This file is indexed.

/usr/lib/python2.7/dist-packages/dolfin_utils/meshconvert/abaqus.py is in python-dolfin 1.3.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""Module for converting the  Abaqus mesh format."""

# Copyright (C) 2012 Arve Knudsen and Garth N/ Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Simon Funke (surface export)

import re
import csv
import xml_writer
import numpy as np

class State:
    Init, Unknown, Invalid, ReadHeading, ReadNodes, ReadCells, \
        ReadNodeSet, ReadCellSet, ReadSurfaceSet = range(9)

def convert(ifilename, handler):
    """ Convert from Abaqus.

    The Abaqus format first defines a node block, then there should be a number
    of elements containing these nodes.
    """

    # Dictionary of nodes (maps node id to coordinates)
    nodes = {}

    # Dictionary of elements (maps cell id to list of cell nodes)
    elems = {}

    # Lists of nodes for given name (key)
    node_sets = {}

    # Lists of cells for given name (key)
    cell_sets = {}

    # Lists of surfaces for given name (key) in the format:
    # {'SS1': [set(['SS1_S1', 'S1']), set(['SS1_S4', 'S4'])]},
    # where SS1 is the name of the surface, SS1_S1 is the name of the
    # cell list whose first face is to be selected, ...
    surface_sets = {}

    # Open file Abaqus file
    csv_file = csv.reader(open(ifilename, 'rb'), delimiter=',', skipinitialspace=True)

    node_set_name = None
    generate = None

    # Set intial state state
    state = State.Init

    # Read data from input file
    for l in csv_file:

        # Sanity check
        if (len(l) == 0): print "Ooops, zero length."

        if l[0].startswith('**'): # Pass over comments
            continue
        elif l[0].startswith('*'): # Have a keyword
            state = State.Unknown

            if l[0].lower() == "*heading":
                state = State.ReadHeading

            elif l[0].lower() == "*part":
                part_name = _read_part_name(l)

            elif l[0].lower() == "*end part":
                state = State.Invalid

            elif l[0].lower() == "*node":
                node_set_name = _create_node_list_entry(node_sets, l)
                state = State.ReadNodes

            elif l[0].lower() == "*element":
                cell_type, cell_set_name = _read_element_keywords(cell_sets, l)
                state = State.ReadCells

            elif l[0].lower() == "*nset":
                node_set_name, generate = _read_nset_keywords(node_sets, l)
                state = State.ReadNodeSet

            elif l[0].lower() == "*elset":
                cell_set_name, generate = _read_elset_keywords(cell_sets, l)
                if generate:
                    print "WARNING: generation of *elsets not tested."
                state = State.ReadCellSet

            elif l[0].lower() == "*surface":
                surface_set_name, generate = _read_surface_keywords(surface_sets, l)
                state = State.ReadSurfaceSet

            else:
                print "WARNING: unrecognised Abaqus input keyword:", l[0]
                state = State.Unknown

        else:

            if state == State.ReadHeading:
                model_name = _read_heading(l)

            elif state == State.ReadNodes:
                node_id = int(l[0]) - 1
                coords = [float(c) for c in l[1:]]
                nodes[node_id] = coords
                if node_set_name is not None:
                    node_sets[node_set_name].add(node_id)

            elif state == State.ReadCells:
                cell_id = int(l[0]) - 1
                cell_connectivity = [int(v) - 1 for v in l[1:]]
                elems[cell_id] = cell_connectivity
                if cell_set_name is not None:
                    cell_sets[cell_set_name].add(cell_id)

            elif state == State.ReadNodeSet:

                try:
                    if generate:
                        n0, n1, increment = l
                        node_range = range(int(n0) - 1, int(n1) - 1, int(increment))
                        node_range.append(int(n1) - 1)
                        node_sets[node_set_name].update(node_range)
                    else:
                        # Strip empty term at end of list, if present
                        if l[-1] == '': l.pop(-1)
                        node_range = [int(n) - 1 for n in l]
                        node_sets[node_set_name].update(node_range)
                except:
                    print "WARNING: Non-integer node sets not yet supported."

            elif state == State.ReadCellSet:
                try:
                    if generate:
                        n0, n1, increment = l
                        cell_range = range(int(n0) - 1, int(n1) - 1, int(increment))
                        cell_range.append(int(n1) - 1)
                        cell_sets[cell_set_name].update(cell_range)
                    else:
                        # Strip empty term at end of list, if present
                        if l[-1] == '': l.pop(-1)
                        cell_range = [int(n) - 1 for n in l]
                        cell_sets[cell_set_name].update(cell_range)
                except:
                    print "WARNING: Non-integer element sets not yet supported."

            elif state == State.ReadSurfaceSet:
                # Strip empty term at end of list, if present
                if l[-1] == '': l.pop(-1)
                surface_sets[surface_set_name].update([tuple(l)])

            elif state == State.Invalid: # part
                raise StandardError("Inavlid Abaqus parser state..")


