension to domain
#dim2domain = {1: "interval", 2: "triangle", 3: "tetrahedron"}

class FunctionSpaceBase(cpp.FunctionSpace):
    "Base class for all function spaces."

    def __init__(self, mesh, element, constrained_domain=None):
        """Create function space on given mesh for given finite element.

        *Arguments*
            mesh
                A :py:class:`Mesh <dolfin.cpp.Mesh>`
            element
                A :py:class:`(UFL) FiniteElement <ufl.FiniteElementBase>`

        """

        # Check arguments
        if not isinstance(mesh, (cpp.Mesh, cpp.Restriction)):
            cpp.dolfin_error("functionspace.py",
                             "create function space",
                             "Illegal argument, not a mesh or restriction: " + str(mesh))
        if not isinstance(element, (ufl.FiniteElementBase)):
            cpp.dolfin_error("functionspace.py",
                             "create function space",
                             "Illegal argument, not a finite element: " + str(element))
        if constrained_domain is not None:
            if not isinstance(constrained_domain, cpp.SubDomain):
                cpp.dolfin_error("functionspace.py",
                                 "create function space",
                                 "Illegal argument, not a subdomain: " + str(constrained_domain))

        # Store element
        # Note: self._element cannot be a private attribute as we want to be able to
        #       set the element from a derived class.
        self._ufl_element = element

        # JIT-compile element to get ufc_element and ufc_dofmap
        ufc_element, ufc_dofmap = jit(self._ufl_element)

        # Instantiate DOLFIN FiniteElement and DofMap
        self._dolfin_element = cpp.FiniteElement(ufc_element)
        if constrained_domain is not None:
            if isinstance(mesh, cpp.Restriction):
                cpp.dolfin_error("functionspace.py",
                                 "create function space",
                                 "Cannot use constrained domains together with restrictions.")
            dolfin_dofmap  = cpp.DofMap(ufc_dofmap, mesh, constrained_domain)
        else:
            if isinstance(mesh, cpp.Restriction):
                dolfin_dofmap = cpp.DofMap(ufc_dofmap, mesh)
                mesh = mesh.mesh()
            else:
                dolfin_dofmap  = cpp.DofMap(ufc_dofmap, mesh)

        # Initialize the cpp_FunctionSpace
        cpp.FunctionSpace.__init__(self, mesh,
                                   self._dolfin_element,
                                   dolfin_dofmap)

    # FIXME: Sort out consistent interface for access to DOLFIN, UFL and UFC objects...

    def cell(self):
        "Return the ufl cell."
        return self._ufl_element.cell()

    def ufl_element(self):
        "Return the UFL element."
        return self._ufl_element

    def dolfin_element(self):
        "Return the DOLFIN element."
        return self._dolfin_element

    def __add__(self, other):
        "Create enriched function space."
        return EnrichedFunctionSpace((self, other))

    def __mul__(self, other):
        "Create mixed function space."
        return MixedFunctionSpace((self, other))

    def __str__(self):
        "Pretty-print."
        return "<Function space of dimension %d (%s)>" % \
               (self.dofmap().global_dimension(), str(self._ufl_element))

    def num_sub_spaces(self):
        "Return the number of sub spaces"
        return self._dolfin_element.num_sub_elements()

    def sub(self, i):
        "Return the i:th cpp.SubSpace"
        # Fixme: Should we have a more extensive check other than whats included in
        # the cpp code?
        #if i not in self._cpp_sub_spaces.keys():
            # Store the created subspace to prevent swig garbage collection
            # Should not be needed as SubSpace is shared_ptr stored
        #    self._cpp_sub_spaces[i] = FunctionSpaceFromCpp(cpp.SubSpace(self,i))
        if not isinstance(i, int):
            raise TypeError, "expected an int for 'i'"
        if self.num_sub_spaces() == 1:
            raise ValueError, "no SubSpaces to extract"
        if i >= self.num_sub_spaces():
            raise ValueError, "Can only extract SubSpaces with i = 0 ... %d" % \
                  (self.num_sub_spaces() - 1)
        assert(hasattr(self._ufl_element,"sub_elements"))
        element = self._ufl_element.sub_elements()[i]
        return FunctionSpaceFromCpp(cpp.SubSpace(self, i), element)

    def extract_sub_space(self, component):
        """
        Extract subspace for component

        *Arguments*
            component (numpy.array(uint))
               The component.

