This file is indexed.

/usr/share/pyshared/guiqwt/widgets/fit.py is in python-guiqwt 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# -*- coding: utf-8 -*-
#
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)

# pylint: disable=C0103

"""
guiqwt.widgets.fit
------------------

The `fit` module provides an interactive curve fitting widget/dialog allowing:
    * to fit data manually (by moving sliders)
    * or automatically (with standard optimization algorithms 
      provided by :py:mod:`scipy`).

Example
~~~~~~~

.. literalinclude:: ../guiqwt/tests/fit.py
   :start-after: SHOW
   :end-before: Workaround for Sphinx v0.6 bug: empty 'end-before' directive

.. image:: images/screenshots/fit.png

Reference
~~~~~~~~~

.. autofunction:: guifit

.. autoclass:: FitDialog
   :members:
   :inherited-members:
.. autoclass:: FitParam
   :members:
   :inherited-members:
.. autoclass:: AutoFitParam
   :members:
   :inherited-members:
"""

from __future__ import division, print_function

from guidata.qt.QtGui import (QGridLayout, QLabel, QSlider, QPushButton,
                              QLineEdit, QDialog, QVBoxLayout, QHBoxLayout,
                              QWidget, QDialogButtonBox)
from guidata.qt.QtCore import Qt, SIGNAL, QObject, SLOT

import numpy as np
from numpy import inf # Do not remove this import (used by optimization funcs)

import guidata
from guidata.utils import update_dataset, restore_dataset
from guidata.qthelpers import create_groupbox
from guidata.configtools import get_icon
from guidata.dataset.datatypes import DataSet
from guidata.dataset.dataitems import (StringItem, FloatItem, IntItem,
                                       ChoiceItem, BoolItem)

# Local imports
from guiqwt.config import _
from guiqwt.builder import make
from guiqwt.plot import CurveWidgetMixin
from guiqwt.signals import SIG_RANGE_CHANGED

class AutoFitParam(DataSet):
    xmin = FloatItem("xmin")
    xmax = FloatItem("xmax")
    method = ChoiceItem(_("Method"),
                        [ ("simplex", "Simplex"), ("powel", "Powel"),
                          ("bfgs", "BFGS"), ("l_bfgs_b", "L-BFGS-B"),
                          ("cg", _("Conjugate Gradient")),
                          ("lq", _("Least squares")), ],
                        default="lq")
    err_norm = StringItem("enorm", default=2.0,
                          help=_("for simplex, powel, cg and bfgs norm used "
                                 "by the error function"))
    xtol = FloatItem("xtol", default=0.0001,
                     help=_("for simplex, powel, least squares"))
    ftol = FloatItem("ftol", default=0.0001,
                     help=_("for simplex, powel, least squares"))
    gtol = FloatItem("gtol", default=0.0001, help=_("for cg, bfgs"))
    norm = StringItem("norm", default="inf",
                      help=_("for cg, bfgs. inf is max, -inf is min"))


class FitParamDataSet(DataSet):
    name = StringItem(_("Name"))
    value = FloatItem(_("Value"), default=0.0)
    min = FloatItem(_("Min"), default=-1.0)
    max = FloatItem(_("Max"), default=1.0).set_pos(col=1)
    steps = IntItem(_("Steps"), default=5000)
    format = StringItem(_("Format"), default="%.3f").set_pos(col=1)
    logscale = BoolItem(_("Logarithmic"), _("Scale"))
    unit = StringItem(_("Unit"), default="").set_pos(col=1)

class FitParam(object):
    def __init__(self, name, value, min, max, logscale=False,
                 steps=5000, format='%.3f', size_offset=0, unit=''):
        self.name = name
        self.value = value
        self.min = min
        self.max = max
        self.logscale = logscale
        self.steps = steps
        self.format = format
        self.unit = unit
        self.prefix_label = None
        self.lineedit = None
        self.unit_label = None
        self.slider = None
        self.button = None
        self._widgets = []
        self._size_offset = size_offset
        self._refresh_callback = None
        self.dataset = FitParamDataSet(title=_("Curve fitting parameter"))
        
    def copy(self):
        """Return a copy of this fitparam"""
        return self.__class__(self.name, self.value, self.min, self.max,
                              self.logscale, self.steps, self.format,
                              self._size_offset, self.unit)
        
