/usr/share/pyshared/guiqwt/widgets/fit.py is in python-guiqwt 2.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 | # -*- coding: utf-8 -*-
#
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)
# pylint: disable=C0103
"""
guiqwt.widgets.fit
------------------
The `fit` module provides an interactive curve fitting widget/dialog allowing:
* to fit data manually (by moving sliders)
* or automatically (with standard optimization algorithms
provided by :py:mod:`scipy`).
Example
~~~~~~~
.. literalinclude:: ../guiqwt/tests/fit.py
:start-after: SHOW
:end-before: Workaround for Sphinx v0.6 bug: empty 'end-before' directive
.. image:: images/screenshots/fit.png
Reference
~~~~~~~~~
.. autofunction:: guifit
.. autoclass:: FitDialog
:members:
:inherited-members:
.. autoclass:: FitParam
:members:
:inherited-members:
.. autoclass:: AutoFitParam
:members:
:inherited-members:
"""
from __future__ import division, print_function
from guidata.qt.QtGui import (QGridLayout, QLabel, QSlider, QPushButton,
QLineEdit, QDialog, QVBoxLayout, QHBoxLayout,
QWidget, QDialogButtonBox)
from guidata.qt.QtCore import Qt, SIGNAL, QObject, SLOT
import numpy as np
from numpy import inf # Do not remove this import (used by optimization funcs)
import guidata
from guidata.utils import update_dataset, restore_dataset
from guidata.qthelpers import create_groupbox
from guidata.configtools import get_icon
from guidata.dataset.datatypes import DataSet
from guidata.dataset.dataitems import (StringItem, FloatItem, IntItem,
ChoiceItem, BoolItem)
# Local imports
from guiqwt.config import _
from guiqwt.builder import make
from guiqwt.plot import CurveWidgetMixin
from guiqwt.signals import SIG_RANGE_CHANGED
class AutoFitParam(DataSet):
xmin = FloatItem("xmin")
xmax = FloatItem("xmax")
method = ChoiceItem(_("Method"),
[ ("simplex", "Simplex"), ("powel", "Powel"),
("bfgs", "BFGS"), ("l_bfgs_b", "L-BFGS-B"),
("cg", _("Conjugate Gradient")),
("lq", _("Least squares")), ],
default="lq")
err_norm = StringItem("enorm", default=2.0,
help=_("for simplex, powel, cg and bfgs norm used "
"by the error function"))
xtol = FloatItem("xtol", default=0.0001,
help=_("for simplex, powel, least squares"))
ftol = FloatItem("ftol", default=0.0001,
help=_("for simplex, powel, least squares"))
gtol = FloatItem("gtol", default=0.0001, help=_("for cg, bfgs"))
norm = StringItem("norm", default="inf",
help=_("for cg, bfgs. inf is max, -inf is min"))
class FitParamDataSet(DataSet):
name = StringItem(_("Name"))
value = FloatItem(_("Value"), default=0.0)
min = FloatItem(_("Min"), default=-1.0)
max = FloatItem(_("Max"), default=1.0).set_pos(col=1)
steps = IntItem(_("Steps"), default=5000)
format = StringItem(_("Format"), default="%.3f").set_pos(col=1)
logscale = BoolItem(_("Logarithmic"), _("Scale"))
unit = StringItem(_("Unit"), default="").set_pos(col=1)
class FitParam(object):
def __init__(self, name, value, min, max, logscale=False,
steps=5000, format='%.3f', size_offset=0, unit=''):
self.name = name
self.value = value
self.min = min
self.max = max
self.logscale = logscale
self.steps = steps
self.format = format
self.unit = unit
self.prefix_label = None
self.lineedit = None
self.unit_label = None
self.slider = None
self.button = None
self._widgets = []
self._size_offset = size_offset
self._refresh_callback = None
self.dataset = FitParamDataSet(title=_("Curve fitting parameter"))
def copy(self):
"""Return a copy of this fitparam"""
return self.__class__(self.name, self.value, self.min, self.max,
self.logscale, self.steps, self.format,
self._size_offset, self.unit)
