This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/quadrature/quadraturerepresentation.py is in python-ffc 1.3.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"Quadrature representation class for UFL"

# Copyright (C) 2009-2013 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009.
# Modified by Martin Alnaes, 2013
#
# First added:  2009-01-07
# Last changed: 2013-02-10

import numpy

# UFL modules
from ufl.classes import Form, Integral, Grad
from ufl.algorithms import extract_unique_elements, extract_type, extract_elements
from ufl.sorting import sorted_expr_sum

# FFC modules
from ffc.log import ffc_assert, info, error
from ffc.fiatinterface import create_element
from ffc.fiatinterface import map_facet_points, reference_cell_vertices
from ffc.fiatinterface import cellname_to_num_entities
from ffc.quadrature.quadraturetransformer import QuadratureTransformer
from ffc.quadrature.optimisedquadraturetransformer import QuadratureTransformerOpt
from ffc.quadrature_schemes import create_quadrature
from ffc.representationutils import initialize_integral_ir

def compute_integral_ir(itg_data,
                        form_data,
                        form_id,
                        parameters):
    "Compute intermediate represention of integral."

    info("Computing quadrature representation")

    # Initialise representation
    ir = initialize_integral_ir("quadrature", itg_data, form_data, form_id)

    # Sort integrals into a dict with number of integral points as key
    sorted_integrals = _sort_integrals(itg_data.integrals, itg_data.metadata, form_data)

    # Tabulate quadrature points and basis function values in these points
    integrals_dict, psi_tables, quad_weights = \
        _tabulate_basis(sorted_integrals, itg_data.domain_type, form_data)

    # Save tables for quadrature weights and points
    ir["quadrature_weights"]  = quad_weights

    # Create dimensions of primary indices, needed to reset the argument 'A'
    # given to tabulate_tensor() by the assembler.
    ir["prim_idims"] = [create_element(ufl_element).space_dimension()
                        for ufl_element in form_data.argument_elements]

    # Create and save the optisation parameters.
    ir["optimise_parameters"] = _parse_optimise_parameters(parameters)

    # Create transformer.
    if ir["optimise_parameters"]["optimisation"]:
        QuadratureTransformerClass = QuadratureTransformerOpt
    else:
        QuadratureTransformerClass = QuadratureTransformer
    transformer = QuadratureTransformerClass(psi_tables,
                                             quad_weights,
                                             form_data.geometric_dimension,
                                             form_data.topological_dimension,
                                             ir["entitytype"],
                                             form_data.function_replace_map,
                                             ir["optimise_parameters"])

    # Transform integrals.
    ir["trans_integrals"] = _transform_integrals_by_type(ir, transformer, integrals_dict,
                                                         itg_data.domain_type, form_data.cell)

    # Save tables populated by transformer
    ir["name_map"] = transformer.name_map
    ir["unique_tables"] = transformer.unique_tables  # Basis values?

    # Save tables map, to extract table names for optimisation option -O.
    ir["psi_tables_map"] = transformer.psi_tables_map
    ir["additional_includes_set"] = transformer.additional_includes_set

    # Insert empty data which will be populated if optimization is turned on
    ir["geo_consts"] = {}

    return ir

def _parse_optimise_parameters(parameters):
    optimise_parameters = {"eliminate zeros":     False,
                           "optimisation":        False,
                           "ignore ones":         False,
                           "remove zero terms":   False,
                           "ignore zero tables":  False}

    if parameters["optimize"]:
        optimise_parameters["ignore ones"]        = True
        optimise_parameters["remove zero terms"]  = True
        optimise_parameters["ignore zero tables"] = True

        # Do not include this in below if/else clause since we want to be
        # able to switch on this optimisation in addition to the other
        # optimisations.
        if "eliminate_zeros" in parameters:
            optimise_parameters["eliminate zeros"] = True

        if "simplify_expressions" in parameters:
            optimise_parameters["optimisation"] = "simplify_expressions"
        elif "precompute_ip_const" in parameters:
            optimise_parameters["optimisation"] = "precompute_ip_const"
        elif "precompute_basis_const" in parameters:
            optimise_parameters["optimisation"] = "precompute_basis_const"
        # The current default optimisation (for -O) is equal to
        # '-feliminate_zeros -fsimplify_expressions'.
        else:
            # If '-O -feliminate_zeros' was given on the command line, do not
            # simplify expressions
            if not "eliminate_zeros" in parameters:
                optimise_parameters["eliminate zeros"] = True
                optimise_parameters["optimisation"]    = "simplify_expressions"