    def create_widgets(self, parent, refresh_callback):
        self._refresh_callback = refresh_callback
        self.prefix_label = QLabel()
        font = self.prefix_label.font()
        font.setPointSize(font.pointSize()+self._size_offset)
        self.prefix_label.setFont(font)
        self.button = QPushButton()
        self.button.setIcon(get_icon('settings.png'))
        self.button.setToolTip(
                        _("Edit '%s' fit parameter properties") % self.name)
        QObject.connect(self.button, SIGNAL('clicked()'),
                        lambda: self.edit_param(parent))
        self.lineedit = QLineEdit()
        QObject.connect(self.lineedit, SIGNAL('editingFinished()'),
                        self.line_editing_finished)
        self.unit_label = QLabel(self.unit)
        self.slider = QSlider()
        self.slider.setOrientation(Qt.Horizontal)
        self.slider.setRange(0, self.steps-1)
        QObject.connect(self.slider, SIGNAL("valueChanged(int)"),
                        self.slider_value_changed)
        self.update(refresh=False)
        self.add_widgets([self.prefix_label, self.lineedit, self.unit_label,
                          self.slider, self.button])
        
    def add_widgets(self, widgets):
        self._widgets += widgets
        
    def get_widgets(self):
        return self._widgets
        
    def set_scale(self, state):
        self.logscale = state > 0
        self.update_slider_value()
        
    def set_text(self, fmt=None):
        style = "<span style=\'color: #444444\'><b>%s</b></span>"
        self.prefix_label.setText(style % self.name)
        if self.value is None:
            value_str = ''
        else:
            if fmt is None:
                fmt = self.format
            value_str = fmt % self.value
        self.lineedit.setText(value_str)
        self.lineedit.setDisabled(
                            self.value == self.min and self.max == self.min)
        
    def line_editing_finished(self):
        try:
            self.value = float(self.lineedit.text())
        except ValueError:
            self.set_text()
        self.update_slider_value()
        self._refresh_callback()
        
    def slider_value_changed(self, int_value):
        if self.logscale:
            total_delta = np.log10(1+self.max-self.min)
            self.value = self.min+10**(total_delta*int_value/(self.steps-1))-1
        else:
            total_delta = self.max-self.min
            self.value = self.min+total_delta*int_value/(self.steps-1)
        self.set_text()
        self._refresh_callback()
    
    def update_slider_value(self):
        if (self.value is None or self.min is None or self.max is None):
            self.slider.setEnabled(False)
            if self.slider.parent() and self.slider.parent().isVisible():
                self.slider.show()
        elif self.value == self.min and self.max == self.min:
            self.slider.hide()
        else:
            self.slider.setEnabled(True)
            if self.slider.parent() and self.slider.parent().isVisible():
                self.slider.show()
            if self.logscale:
                value_delta = max([np.log10(1+self.value-self.min), 0.])
                total_delta = np.log10(1+self.max-self.min)
            else:
                value_delta = self.value-self.min
                total_delta = self.max-self.min
            intval = int(self.steps*value_delta/total_delta)
            self.slider.blockSignals(True)
            self.slider.setValue(intval)
            self.slider.blockSignals(False)

    def edit_param(self, parent):
        update_dataset(self.dataset, self)
        if self.dataset.edit(parent=parent):
            restore_dataset(self.dataset, self)
            if self.value > self.max:
                self.max = self.value
            if self.value < self.min:
                self.min = self.value
            self.update()

    def update(self, refresh=True):
        self.unit_label.setText(self.unit)
        self.slider.setRange(0, self.steps-1)
        self.update_slider_value()
        self.set_text()
        if refresh:
            self._refresh_callback()


def add_fitparam_widgets_to(layout, fitparams, refresh_callback, param_cols=1):
    row_contents = []
    row_nb = 0
    col_nb = 0
    for i, param in enumerate(fitparams):
        param.create_widgets(layout.parent(), refresh_callback)
        widgets = param.get_widgets()
        w_colums = len(widgets)+1
        row_contents += [(widget, row_nb, j+col_nb*w_colums)
                         for j, widget in enumerate(widgets)]
        col_nb += 1
        if col_nb == param_cols:
            row_nb += 1
            col_nb = 0
    for widget, row, col in row_contents:
        layout.addWidget(widget, row, col)
    if fitparams:
        for col_nb in range(param_cols):
            layout.setColumnStretch(1+col_nb*w_colums, 5)
            if col_nb > 0:
                layout.setColumnStretch(col_nb*w_colums-1, 1)