def create_widgets(self, parent, refresh_callback):
self._refresh_callback = refresh_callback
self.prefix_label = QLabel()
font = self.prefix_label.font()
font.setPointSize(font.pointSize()+self._size_offset)
self.prefix_label.setFont(font)
self.button = QPushButton()
self.button.setIcon(get_icon('settings.png'))
self.button.setToolTip(
_("Edit '%s' fit parameter properties") % self.name)
QObject.connect(self.button, SIGNAL('clicked()'),
lambda: self.edit_param(parent))
self.lineedit = QLineEdit()
QObject.connect(self.lineedit, SIGNAL('editingFinished()'),
self.line_editing_finished)
self.unit_label = QLabel(self.unit)
self.slider = QSlider()
self.slider.setOrientation(Qt.Horizontal)
self.slider.setRange(0, self.steps-1)
QObject.connect(self.slider, SIGNAL("valueChanged(int)"),
self.slider_value_changed)
self.update(refresh=False)
self.add_widgets([self.prefix_label, self.lineedit, self.unit_label,
self.slider, self.button])
def add_widgets(self, widgets):
self._widgets += widgets
def get_widgets(self):
return self._widgets
def set_scale(self, state):
self.logscale = state > 0
self.update_slider_value()
def set_text(self, fmt=None):
style = "<span style=\'color: #444444\'><b>%s</b></span>"
self.prefix_label.setText(style % self.name)
if self.value is None:
value_str = ''
else:
if fmt is None:
fmt = self.format
value_str = fmt % self.value
self.lineedit.setText(value_str)
self.lineedit.setDisabled(
self.value == self.min and self.max == self.min)
def line_editing_finished(self):
try:
self.value = float(self.lineedit.text())
except ValueError:
self.set_text()
self.update_slider_value()
self._refresh_callback()
def slider_value_changed(self, int_value):
if self.logscale:
total_delta = np.log10(1+self.max-self.min)
self.value = self.min+10**(total_delta*int_value/(self.steps-1))-1
else:
total_delta = self.max-self.min
self.value = self.min+total_delta*int_value/(self.steps-1)
self.set_text()
self._refresh_callback()
def update_slider_value(self):
if (self.value is None or self.min is None or self.max is None):
self.slider.setEnabled(False)
if self.slider.parent() and self.slider.parent().isVisible():
self.slider.show()
elif self.value == self.min and self.max == self.min:
self.slider.hide()
else:
self.slider.setEnabled(True)
if self.slider.parent() and self.slider.parent().isVisible():
self.slider.show()
if self.logscale:
value_delta = max([np.log10(1+self.value-self.min), 0.])
total_delta = np.log10(1+self.max-self.min)
else:
value_delta = self.value-self.min
total_delta = self.max-self.min
intval = int(self.steps*value_delta/total_delta)
self.slider.blockSignals(True)
self.slider.setValue(intval)
self.slider.blockSignals(False)
def edit_param(self, parent):
update_dataset(self.dataset, self)
if self.dataset.edit(parent=parent):
restore_dataset(self.dataset, self)
if self.value > self.max:
self.max = self.value
if self.value < self.min:
self.min = self.value
self.update()
def update(self, refresh=True):
self.unit_label.setText(self.unit)
self.slider.setRange(0, self.steps-1)
self.update_slider_value()
self.set_text()
if refresh:
self._refresh_callback()
def add_fitparam_widgets_to(layout, fitparams, refresh_callback, param_cols=1):
row_contents = []
row_nb = 0
col_nb = 0
for i, param in enumerate(fitparams):
param.create_widgets(layout.parent(), refresh_callback)
widgets = param.get_widgets()
w_colums = len(widgets)+1
row_contents += [(widget, row_nb, j+col_nb*w_colums)
for j, widget in enumerate(widgets)]
col_nb += 1
if col_nb == param_cols:
row_nb += 1
col_nb = 0
for widget, row, col in row_contents:
layout.addWidget(widget, row, col)
if fitparams:
for col_nb in range(param_cols):
layout.setColumnStretch(1+col_nb*w_colums, 5)
if col_nb > 0:
layout.setColumnStretch(col_nb*w_colums-1, 1)
class FitWidgetMixin(CurveWidgetMixin):
def __init__(self, wintitle="guiqwt plot", icon="guiqwt.svg",
toolbar=False, options=None, panels=None, param_cols=1,
legend_anchor='TR', auto_fit=True):
if wintitle is None:
wintitle = _('Curve fitting')
self.x = None
self.y = None
self.fitfunc = None
self.fitargs = None
self.fitkwargs = None
self.fitparams = None
self.autofit_prm = None
self.data_curve = None
self.fit_curve = None
self.legend = None
self.legend_anchor = legend_anchor
self.xrange = None
self.show_xrange = False
self.param_cols = param_cols
self.auto_fit_enabled = auto_fit
self.button_list = [] # list of buttons to be disabled at startup
self.fit_layout = None
self.params_layout = None
CurveWidgetMixin.__init__(self, wintitle=wintitle, icon=icon,
toolbar=toolbar, options=options,
panels=panels)
self.refresh()
# QWidget API --------------------------------------------------------------
def resizeEvent(self, event):
QWidget.resizeEvent(self, event)
self.get_plot().replot()
# CurveWidgetMixin API -----------------------------------------------------
def setup_widget_layout(self):
self.fit_layout = QHBoxLayout()
self.params_layout = QGridLayout()
params_group = create_groupbox(self, _("Fit parameters"),
layout=self.params_layout)
if self.auto_fit_enabled:
auto_group = self.create_autofit_group()
self.fit_layout.addWidget(auto_group)
self.fit_layout.addWidget(params_group)
self.plot_layout.addLayout(self.fit_layout, 1, 0)
vlayout = QVBoxLayout(self)
vlayout.addWidget(self.toolbar)
vlayout.addLayout(self.plot_layout)
self.setLayout(vlayout)
def create_plot(self, options):
CurveWidgetMixin.create_plot(self, options)
for plot in self.get_plots():
self.connect(plot, SIG_RANGE_CHANGED, self.range_changed)
# Public API ---------------------------------------------------------------
def set_data(self, x, y, fitfunc=None, fitparams=None,
fitargs=None, fitkwargs=None):
if self.fitparams is not None and fitparams is not None:
self.clear_params_layout()
self.x = x
self.y = y
if fitfunc is not None:
self.fitfunc = fitfunc
if fitparams is not None:
self.fitparams = fitparams
if fitargs is not None:
self.fitargs = fitargs
if fitkwargs is not None:
self.fitkwargs = fitkwargs
self.autofit_prm = AutoFitParam(title=_("Automatic fitting options"))
self.autofit_prm.xmin = x.min()
self.autofit_prm.xmax = x.max()
self.compute_imin_imax()
if self.fitparams is not None and fitparams is not None:
self.populate_params_layout()
self.refresh()
def set_fit_data(self, fitfunc, fitparams, fitargs=None, fitkwargs=None):
if self.fitparams is not None:
self.clear_params_layout()
self.fitfunc = fitfunc
self.fitparams = fitparams
self.fitargs = fitargs
self.fitkwargs = fitkwargs
self.populate_params_layout()
self.refresh()
def clear_params_layout(self):
for i, param in enumerate(self.fitparams):
for widget in param.get_widgets():
if widget is not None:
self.params_layout.removeWidget(widget)
widget.hide()
def populate_params_layout(self):
add_fitparam_widgets_to(self.params_layout, self.fitparams,
self.refresh, param_cols=self.param_cols)
def create_autofit_group(self):
auto_button = QPushButton(get_icon('apply.png'), _("Run"), self)
self.connect(auto_button, SIGNAL("clicked()"), self.autofit)
autoprm_button = QPushButton(get_icon('settings.png'), _("Settings"),
self)
self.connect(autoprm_button, SIGNAL("clicked()"), self.edit_parameters)