    return optimise_parameters

def _transform_integrals_by_type(ir, transformer, integrals_dict, domain_type, cell):
    num_facets = cellname_to_num_entities[cell.cellname()][-2]
    num_vertices = cellname_to_num_entities[cell.cellname()][0]

    if domain_type == "cell":
        # Compute transformed integrals.
        info("Transforming cell integral")
        transformer.update_cell()
        terms = _transform_integrals(transformer, integrals_dict, domain_type)

    elif domain_type == "exterior_facet":
        # Compute transformed integrals.
        terms = [None]*num_facets
        for i in range(num_facets):
            info("Transforming exterior facet integral %d" % i)
            transformer.update_facets(i, None)
            terms[i] = _transform_integrals(transformer, integrals_dict, domain_type)

    elif domain_type == "interior_facet":
        # Compute transformed integrals.
        terms = [[None]*num_facets for i in range(num_facets)]
        for i in range(num_facets):
            for j in range(num_facets):
                info("Transforming interior facet integral (%d, %d)" % (i, j))
                transformer.update_facets(i, j)
                terms[i][j] = _transform_integrals(transformer, integrals_dict, domain_type)

    elif domain_type == "point":
        # Compute transformed integrals.
        terms = [None]*num_vertices
        for i in range(num_vertices):
            info("Transforming point integral (%d)" % i)
            transformer.update_vertex(i)
            terms[i] = _transform_integrals(transformer, integrals_dict, domain_type)
    else:
        error("Unhandled domain type: " + str(domain_type))
    return terms

def _create_quadrature_points_and_weights(domain_type, cell, degree, rule):
    if domain_type == "cell":
        (points, weights) = create_quadrature(cell.cellname(), degree, rule)
    elif domain_type == "exterior_facet" or domain_type == "interior_facet":
        (points, weights) = create_quadrature(cell.facet_cellname(), degree, rule)
    elif domain_type == "point":
        (points, weights) = ([()], numpy.array([1.0,])) # TODO: Will be fixed
    else:
        error("Unknown integral type: " + str(domain_type))
    return (points, weights)

def _find_element_derivatives(expr, elements, element_replace_map):
    "Find the highest derivatives of given elements in expression."
    # TODO: This is most likely not the best way to get the highest
    #       derivative of an element, but it works!

    # Initialise dictionary of elements and the number of derivatives.
    # (Note that elements are already mapped through the element_replace_map)
    num_derivatives = dict((e, 0) for e in elements)

    # Extract the derivatives from the integral.
    derivatives = set(extract_type(expr, Grad))

    # Loop derivatives and extract multiple derivatives.
    for d in list(derivatives):
        # After UFL has evaluated derivatives, only one element
        # can be found inside any single Grad expression
        elem, = extract_elements(d.operands()[0])
        elem = element_replace_map[elem]
        # Set the number of derivatives to the highest value encountered so far.
        num_derivatives[elem] = max(num_derivatives[elem], len(extract_type(d, Grad)))
    return num_derivatives

def domain_to_entity_dim(domain_type, cell):
    tdim = cell.topological_dimension()
    if domain_type == "cell":
        entity_dim = tdim
    elif (domain_type == "exterior_facet" or domain_type == "interior_facet"):
        entity_dim = tdim - 1
    elif domain_type == "point":
        entity_dim = 0
    else:
        error("Unknown domain_type: %s" % domain_type)
    return entity_dim

def _map_entity_points(cell, points, entity_dim, entity):
    # Not sure if this is useful anywhere else than in _tabulate_psi_table!
    tdim = cell.topological_dimension()
    if entity_dim == tdim:
        return points
    elif entity_dim == tdim-1:
        return map_facet_points(points, entity)
    elif entity_dim == 0:
        return (reference_cell_vertices(cell.cellname())[entity],)

def _tabulate_psi_table(domain_type, cell, element, deriv_order, points):
    "Tabulate psi table for different integral types."
    # MSA: I attempted to generalize this function, could this way of
    # handling domain types generically extend to other parts of the code?
    entity_dim = domain_to_entity_dim(domain_type, cell)
    num_entities = cellname_to_num_entities[cell.cellname()][entity_dim]
    psi_table = {}
    for entity in range(num_entities):
        entity_points = _map_entity_points(cell, points, entity_dim, entity)
        # TODO: Use 0 as key for cell and we may be able to generalize other places:
        key = None if domain_type == "cell" else entity
        psi_table[key] = element.tabulate(deriv_order, entity_points)
    return psi_table