        *Returns*
            _FunctionSpace_
                The subspace.
        """

        # Transform the argument to a NumPy array
        if not hasattr(component, "__len__"):
            cpp.dolfin_error("functionspace.py",
                             "extracting sub spaces",
                             "Expected a component which is iterable")
        component = numpy.asarray(component, dtype=numpy.uintp)

        # Get the cpp version of the FunctionSpace
        cpp_space = cpp.FunctionSpace.extract_sub_space(self, component)

        # Instantiate a ufl finite element based on the dolfin element signature
        element = eval(cpp_space.element().signature(), ufl.__dict__)
        return FunctionSpaceFromCpp(cpp_space, element)

    def split(self):
        """
        Split a mixed functionspace into its sub spaces
        """
        S = []
        for i in range(self.num_sub_spaces()):
            S.append(self.sub(i))
        return S

    def collapse(self, collapsed_dofs=False):
        """
        Collapse a subspace and return a new function space and a map
        from new to old dofs

        *Arguments*
            collapsed_dofs (bool)
                Return the map from new to old dofs

       *Returns*
           _FunctionSpace_
                The new function space.
           dict
                The map from new to old dofs (optional)
        """
        cpp_space, dofs = cpp.FunctionSpace.collapse(self)
        if collapsed_dofs:
            return FunctionSpaceFromCpp(cpp_space), dofs
        return FunctionSpaceFromCpp(cpp_space)

class FunctionSpaceFromCpp(FunctionSpaceBase):
    "FunctionSpace represents a finite element function space."
    def __init__(self, cppV, element=None):
        """ Initialize a FunctionSpace from an already excisting
            cpp.FunctionSpace.
        """
        if not isinstance(cppV, (cpp.FunctionSpace)):
            cpp.dolfin_error("functionspace.py",
                             "create function space",
                             "Illegal argument, not a cpp.FunctionSpace: " + str(cppV))

        if element is None:
            # Get the ufl.FiniteElement from the compiled element sigature
            self._ufl_element = eval(cppV.element().signature(), ufl.__dict__)
        else:
            if not isinstance(element, ufl.FiniteElementBase):
                raise TypeError, "expected a ufl.FiniteElementBase"
            self._ufl_element = element

        # Init the cpp.FunctionSpace with the provided cppV
        cpp.FunctionSpace.__init__(self, cppV)

        # Assign the dolfin element
        self._dolfin_element = cpp.FunctionSpace.element(self)

def create_ufc_function_spaces(mesh, ufc_form, cache=None):
    """
    Instantiate cpp.FunctionSpaces from compiled ufc form.

    *Arguments*
        mesh
            a :py:class:`Mesh <dolfin.cpp.Mesh>`.
        ufc_form
            compiled ufc form
        cache
            a 'dict' with already instantiated
            :py:class:`cpp.FunctionSpaces <dolfin.cpp.FunctionSpace>`.