    # Close CSV object
    del csv_file

    # Write data to XML file
    # Note that vertices/cells must be consecutively numbered, which
    # isn't necessarily the case in Abaqus. Therefore we enumerate and
    # translate original IDs to sequence indexes if gaps are present.

    # FIXME
    handler.set_mesh_type("tetrahedron", 3)

    process_facets = len(surface_sets) > 0
    if process_facets:
        try:
            from dolfin import MeshEditor, Mesh
        except ImportError:
            _error("DOLFIN must be installed to handle Abaqus boundary regions")

        mesh = Mesh()
        mesh_editor = MeshEditor()
        mesh_editor.open(mesh, 3, 3)

    node_ids_order = {}
    # Check for gaps in vertex numbering
    node_ids = nodes.keys()
    if len(node_ids) > 0:
        vertex_gap = (min(node_ids) != 0 or max(node_ids) != len(node_ids) - 1)
        for x, y in enumerate(node_ids):
            node_ids_order[y]= x  # Maps Abaqus IDs to Dolfin IDs
    else:
        vertex_gap = True

    # Check for gaps in cell numbering
    elemids = elems.keys()
    if len(elemids) > 0:
        cell_gap = (min(elemids) != 0 or max(elemids) != len(elemids) - 1)
    else:
        cell_gap = True

    # Write vertices to XML file
    handler.start_vertices(len(nodes))
    if process_facets:
        mesh_editor.init_vertices (len(nodes))

    if not vertex_gap:

        for v_id, v_coords in nodes.items():
            handler.add_vertex(v_id, v_coords)
            if process_facets:
                mesh_editor.add_vertex(v_id, np.array(v_coords, dtype=np.float_))

    else:

        for idx, (v_id, v_coords) in enumerate(nodes.items()):
            handler.add_vertex(idx, v_coords)
            if process_facets:
                mesh_editor.add_vertex(idx, np.array(v_coords, dtype=np.float_))

    handler.end_vertices()

    # Write cells to XML file
    handler.start_cells(len(elems))
    if process_facets:
        mesh_editor.init_cells(len(elems))

    if not vertex_gap and not cell_gap:

        for c_index, c_data in elems.items():
            for v_id in c_data:
                if not (0 <= v_id < len(nodes)):
                    handler.error("Element %s references non-existent node %s" % (c_index, v_id))
            handler.add_cell(c_index, c_data)

            if process_facets:
                c_data_tmp = np.array(c_data)
                c_data_tmp.sort()
                mesh_editor.add_cell(c_index, np.array(c_data_tmp, dtype=np.uintp))


    elif not vertex_gap and cell_gap:

        for idx, (c_index, c_data) in enumerate(elems.items()):
            for v_id in c_data:
                if not (0 <= v_id < len(nodes)):
                    handler.error("Element %s references non-existent node %s" % (c_index, v_id))
            handler.add_cell(idx, c_data)

            if process_facets:
                c_data_tmp = np.array(c_data)
                c_data_tmp.sort()
                mesh_editor.add_cell(idx, np.array(c_data_tmp, dtype=np.uintp))

    else:

        for idx, (c_id, c_data) in enumerate(elems.items()):
            c_nodes = []
            for v_id in c_data:
                try: c_nodes.append(node_ids_order[v_id])  
                except ValueError:
                    handler.error("Element %s references non-existent node %s" % (c_id, v_id))
            handler.add_cell(idx, c_nodes)

            if process_facets:
                c_nodes.sort()
                mesh_editor.add_cell(idx, np.array(c_nodes, dtype=np.uintp))

    handler.end_cells()

    # Write MeshValueCollections to XML file
    handler.start_domains()

    # Build a abaqus node ID -> dolfin cell ID map (which is not unique but that is irrelevant here)
    #                           and its local entity.
    if len(node_sets.items()) > 0:
        node_cell_map = {}
        for c_dolfin_index, (c_index, c_data) in enumerate(elems.items()):
            c_data_tmp = np.array(c_data)
            c_data_tmp.sort()
            for local_entity, n_index in enumerate(c_data_tmp):
                node_cell_map[n_index] = (c_dolfin_index, local_entity)

    # Write vertex/node sets
    dim = 0
    for value, (name, node_set) in enumerate(node_sets.items()):
        handler.start_mesh_value_collection(name, dim, len(node_set), "uint")

        for node in node_set:
            try:
                cell, local_entity = node_cell_map[node]
                handler.add_entity_mesh_value_collection(dim, cell, value, local_entity=local_entity)
            except KeyError:
                print "Warning: Boundary references non-existent node %s" % node
        handler.end_mesh_value_collection()