class FitWidgetMixin(CurveWidgetMixin):
    def __init__(self, wintitle="guiqwt plot", icon="guiqwt.svg",
                 toolbar=False, options=None, panels=None, param_cols=1,
                 legend_anchor='TR', auto_fit=True):
        if wintitle is None:
            wintitle = _('Curve fitting')

        self.x = None
        self.y = None
        self.fitfunc = None
        self.fitargs = None
        self.fitkwargs = None
        self.fitparams = None
        self.autofit_prm = None
        
        self.data_curve = None
        self.fit_curve = None
        self.legend = None
        self.legend_anchor = legend_anchor
        self.xrange = None
        self.show_xrange = False
        
        self.param_cols = param_cols
        self.auto_fit_enabled = auto_fit      
        self.button_list = [] # list of buttons to be disabled at startup

        self.fit_layout = None
        self.params_layout = None
        
        CurveWidgetMixin.__init__(self, wintitle=wintitle, icon=icon, 
                                  toolbar=toolbar, options=options,
                                  panels=panels)
        
        self.refresh()
        
    # QWidget API --------------------------------------------------------------
    def resizeEvent(self, event):
        QWidget.resizeEvent(self, event)
        self.get_plot().replot()
        
    # CurveWidgetMixin API -----------------------------------------------------
    def setup_widget_layout(self):
        self.fit_layout = QHBoxLayout()
        self.params_layout = QGridLayout()
        params_group = create_groupbox(self, _("Fit parameters"),
                                       layout=self.params_layout)
        if self.auto_fit_enabled:
            auto_group = self.create_autofit_group()
            self.fit_layout.addWidget(auto_group)
        self.fit_layout.addWidget(params_group)
        self.plot_layout.addLayout(self.fit_layout, 1, 0)
        
        vlayout = QVBoxLayout(self)
        vlayout.addWidget(self.toolbar)
        vlayout.addLayout(self.plot_layout)
        self.setLayout(vlayout)
        
    def create_plot(self, options):
        CurveWidgetMixin.create_plot(self, options)
        for plot in self.get_plots():
            self.connect(plot, SIG_RANGE_CHANGED, self.range_changed)
        
    # Public API ---------------------------------------------------------------  
    def set_data(self, x, y, fitfunc=None, fitparams=None,
                 fitargs=None, fitkwargs=None):
        if self.fitparams is not None and fitparams is not None:
            self.clear_params_layout()
        self.x = x
        self.y = y
        if fitfunc is not None:
            self.fitfunc = fitfunc
        if fitparams is not None:
            self.fitparams = fitparams
        if fitargs is not None:
            self.fitargs = fitargs
        if fitkwargs is not None:
            self.fitkwargs = fitkwargs
        self.autofit_prm = AutoFitParam(title=_("Automatic fitting options"))
        self.autofit_prm.xmin = x.min()
        self.autofit_prm.xmax = x.max()
        self.compute_imin_imax()
        if self.fitparams is not None and fitparams is not None:
            self.populate_params_layout()
        self.refresh()
        
    def set_fit_data(self, fitfunc, fitparams, fitargs=None, fitkwargs=None):
        if self.fitparams is not None:
            self.clear_params_layout()
        self.fitfunc = fitfunc
        self.fitparams = fitparams
        self.fitargs = fitargs
        self.fitkwargs = fitkwargs
        self.populate_params_layout()
        self.refresh()
        
    def clear_params_layout(self):
        for i, param in enumerate(self.fitparams):
            for widget in param.get_widgets():
                if widget is not None:
                    self.params_layout.removeWidget(widget)
                    widget.hide()
        
    def populate_params_layout(self):
        add_fitparam_widgets_to(self.params_layout, self.fitparams,
                                self.refresh, param_cols=self.param_cols)
    
    def create_autofit_group(self):        
        auto_button = QPushButton(get_icon('apply.png'), _("Run"), self)
        self.connect(auto_button, SIGNAL("clicked()"), self.autofit)
        autoprm_button = QPushButton(get_icon('settings.png'), _("Settings"),
                                     self)
        self.connect(autoprm_button, SIGNAL("clicked()"), self.edit_parameters)
        xrange_button = QPushButton(get_icon('xrange.png'), _("Bounds"), self)
        xrange_button.setCheckable(True)
        self.connect(xrange_button, SIGNAL("toggled(bool)"), self.toggle_xrange)
        auto_layout = QVBoxLayout()
        auto_layout.addWidget(auto_button)
        auto_layout.addWidget(autoprm_button)
        auto_layout.addWidget(xrange_button)
        self.button_list += [auto_button, autoprm_button, xrange_button]
        return create_groupbox(self, _("Automatic fit"), layout=auto_layout)
        