    *Examples of usage*

        .. code-block:: python

            fs0, c = create_ufc_function_spaces(mesh, ufc_form0)
            fs1, c = create_ufc_function_spaces(mesh, ufc_form1, c)

    """

    # Initialize return arguments
    functionspaces = []
    if cache is None:
        cache = {}

    # Iterate over all known ufc_finite_elements
    for i in range(ufc_form.rank() + ufc_form.num_coefficients()):
        # Create a ufc_finite_elements
        fe = ufc_form.create_finite_element(i)

        # Use the signature of the element as key in the cache dict
        fesig = fe.signature()

        # Try to access the cache
        V = cache.get(fesig)

        # If the cpp.FunctionSpace does not excists in the cache
        if V is None:
            # Instantiate a dofmap
            dm = ufc_form.create_dofmap(i)

            # Instantiate the UFCFunctionSpace
            V = UFCFunctionSpace(mesh, fe, dm)
            cache[fesig] = V

        functionspaces.append(V)

    return functionspaces, cache

class UFCFunctionSpace(cpp.FunctionSpace):
    "FunctionSpace represents a finite element function space."
    def __init__(self, mesh, ufc_finite_element, ufc_dofmap, constrained_domain=None):
        " Initialize a FunctionSpace from ufc data "
        self._mesh = mesh
        self._finite_element = cpp.FiniteElement(ufc_finite_element)
        if constrained_domain is None:
            self._dofmap = cpp.DofMap(ufc_dofmap, mesh)
        else:
            self._dofmap = cpp.DofMap(ufc_dofmap, mesh, constrained_domain)
        self._ufc_finite_element = ufc_finite_element
        self._ufc_dofmap = ufc_dofmap
        cpp.FunctionSpace.__init__(self, self._mesh, self._finite_element, \
                                   self._dofmap)

class FunctionSpace(FunctionSpaceBase):
    "FunctionSpace represents a finite element function space."

    def __init__(self, mesh, family, degree, form_degree=None,
                 constrained_domain=None, restriction=None):
        """
        Create finite element function space.

        *Arguments*
            mesh (:py:class:`Mesh <dolfin.cpp.Mesh>`)
                the mesh
            family (string)
                specification of the element family, see below for
                alternatives.
            degree (int)
                the degree of the element.
            form_degree (int)
                the form degree (FEEC notation, used when field is
                viewed as k-form)
            constrained_domain
                constrained subdomain with map function.
            restriction
                restriction of the element (e.g. to cell facets).

        Which families and degrees that are supported is determined by the
        form compiler used to generate the element, but typical families
        include

        =================================  =========
        Name                               Usage
        =================================  =========
        Argyris*                           "ARG"
        Arnold-Winther*                    "AW"
        Brezzi-Douglas-Fortin-Marini*      "BDFM"
        Brezzi-Douglas-Marini              "BDM"
        Bubble                             "B"
        Crouzeix-Raviart                   "CR"
        Discontinuous Lagrange             "DG"
        Hermite*                           "HER"
        Lagrange                           "CG"
        Mardal-Tai-Winther*                "MTW"
        Morley*                            "MOR"
        Nedelec 1st kind H(curl)           "N1curl"
        Nedelec 2nd kind H(curl)           "N2curl"
        Quadrature                         "Q"
        Raviart-Thomas                     "RT"
        Real                               "R"
        =================================  =========

        *only partly supported.

        *Examples of usage*
            To define a discrete function space over e.g. the unit square:

            .. code-block:: python

                mesh = UnitSquare(32,32)
                V = FunctionSpace(mesh, "CG", 1)

            Here, ``"CG"`` stands for Continuous Galerkin, implying the
            standard Lagrange family of elements. Instead of ``"CG"``, we
            could have written ``"Lagrange"``. With degree 1, we get the
            linear Lagrange element. Other examples include:

            .. code-block:: python

                # Discontinuous element of degree 0
                V = FunctionSpace(mesh, "DG", 0)

                # Brezzi-Douglas-Marini element of degree 2
                W = FunctionSpace(mesh, "BDM", 2)

                # Real element with one global degree of freedom
                R = FunctionSpace(mesh, "R", 0)

        """