def _tabulate_entities(domain_type, cell):
    "Tabulate psi table for different integral types."
    # MSA: I attempted to generalize this function, could this way of
    # handling domain types generically extend to other parts of the code?
    entity_dim = domain_to_entity_dim(domain_type, cell)
    num_entities = cellname_to_num_entities[cell.cellname()][entity_dim]
    entities = set()
    for entity in range(num_entities):
        # TODO: Use 0 as key for cell and we may be able to generalize other places:
        key = None if domain_type == "cell" else entity
        entities.add(key)
    return entities

def insert_nested_dict(root, keys, value):
    for k in keys[:-1]:
        d = root.get(k)
        if d is None:
            d = {}
            root[k] = d
        root = d
    root[keys[-1]] = value

from ufl.classes import CellAvg, FacetAvg

def _tabulate_basis(sorted_integrals, domain_type, form_data):
    "Tabulate the basisfunctions and derivatives."

    # MER: Note to newbies: this code assumes that each integral in
    # the dictionary of sorted_integrals that enters here, has a
    # unique number of quadrature points ...

    # Initialise return values.
    quadrature_weights = {}
    psi_tables = {}
    integrals = {}
    avg_elements = { "cell": [], "facet": [] }

    # Loop the quadrature points and tabulate the basis values.
    for pr, integral in sorted_integrals.iteritems():

        # Extract number of points and the rule.
        degree, rule = pr

        # Get all unique elements in integral.
        ufl_elements = [form_data.element_replace_map[e]
                    for e in extract_unique_elements(integral)]

        # Find all CellAvg and FacetAvg in integrals and extract elements
        for avg, AvgType in (("cell", CellAvg), ("facet", FacetAvg)):
            expressions = extract_type(integral, AvgType)
            avg_elements[avg] = [form_data.element_replace_map[e]
                                 for expr in expressions
                                 for e in extract_unique_elements(expr)]

        # Create a list of equivalent FIAT elements (with same
        # ordering of elements).
        fiat_elements = [create_element(e) for e in ufl_elements]

        # Make quadrature rule and get points and weights.
        (points, weights) = _create_quadrature_points_and_weights(domain_type, form_data.cell, degree, rule)

        # The TOTAL number of weights/points
        len_weights = len(weights)

        # Assert that this is unique
        ffc_assert(len_weights not in quadrature_weights, \
                    "This number of points is already present in the weight table: " + repr(quadrature_weights))
        ffc_assert(len_weights not in psi_tables, \
                    "This number of points is already present in the psi table: " + repr(psi_tables))
        ffc_assert(len_weights not in integrals, \
                    "This number of points is already present in the integrals: " + repr(integrals))

        # Add points and rules to dictionary.
        quadrature_weights[len_weights] = (weights, points)

        # Add the number of points to the psi tables dictionary.
        psi_tables[len_weights] = {}

        # Add the integral with the number of points as a key to the return integrals.
        integrals[len_weights] = integral

        # Find the highest number of derivatives needed for each element
        num_derivatives = _find_element_derivatives(integral.integrand(), ufl_elements,
                                                    form_data.element_replace_map)

        # Loop FIAT elements and tabulate basis as usual.
        for i, element in enumerate(fiat_elements):
            # Tabulate table of basis functions and derivatives in points
            psi_table = _tabulate_psi_table(domain_type, form_data.cell, element,
                                        num_derivatives[ufl_elements[i]], points)

            # Insert table into dictionary based on UFL elements. (None=not averaged)
            psi_tables[len_weights][ufl_elements[i]] = { None: psi_table }

    # Loop over elements found in CellAvg and tabulate basis averages
    len_weights = 1
    for avg in ("cell", "facet"):
        # Doesn't matter if it's exterior or interior
        if avg == "cell":
            avg_domain_type = "cell"
        elif avg == "facet":
            avg_domain_type = "exterior_facet"

        for element in avg_elements[avg]:
            fiat_element = create_element(element)

            # Make quadrature rule and get points and weights.
            (points, weights) = _create_quadrature_points_and_weights(avg_domain_type, form_data.cell, element.degree(), "default")
            wsum = sum(weights)