    def get_fitfunc_arguments(self):
        """Return fitargs and fitkwargs"""
        fitargs = self.fitargs
        if self.fitargs is None:
            fitargs = []
        fitkwargs = self.fitkwargs
        if self.fitkwargs is None:
            fitkwargs = {}
        return fitargs, fitkwargs
        
    def refresh(self, slider_value=None):
        """Refresh Fit Tool dialog box"""
        # Update button states
        enable = self.x is not None and self.y is not None \
                 and self.x.size > 0 and self.y.size > 0 \
                 and self.fitfunc is not None and self.fitparams is not None \
                 and len(self.fitparams) > 0
        for btn in self.button_list:
            btn.setEnabled(enable)
            
        if not enable:
            # Fit widget is not yet configured
            return

        fitargs, fitkwargs = self.get_fitfunc_arguments()
        yfit = self.fitfunc(self.x, [p.value for p in self.fitparams],
                            *fitargs, **fitkwargs)
                            
        plot = self.get_plot()
        
        if self.legend is None:
            self.legend = make.legend(anchor=self.legend_anchor)
            plot.add_item(self.legend)
        
        if self.xrange is None:
            self.xrange = make.range(0., 1.)
            plot.add_item(self.xrange)
        self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax)
        self.xrange.setVisible(self.show_xrange)
        
        if self.data_curve is None:
            self.data_curve = make.curve([], [],
                                         _("Data"), color="b", linewidth=2)
            plot.add_item(self.data_curve)
        self.data_curve.set_data(self.x, self.y)
        
        if self.fit_curve is None:
            self.fit_curve = make.curve([], [],
                                        _("Fit"), color="r", linewidth=2)
            plot.add_item(self.fit_curve)
        self.fit_curve.set_data(self.x, yfit)
        
        plot.replot()
        plot.disable_autoscale()
        
    def range_changed(self, xrange_obj, xmin, xmax):
        self.autofit_prm.xmin, self.autofit_prm.xmax = xmin, xmax
        self.compute_imin_imax()
        
    def toggle_xrange(self, state):
        self.xrange.setVisible(state)
        plot = self.get_plot()
        plot.replot()
        if state:
            plot.set_active_item(self.xrange)
        self.show_xrange = state
        
    def edit_parameters(self):
        if self.autofit_prm.edit(parent=self):
            self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax)
            plot = self.get_plot()
            plot.replot()
            self.compute_imin_imax()
        
    def compute_imin_imax(self):
        self.i_min = self.x.searchsorted(self.autofit_prm.xmin)
        self.i_max = self.x.searchsorted(self.autofit_prm.xmax, side='right')
        
    def errorfunc(self, params):
        x = self.x[self.i_min:self.i_max]
        y = self.y[self.i_min:self.i_max]
        fitargs, fitkwargs = self.get_fitfunc_arguments()
        return y - self.fitfunc(x, params, *fitargs, **fitkwargs)

    def autofit(self):
        meth = self.autofit_prm.method
        x0 = np.array([p.value for p in self.fitparams])
        if meth == "lq":
            x = self.autofit_lq(x0)
        elif meth=="simplex":
            x = self.autofit_simplex(x0)
        elif meth=="powel":
            x = self.autofit_powel(x0)
        elif meth=="bfgs":
            x = self.autofit_bfgs(x0)
        elif meth=="l_bfgs_b":
            x = self.autofit_l_bfgs(x0)
        elif meth=="cg":
            x = self.autofit_cg(x0)
        else:
            return
        for v, p in zip(x, self.fitparams):
            p.value = v
        self.refresh()
        for prm in self.fitparams:
            prm.update()

    def get_norm_func(self):
        prm = self.autofit_prm
        err_norm = eval(prm.err_norm)
        def func(params):
            err = np.linalg.norm(self.errorfunc(params), err_norm)
            return err
        return func

    def autofit_simplex(self, x0):
        prm = self.autofit_prm
        from scipy.optimize import fmin
        x = fmin(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol)
        return x

    def autofit_powel(self, x0):
        prm = self.autofit_prm
        from scipy.optimize import fmin_powell
        x = fmin_powell(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol)
        return x