        # Check arguments
        if not isinstance(mesh, (cpp.Mesh, cpp.Restriction)):
            cpp.dolfin_error("functionspace.py",
                             "create function space",
                             "Illegal argument, not a mesh or restriction: " + str(mesh))
        if not isinstance(family, str):
            cpp.dolfin_error("functionspace.py",
                             "create function space",
                             "Illegal argument for finite element family, not a string: " + str(family))
        if not isinstance(degree, int):
            cpp.dolfin_error("functionspace.py",
                             "create function space",
                             "Illegal argument for degree, not an integer: " + str(degree))

        # Create element
        # FIXME: Get a ufl.Domain instead of cell somehow.
        cell = mesh.ufl_cell() if isinstance(mesh, cpp.Mesh) else mesh.mesh().ufl_cell()
        element = ufl.FiniteElement(family, cell, degree,
                                    form_degree=form_degree)
        if restriction is not None:
            element = element[restriction]

        # Initialize base class
        FunctionSpaceBase.__init__(self, mesh, element, constrained_domain)

        self.___degree = degree
        self.___family = family
        self.___mesh = mesh if isinstance(mesh, cpp.Mesh) else mesh.mesh()
        self.___form_degree = form_degree

    def restriction(self, meshfunction):
        space = FunctionSpace(self.___mesh, self.___family, self.___degree,
                              form_degree=self.___form_degree)
        space.attach(meshfunction)
        return space

class EnrichedFunctionSpace(FunctionSpaceBase):
    "EnrichedFunctionSpace represents an enriched finite element function space."

    def __init__(self, spaces):
        """
        Create enriched finite element function space.

        *Arguments*
            spaces
                a list (or tuple) of :py:class:`FunctionSpaces
                <dolfin.functions.functionspace.FunctionSpace>`.

        *Usage*
            The function space may be created by

            .. code-block:: python

                V = EnrichedFunctionSpace(spaces)

        """

        # Check arguments
        if not len(spaces) > 0:
            cpp.dolfin_error("functionspace.py",
                             "create enriched function space",
                             "Need at least one subspace")
        if not all(isinstance(V, FunctionSpaceBase) for V in spaces):
            cpp.dolfin_error("functionspace.py",
                             "create enriched function space",
                             "Invalid subspaces: " + str(spaces))
        #if not all(V.mesh() == spaces[0].mesh() for V in spaces):
        #    cpp.dolfin_error("functionspace.py",
        # "Nonmatching meshes for mixed function space: " + str([V.mesh() for V in spaces]))

        # Create element
        element = ufl.EnrichedElement(*[V.ufl_element() for V in spaces])

        # Initialize base class
        FunctionSpaceBase.__init__(self, spaces[0].mesh(), element, constrained_domain=spaces[0].dofmap().constrained_domain)

class MixedFunctionSpace(FunctionSpaceBase):
    "MixedFunctionSpace represents a mixed finite element function space."

    def __init__(self, spaces):
        """
        Create mixed finite element function space.

        *Arguments*
            spaces
                a list (or tuple) of :py:class:`FunctionSpaces
                <dolfin.functions.functionspace.FunctionSpace>`.

        *Examples of usage*
            The function space may be created by

            .. code-block:: python

                V = MixedFunctionSpace(spaces)

            ``spaces`` may consist of multiple occurances of the same space:

            .. code-block:: python

                P1  = FunctionSpace(mesh, "CG", 1)
                P2v = VectorFunctionSpace(mesh, "Lagrange", 2)

                ME  = MixedFunctionSpace([P2v, P1, P1, P1])

        """

        # Check arguments
        if not len(spaces) > 0:
            cpp.dolfin_error("functionspace.py",
                             "create mixed function space",
                             "Need at least one subspace")
        if not all(isinstance(V, FunctionSpaceBase) for V in spaces):
            cpp.dolfin_error("functionspace.py",
                             "create mixed function space",
                             "Invalid subspaces: " + str(spaces))
        #if not all(V.mesh() == spaces[0].mesh() for V in spaces):
        #    cpp.dolfin_error("functionspace.py", "Nonmatching meshes for mixed function space: " \
        #              + str([V.mesh() for V in spaces]))