    # Write cell/element sets
    dim = 3
    for name, s in cell_sets.items():
        handler.start_mesh_value_collection(name, dim, len(s), "uint")
        for cell in s:
            handler.add_entity_mesh_value_collection(dim, cell, 0)
        handler.end_mesh_value_collection()

    # Write surface sets
    if process_facets:
        dim = 2
        nodes_facet_map = _nodes_facet_map(mesh)

        data = [int(0)] * mesh.num_facets()
        S1 = [0, 1, 2]
        S2 = [0, 3, 1]
        S3 = [1, 3, 2]
        S4 = [2, 3, 0]
        node_selector = {'S1': S1,
                         'S2': S2,
                         'S3': S3,
                         'S4': S4,
                         }

        for index, (name, s) in enumerate(surface_sets.items()):
            cell_face_list = []
            for cell_set_name, face_index in s:
                cell_face_list += [(cell, face_index) for cell in cell_sets[cell_set_name]]

            for cell, face in cell_face_list:
                cell_nodes = elems[cell]
                # Extract the face nodes
                face_nodes = [cell_nodes[i] for i in node_selector[face]]
                dolfin_face_nodes = [node_ids_order[n] for n in face_nodes]
                dolfin_face_nodes.sort()
                # Convert the face_nodes to dolfin IDs
                face_id = nodes_facet_map[tuple(dolfin_face_nodes)]
                data[face_id] = index + 1

        # Create and initialise the mesh function
        handler.start_meshfunction("facet_region", dim, mesh.num_facets() )
        for index, physical_region in enumerate (data):
            handler.add_entity_meshfunction(index, physical_region)
        handler.end_meshfunction()


    handler.end_domains()

def _nodes_facet_map(mesh):
    # Now process the facet markers
    dim = 2
    mesh.init(dim, 0)
    facets_as_nodes = mesh.topology()(dim, 0)().reshape(mesh.num_facets(), 3)

    # Build the reverse map
    nodes_as_facets = {}
    for facet in range(mesh.num_facets()):
        nodes_as_facets[tuple(facets_as_nodes[facet,:])] = facet

    return nodes_as_facets


def _read_heading(l):
    return l[0].strip()


def _read_part_name(l):

    if (len(l) < 2): print "Ooops, length problem."
    part_names = l[1].split('=')

    if (len(part_names) < 2): print "Ooops, part names length problem."
    return part_names[1].strip()


def _create_node_list_entry(node_sets, l):

    # Check for node set name
    node_set_name = None
    if len(l) == 2:
        set_data = l[1].split('=')
        assert len(set_data) == 2, "wrong list length"
        if set_data[0].lower() == "nset":
            node_set_name = set_data[1]
            if node_set_name not in node_sets:
                node_sets[node_set_name] = set()
    return node_set_name

def _read_element_keywords(cell_sets, l):

    # Get element type and element set name
    element_type = None
    element_set_name = None
    for key in l[1:]:
        key_parts = key.split('=')
        key_name = key_parts[0].lower().strip()
        if key_name == "type":
            element_type = key_parts[1].lower().strip()
        elif key_name == "elset":
            element_set_name = key_parts[1].strip()

    # Test that element is supported
    check_element_support(element_type)

    # Add empty set to cell_sets dictionary
    if element_set_name:
        if element_set_name not in cell_sets:
            cell_sets[element_set_name] = set()

    return element_type, element_set_name


def _read_nset_keywords(node_sets, l):

    node_set_name = None
    generate = None

    # Get set name and add to dict
    set_data = l[1].split('=')
    assert len(set_data) == 2, "wrong list length, set name missing"
    assert set_data[0].lower() == "nset"
    node_set_name = set_data[1]
    if node_set_name not in node_sets:
        node_sets[node_set_name] = set()

    # Check for generate flag
    if len(l) == 3:
        if l[2].lower() == "generate":
           generate = True

    return node_set_name, generate


def _read_elset_keywords(sets, l):

    set_name = None
    generate = None

    # Get set name and add to dict
    set_data = l[1].split('=')
    assert len(set_data) == 2, "wrong list length, set name missing"
    assert set_data[0].lower() == "elset"
    set_name = set_data[1]
    if set_name not in sets: sets[set_name] = set()

    # Check for generate flag
    if len(l) == 3:
        if l[2].lower() == "generate":
            generate = True

    return set_name, generate

def _read_surface_keywords(sets, l):

    surface_name = None
    generate = None

    # Get surface name and add to dict
    surface_data = l[1].split('=')
    assert len(surface_data) == 2, "wrong list length, surface name missing"
    assert surface_data[0].lower() == "name"
    surface_name = surface_data[1]
    if surface_name not in sets: sets[surface_name] = set()

    generate = False
    return surface_name, generate


def check_element_support(element_type):
    supported_elements = ('c3d4',)
    if element_type.lower() not in supported_elements:
        raise StandardError("Element type not supported.")