xrange_button = QPushButton(get_icon('xrange.png'), _("Bounds"), self)
xrange_button.setCheckable(True)
self.connect(xrange_button, SIGNAL("toggled(bool)"), self.toggle_xrange)
auto_layout = QVBoxLayout()
auto_layout.addWidget(auto_button)
auto_layout.addWidget(autoprm_button)
auto_layout.addWidget(xrange_button)
self.button_list += [auto_button, autoprm_button, xrange_button]
return create_groupbox(self, _("Automatic fit"), layout=auto_layout)
def get_fitfunc_arguments(self):
"""Return fitargs and fitkwargs"""
fitargs = self.fitargs
if self.fitargs is None:
fitargs = []
fitkwargs = self.fitkwargs
if self.fitkwargs is None:
fitkwargs = {}
return fitargs, fitkwargs
def refresh(self, slider_value=None):
"""Refresh Fit Tool dialog box"""
# Update button states
enable = self.x is not None and self.y is not None \
and self.x.size > 0 and self.y.size > 0 \
and self.fitfunc is not None and self.fitparams is not None \
and len(self.fitparams) > 0
for btn in self.button_list:
btn.setEnabled(enable)
if not enable:
# Fit widget is not yet configured
return
fitargs, fitkwargs = self.get_fitfunc_arguments()
yfit = self.fitfunc(self.x, [p.value for p in self.fitparams],
*fitargs, **fitkwargs)
plot = self.get_plot()
if self.legend is None:
self.legend = make.legend(anchor=self.legend_anchor)
plot.add_item(self.legend)
if self.xrange is None:
self.xrange = make.range(0., 1.)
plot.add_item(self.xrange)
self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax)
self.xrange.setVisible(self.show_xrange)
if self.data_curve is None:
self.data_curve = make.curve([], [],
_("Data"), color="b", linewidth=2)
plot.add_item(self.data_curve)
self.data_curve.set_data(self.x, self.y)
if self.fit_curve is None:
self.fit_curve = make.curve([], [],
_("Fit"), color="r", linewidth=2)
plot.add_item(self.fit_curve)
self.fit_curve.set_data(self.x, yfit)
plot.replot()
plot.disable_autoscale()
def range_changed(self, xrange_obj, xmin, xmax):
self.autofit_prm.xmin, self.autofit_prm.xmax = xmin, xmax
self.compute_imin_imax()
def toggle_xrange(self, state):
self.xrange.setVisible(state)
plot = self.get_plot()
plot.replot()
if state:
plot.set_active_item(self.xrange)
self.show_xrange = state
def edit_parameters(self):
if self.autofit_prm.edit(parent=self):
self.xrange.set_range(self.autofit_prm.xmin, self.autofit_prm.xmax)
plot = self.get_plot()
plot.replot()
self.compute_imin_imax()
def compute_imin_imax(self):
self.i_min = self.x.searchsorted(self.autofit_prm.xmin)
self.i_max = self.x.searchsorted(self.autofit_prm.xmax, side='right')
def errorfunc(self, params):
x = self.x[self.i_min:self.i_max]
y = self.y[self.i_min:self.i_max]
fitargs, fitkwargs = self.get_fitfunc_arguments()
return y - self.fitfunc(x, params, *fitargs, **fitkwargs)
def autofit(self):
meth = self.autofit_prm.method
x0 = np.array([p.value for p in self.fitparams])
if meth == "lq":
x = self.autofit_lq(x0)
elif meth=="simplex":
x = self.autofit_simplex(x0)
elif meth=="powel":
x = self.autofit_powel(x0)
elif meth=="bfgs":
x = self.autofit_bfgs(x0)
elif meth=="l_bfgs_b":
x = self.autofit_l_bfgs(x0)
elif meth=="cg":
x = self.autofit_cg(x0)
else:
return
for v, p in zip(x, self.fitparams):
p.value = v
self.refresh()
for prm in self.fitparams:
prm.update()
def get_norm_func(self):
prm = self.autofit_prm
err_norm = eval(prm.err_norm)
def func(params):
err = np.linalg.norm(self.errorfunc(params), err_norm)
return err
return func
def autofit_simplex(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin
x = fmin(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol)
return x