        # Check that all spaces share same constrained_domain map

        # Create UFL element
        element = ufl.MixedElement(*[V.ufl_element() for V in spaces])

        # Initialize base class using mesh from first space
        FunctionSpaceBase.__init__(self, spaces[0].mesh(), element, constrained_domain=spaces[0].dofmap().constrained_domain)

class VectorFunctionSpace(MixedFunctionSpace):
    "VectorFunctionSpace represents a vector-valued finite element function space."

    def __init__(self, mesh, family, degree, dim=None, form_degree=None,
                 constrained_domain=None, restriction=None):
        """
        Create vector-valued finite element function space.

        Use VectorFunctionSpace if the unknown is a vector field,
        instead of a :py:class:`FunctionSpace
        <dolfin.functions.functionspace.FunctionSpace>` object for
        scalar fields.

        *Arguments*
            mesh (:py:class:`Mesh <dolfin.cpp.Mesh>`)
                the mesh
            family (string)
                a string specifying the element family, see
                :py:class:`FunctionSpace
                <dolfin.functions.functionspace.FunctionSpace>` for
                alternatives.
            degree (int)
                the (polynomial) degree of the element.
            dim (int)
                an optional argument specifying the number of components.
            form_degree (int)
                an optional argument specifying the degree of the
                k-form (used for FEEC notation)

        If the dim argument is not provided, the dimension will be deduced from
        the dimension of the mesh.

        *Example of usage*

            .. code-block:: python

                V = VectorFunctionSpace(mesh, "CG", 1)

        """

        # Get ufl cell from Mesh or Restriction
        # FIXME: Get a ufl.Domain instead of cell somehow.
        cell = mesh.ufl_cell() if isinstance(mesh, cpp.Mesh) else mesh.mesh().ufl_cell()

        # TODO: Is this necessary? Doesn't ufl handle dim=None the same way?
        if dim is None:
            dim = cell.geometric_dimension()

        # Create element
        element = ufl.VectorElement(family, cell, degree, dim=dim,
                                    form_degree=form_degree)
        if restriction is not None:
            element = element[restriction]

        # Initialize base class
        FunctionSpaceBase.__init__(self, mesh, element, constrained_domain=constrained_domain)

class TensorFunctionSpace(FunctionSpaceBase):
    "TensorFunctionSpace represents a tensor-valued finite element function space."

    def __init__(self, mesh, family, degree, shape=None, symmetry=None, \
                 constrained_domain=None, restriction=None):
        """
        Create tensor-valued finite element function space.

        *Arguments*
            mesh
                a :py:class:`Mesh <dolfin.cpp.Mesh>`.
            family
                a string specifying the element family,
                see :py:class:`FunctionSpace
                <dolfin.functions.functionspace.FunctionSpace>`
                for alternatives.
            degree
                the degree of the element.
            shape
                an optional argument specifying the shape of the tensor.
            symmetry
                optional argument specifying whether the tensor is symmetric.

        If the shape argument is not provided, the dimension will be deduced from
        the dimension of the mesh.

        *Example of usage*

            .. code-block:: python

                V = TensorFunctionSpace(mesh, "CG", 1)

        """

        # Get ufl cell from Mesh or Restriction
        # FIXME: Get a ufl.Domain instead of cell somehow.
        cell = mesh.ufl_cell() if isinstance(mesh, cpp.Mesh) else mesh.mesh().ufl_cell()

        # TODO: Is this necessary? Doesn't ufl handle dim=None the same way?
        if shape is None:
            dim = cell.geometric_dimension()
            shape = (dim, dim)

        # Create element
        element = ufl.TensorElement(family, cell, degree, shape, symmetry)
        if restriction is not None:
            element = element[restriction]

        # Initialize base class
        FunctionSpaceBase.__init__(self, mesh, element, constrained_domain=constrained_domain)