/usr/lib/python2.7/dist-packages/h5py/h5d.pyx is in python-h5py 2.2.1-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | # This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License: Standard 3-clause BSD; see "license.txt" for full license terms
# and contributor agreement.
"""
Provides access to the low-level HDF5 "H5D" dataset interface.
"""
# Compile-time imports
from _objects cimport pdefault
from numpy cimport ndarray, import_array, PyArray_DATA, NPY_WRITEABLE
from utils cimport check_numpy_read, check_numpy_write, \
convert_tuple, emalloc, efree
from h5t cimport TypeID, typewrap, py_create
from h5s cimport SpaceID
from h5p cimport PropID, propwrap
from _proxy cimport dset_rw
from h5py import _objects
# Initialization
import_array()
# === Public constants and data structures ====================================
COMPACT = H5D_COMPACT
CONTIGUOUS = H5D_CONTIGUOUS
CHUNKED = H5D_CHUNKED
ALLOC_TIME_DEFAULT = H5D_ALLOC_TIME_DEFAULT
ALLOC_TIME_LATE = H5D_ALLOC_TIME_LATE
ALLOC_TIME_EARLY = H5D_ALLOC_TIME_EARLY
ALLOC_TIME_INCR = H5D_ALLOC_TIME_INCR
SPACE_STATUS_NOT_ALLOCATED = H5D_SPACE_STATUS_NOT_ALLOCATED
SPACE_STATUS_PART_ALLOCATED = H5D_SPACE_STATUS_PART_ALLOCATED
SPACE_STATUS_ALLOCATED = H5D_SPACE_STATUS_ALLOCATED
FILL_TIME_ALLOC = H5D_FILL_TIME_ALLOC
FILL_TIME_NEVER = H5D_FILL_TIME_NEVER
FILL_TIME_IFSET = H5D_FILL_TIME_IFSET
FILL_VALUE_UNDEFINED = H5D_FILL_VALUE_UNDEFINED
FILL_VALUE_DEFAULT = H5D_FILL_VALUE_DEFAULT
FILL_VALUE_USER_DEFINED = H5D_FILL_VALUE_USER_DEFINED
# === Dataset operations ======================================================
def create(ObjectID loc not None, object name, TypeID tid not None,
SpaceID space not None, PropID dcpl=None, PropID lcpl=None, PropID dapl = None):
""" (objectID loc, STRING name or None, TypeID tid, SpaceID space,
PropDCID dcpl=None, PropID lcpl=None) => DatasetID
Create a new dataset. If "name" is None, the dataset will be
anonymous.
"""
cdef hid_t dsid
cdef char* cname = NULL
if name is not None:
cname = name
if cname != NULL:
dsid = H5Dcreate2(loc.id, cname, tid.id, space.id,
pdefault(lcpl), pdefault(dcpl), pdefault(dapl))
else:
dsid = H5Dcreate_anon(loc.id, tid.id, space.id,
pdefault(dcpl), pdefault(dapl))
return DatasetID.open(dsid)
def open(ObjectID loc not None, char* name):
""" (ObjectID loc, STRING name) => DatasetID
Open an existing dataset attached to a group or file object, by name.
"""
return DatasetID.open(H5Dopen(loc.id, name))
# --- Proxy functions for safe(r) threading -----------------------------------
cdef class DatasetID(ObjectID):
"""
Represents an HDF5 dataset identifier.
Objects of this class may be used in any HDF5 function which expects
a dataset identifier. Also, all H5D* functions which take a dataset
instance as their first argument are presented as methods of this
class.
Properties:
dtype: Numpy dtype representing the dataset type
shape: Numpy-style shape tuple representing the dataspace
rank: Integer giving dataset rank
* Hashable: Yes, unless anonymous
* Equality: True HDF5 identity if unless anonymous
"""
property dtype:
""" Numpy dtype object representing the dataset type """
def __get__(self):
# Dataset type can't change
cdef TypeID tid
if self._dtype is None:
tid = self.get_type()
self._dtype = tid.dtype
return self._dtype
property shape:
""" Numpy-style shape tuple representing the dataspace """
def __get__(self):
# Shape can change (DatasetID.extend), so don't cache it
cdef SpaceID sid
sid = self.get_space()
return sid.get_simple_extent_dims()
property rank:
""" Integer giving the dataset rank (0 = scalar) """
def __get__(self):
cdef SpaceID sid
sid = self.get_space()
return sid.get_simple_extent_ndims()
def _close(self):
""" ()
Terminate access through this identifier. You shouldn't have to
call this manually; Dataset objects are automatically destroyed
when their Python wrappers are freed.