    def autofit_bfgs(self, x0):
        prm = self.autofit_prm
        from scipy.optimize import fmin_bfgs
        x = fmin_bfgs(self.get_norm_func(), x0, gtol=prm.gtol,
                      norm=eval(prm.norm))
        return x

    def autofit_l_bfgs(self, x0):
        prm = self.autofit_prm
        bounds = [(p.min, p.max) for p in self.fitparams]
        from scipy.optimize import fmin_l_bfgs_b
        x, _f, _d = fmin_l_bfgs_b(self.get_norm_func(), x0, pgtol=prm.gtol,
                          approx_grad=1, bounds=bounds)
        return x
        
    def autofit_cg(self, x0):
        prm = self.autofit_prm
        from scipy.optimize import fmin_cg
        x = fmin_cg(self.get_norm_func(), x0, gtol=prm.gtol,
                    norm=eval(prm.norm))
        return x

    def autofit_lq(self, x0):
        prm = self.autofit_prm
        def func(params):
            err = self.errorfunc(params)
            return err
        from scipy.optimize import leastsq
        x, _ier = leastsq(func, x0, xtol=prm.xtol, ftol=prm.ftol)
        return x

    def get_values(self):
        """Convenience method to get fit parameter values"""
        return [param.value for param in self.fitparams]


class FitWidget(QWidget, FitWidgetMixin):
    def __init__(self, wintitle=None, icon="guiqwt.svg", toolbar=False,
                 options=None, parent=None, panels=None,
                 param_cols=1, legend_anchor='TR', auto_fit=False):
        QWidget.__init__(self, parent)
        FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels,
                                param_cols, legend_anchor, auto_fit)


class FitDialog(QDialog, FitWidgetMixin):
    def __init__(self, wintitle=None, icon="guiqwt.svg", edit=True,
                 toolbar=False, options=None, parent=None, panels=None,
                 param_cols=1, legend_anchor='TR', auto_fit=False):
        QDialog.__init__(self, parent)
        self.edit = edit
        self.button_layout = None
        FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels,
                                param_cols, legend_anchor, auto_fit)
        self.setWindowFlags(Qt.Window)
        
    def setup_widget_layout(self):
        FitWidgetMixin.setup_widget_layout(self)
        if self.edit:
            self.install_button_layout()
        
    def install_button_layout(self):        
        bbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel)
        self.connect(bbox, SIGNAL("accepted()"), SLOT("accept()"))
        self.connect(bbox, SIGNAL("rejected()"), SLOT("reject()"))
        self.button_list += [bbox.button(QDialogButtonBox.Ok)]

        self.button_layout = QHBoxLayout()
        self.button_layout.addStretch()
        self.button_layout.addWidget(bbox)
        
        vlayout = self.layout()
        vlayout.addSpacing(10)
        vlayout.addLayout(self.button_layout)
        

def guifit(x, y, fitfunc, fitparams, fitargs=None, fitkwargs=None,
           wintitle=None, title=None, xlabel=None, ylabel=None,
           param_cols=1, auto_fit=True, winsize=None, winpos=None):
    """GUI-based curve fitting tool"""
    _app = guidata.qapplication()
#    win = FitWidget(wintitle=wintitle, toolbar=True,
#                    param_cols=param_cols, auto_fit=auto_fit,
#                    options=dict(title=title, xlabel=xlabel, ylabel=ylabel))
    win = FitDialog(edit=True, wintitle=wintitle, toolbar=True,
                    param_cols=param_cols, auto_fit=auto_fit,
                    options=dict(title=title, xlabel=xlabel, ylabel=ylabel))
    win.set_data(x, y, fitfunc, fitparams, fitargs, fitkwargs)
    if winsize is not None:
        win.resize(*winsize)
    if winpos is not None:
        win.move(*winpos)
    if win.exec_():
        return win.get_values()
#    win.show()
#    _app.exec_()
#    return win.get_values()


if __name__ == "__main__":
    x = np.linspace(-10, 10, 1000)
    y = np.cos(1.5*x)+np.random.rand(x.shape[0])*.2
    def fit(x, params):
        a, b = params
        return np.cos(b*x)+a
    a = FitParam("Offset", 1., 0., 2.)
    b = FitParam("Frequency", 1.05, 0., 10., logscale=True)
    params = [a, b]
    values = guifit(x, y, fit, params, auto_fit=True)
    print(values)
    print([param.value for param in params])