            # Tabulate table of basis functions and derivatives in points
            entity_psi_tables = _tabulate_psi_table(avg_domain_type, form_data.cell, fiat_element, 0, points)
            rank = len(element.value_shape())

            # Hack, duplicating table with per-cell values for each facet in the case of cell_avg(f) in a facet integral
            actual_entities = _tabulate_entities(domain_type, form_data.cell)
            if len(actual_entities) > len(entity_psi_tables):
                assert len(entity_psi_tables) == 1
                assert avg_domain_type == "cell"
                assert "facet" in domain_type
                v, = entity_psi_tables.values()
                entity_psi_tables = dict((e, v) for e in actual_entities)

            for entity, deriv_table in entity_psi_tables.items():
                deriv, = list(deriv_table.keys()) # Not expecting derivatives of averages
                psi_table = deriv_table[deriv]

                if rank:
                    # Compute numeric integral
                    num_dofs, num_components, num_points = psi_table.shape
                    ffc_assert(num_points == len(weights), "Weights and table shape does not match.")
                    avg_psi_table = numpy.asarray([[[numpy.dot(psi_table[j,k,:], weights) / wsum]
                                                   for k in range(num_components)]
                                                   for j in range(num_dofs)])
                else:
                    # Compute numeric integral
                    num_dofs, num_points = psi_table.shape
                    ffc_assert(num_points == len(weights), "Weights and table shape does not match.")
                    avg_psi_table = numpy.asarray([[numpy.dot(psi_table[j,:], weights) / wsum] for j in range(num_dofs)])

                # Insert table into dictionary based on UFL elements.
                insert_nested_dict(psi_tables, (len_weights, element, avg, entity, deriv), avg_psi_table)

    return (integrals, psi_tables, quadrature_weights)

def _sort_integrals(integrals, metadata, form_data):
    """Sort integrals according to the number of quadrature points needed per axis.
    Only consider those integrals defined on the given domain."""

    # Get domain type and id
    if integrals:
        domain_type = integrals[0].domain_type()
        domain_id = integrals[0].domain_id()
        ffc_assert(all(domain_type == itg.domain_type() for itg in integrals),
                   "Expecting only integrals on the same subdomain.")
        ffc_assert(all(domain_id == itg.domain_id() for itg in integrals),
                   "Expecting only integrals on the same subdomain.")

    sorted_integrands = {}
    # TODO: We might want to take into account that a form like
    # a = f*g*h*v*u*dx(0, quadrature_order=4) + f*v*u*dx(0, quadrature_order=2),
    # although it involves two integrals of different order, will most
    # likely be integrated faster if one does
    # a = (f*g*h + f)*v*u*dx(0, quadrature_order=4)
    # It will of course only work for integrals defined on the same
    # subdomain and representation.
    for integral in integrals:
        # Get default degree and rule.
        degree = metadata["quadrature_degree"]
        rule  = metadata["quadrature_rule"]

        # Override if specified in integral metadata
        integral_compiler_data = integral.compiler_data()
        if not integral_compiler_data is None:
            if "quadrature_degree" in integral_compiler_data:
                degree = integral_compiler_data["quadrature_degree"]
            if "quadrature_rule" in integral_compiler_data:
                rule = integral_compiler_data["quadrature_rule"]

        # Add integrand to dictionary according to degree and rule.
        if not (degree, rule) in sorted_integrands:
            sorted_integrands[(degree, rule)] = [integral.integrand()]
        else:
            sorted_integrands[(degree, rule)] += [integral.integrand()]

    # Create integrals from accumulated integrands.
    sorted_integrals = {}
    for key, integrands in sorted_integrands.items():
        # Summing integrands in a canonical ordering defined by UFL
        integrand = sorted_expr_sum(integrands)
        sorted_integrals[key] = Integral(integrand, domain_type, domain_id, {}, None)
    return sorted_integrals

def _transform_integrals(transformer, integrals, domain_type):
    "Transform integrals from UFL expression to quadrature representation."
    transformed_integrals = []
    for point, integral in integrals.items():
        transformer.update_points(point)
        terms = transformer.generate_terms(integral.integrand(), domain_type)
        transformed_integrals.append((point, terms, transformer.function_data,
                                      {}, transformer.coordinate, transformer.conditionals))
    return transformed_integrals