def autofit_powel(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin_powell
x = fmin_powell(self.get_norm_func(), x0, xtol=prm.xtol, ftol=prm.ftol)
return x
def autofit_bfgs(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin_bfgs
x = fmin_bfgs(self.get_norm_func(), x0, gtol=prm.gtol,
norm=eval(prm.norm))
return x
def autofit_l_bfgs(self, x0):
prm = self.autofit_prm
bounds = [(p.min, p.max) for p in self.fitparams]
from scipy.optimize import fmin_l_bfgs_b
x, _f, _d = fmin_l_bfgs_b(self.get_norm_func(), x0, pgtol=prm.gtol,
approx_grad=1, bounds=bounds)
return x
def autofit_cg(self, x0):
prm = self.autofit_prm
from scipy.optimize import fmin_cg
x = fmin_cg(self.get_norm_func(), x0, gtol=prm.gtol,
norm=eval(prm.norm))
return x
def autofit_lq(self, x0):
prm = self.autofit_prm
def func(params):
err = self.errorfunc(params)
return err
from scipy.optimize import leastsq
x, _ier = leastsq(func, x0, xtol=prm.xtol, ftol=prm.ftol)
return x
def get_values(self):
"""Convenience method to get fit parameter values"""
return [param.value for param in self.fitparams]
class FitWidget(QWidget, FitWidgetMixin):
def __init__(self, wintitle=None, icon="guiqwt.svg", toolbar=False,
options=None, parent=None, panels=None,
param_cols=1, legend_anchor='TR', auto_fit=False):
QWidget.__init__(self, parent)
FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels,
param_cols, legend_anchor, auto_fit)
class FitDialog(QDialog, FitWidgetMixin):
def __init__(self, wintitle=None, icon="guiqwt.svg", edit=True,
toolbar=False, options=None, parent=None, panels=None,
param_cols=1, legend_anchor='TR', auto_fit=False):
QDialog.__init__(self, parent)
self.edit = edit
self.button_layout = None
FitWidgetMixin.__init__(self, wintitle, icon, toolbar, options, panels,
param_cols, legend_anchor, auto_fit)
self.setWindowFlags(Qt.Window)
def setup_widget_layout(self):
FitWidgetMixin.setup_widget_layout(self)
if self.edit:
self.install_button_layout()
def install_button_layout(self):
bbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel)
self.connect(bbox, SIGNAL("accepted()"), SLOT("accept()"))
self.connect(bbox, SIGNAL("rejected()"), SLOT("reject()"))
self.button_list += [bbox.button(QDialogButtonBox.Ok)]
self.button_layout = QHBoxLayout()
self.button_layout.addStretch()
self.button_layout.addWidget(bbox)
vlayout = self.layout()
vlayout.addSpacing(10)
vlayout.addLayout(self.button_layout)
def guifit(x, y, fitfunc, fitparams, fitargs=None, fitkwargs=None,
wintitle=None, title=None, xlabel=None, ylabel=None,
param_cols=1, auto_fit=True, winsize=None, winpos=None):
"""GUI-based curve fitting tool"""
_app = guidata.qapplication()
# win = FitWidget(wintitle=wintitle, toolbar=True,
# param_cols=param_cols, auto_fit=auto_fit,
# options=dict(title=title, xlabel=xlabel, ylabel=ylabel))
win = FitDialog(edit=True, wintitle=wintitle, toolbar=True,
param_cols=param_cols, auto_fit=auto_fit,
options=dict(title=title, xlabel=xlabel, ylabel=ylabel))
win.set_data(x, y, fitfunc, fitparams, fitargs, fitkwargs)
if winsize is not None:
win.resize(*winsize)
if winpos is not None:
win.move(*winpos)
if win.exec_():
return win.get_values()
# win.show()
# _app.exec_()
# return win.get_values()
if __name__ == "__main__":
x = np.linspace(-10, 10, 1000)
y = np.cos(1.5*x)+np.random.rand(x.shape[0])*.2
def fit(x, params):
a, b = params
return np.cos(b*x)+a
a = FitParam("Offset", 1., 0., 2.)
b = FitParam("Frequency", 1.05, 0., 10., logscale=True)
params = [a, b]
values = guifit(x, y, fit, params, auto_fit=True)
print(values)
print([param.value for param in params])
|