"""
with _objects.registry.lock:
H5Dclose(self.id)
if not self.valid:
del _objects.registry[self.id]
def read(self, SpaceID mspace not None, SpaceID fspace not None,
ndarray arr_obj not None, TypeID mtype=None,
PropID dxpl=None):
""" (SpaceID mspace, SpaceID fspace, NDARRAY arr_obj,
TypeID mtype=None, PropDXID dxpl=None)
Read data from an HDF5 dataset into a Numpy array.
It is your responsibility to ensure that the memory dataspace
provided is compatible with the shape of the Numpy array. Since a
wide variety of dataspace configurations are possible, this is not
checked. You can easily crash Python by reading in data from too
large a dataspace.
If a memory datatype is not specified, one will be auto-created
based on the array's dtype.
The provided Numpy array must be writable and C-contiguous. If
this is not the case, ValueError will be raised and the read will
fail. Keyword dxpl may be a dataset transfer property list.
"""
cdef hid_t self_id, mtype_id, mspace_id, fspace_id, plist_id
cdef void* data
cdef int oldflags
if mtype is None:
mtype = py_create(arr_obj.dtype)
check_numpy_write(arr_obj, -1)
self_id = self.id
mtype_id = mtype.id
mspace_id = mspace.id
fspace_id = fspace.id
plist_id = pdefault(dxpl)
data = PyArray_DATA(arr_obj)
dset_rw(self_id, mtype_id, mspace_id, fspace_id, plist_id, data, 1)
def write(self, SpaceID mspace not None, SpaceID fspace not None,
ndarray arr_obj not None, TypeID mtype=None,
PropID dxpl=None):
""" (SpaceID mspace, SpaceID fspace, NDARRAY arr_obj,
TypeID mtype=None, PropDXID dxpl=None)
Write data from a Numpy array to an HDF5 dataset. Keyword dxpl may
be a dataset transfer property list.
It is your responsibility to ensure that the memory dataspace
provided is compatible with the shape of the Numpy array. Since a
wide variety of dataspace configurations are possible, this is not
checked. You can easily crash Python by writing data from too
large a dataspace.
If a memory datatype is not specified, one will be auto-created
based on the array's dtype.
The provided Numpy array must be C-contiguous. If this is not the
case, ValueError will be raised and the read will fail.
"""
cdef hid_t self_id, mtype_id, mspace_id, fspace_id, plist_id
cdef void* data
cdef int oldflags
if mtype is None:
mtype = py_create(arr_obj.dtype)
check_numpy_read(arr_obj, -1)
self_id = self.id
mtype_id = mtype.id
mspace_id = mspace.id
fspace_id = fspace.id
plist_id = pdefault(dxpl)
data = PyArray_DATA(arr_obj)
dset_rw(self_id, mtype_id, mspace_id, fspace_id, plist_id, data, 0)
def extend(self, tuple shape):
""" (TUPLE shape)
Extend the given dataset so it's at least as big as "shape". Note
that a dataset may only be extended up to the maximum dimensions of
its dataspace, which are fixed when the dataset is created.
"""
cdef int rank
cdef hid_t space_id = 0
cdef hsize_t* dims = NULL
try:
space_id = H5Dget_space(self.id)
rank = H5Sget_simple_extent_ndims(space_id)
if len(shape) != rank:
raise TypeError("New shape length (%d) must match dataset rank (%d)" % (len(shape), rank))
dims = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(shape, dims, rank)
H5Dextend(self.id, dims)
finally:
efree(dims)
if space_id:
H5Sclose(space_id)
def set_extent(self, tuple shape):
""" (TUPLE shape)
Set the size of the dataspace to match the given shape. If the new
size is larger in any dimension, it must be compatible with the
maximum dataspace size.
"""
cdef int rank
cdef hid_t space_id = 0
cdef hsize_t* dims = NULL
try:
space_id = H5Dget_space(self.id)
rank = H5Sget_simple_extent_ndims(space_id)
if len(shape) != rank:
raise TypeError("New shape length (%d) must match dataset rank (%d)" % (len(shape), rank))
dims = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(shape, dims, rank)
H5Dset_extent(self.id, dims)
finally:
efree(dims)
if space_id:
H5Sclose(space_id)
def get_space(self):
""" () => SpaceID
Create and return a new copy of the dataspace for this dataset.
"""
return SpaceID.open(H5Dget_space(self.id))
def get_space_status(self):
""" () => INT space_status_code
Determine if space has been allocated for a dataset.
Return value is one of:
* SPACE_STATUS_NOT_ALLOCATED
* SPACE_STATUS_PART_ALLOCATED
* SPACE_STATUS_ALLOCATED
"""
cdef H5D_space_status_t status
H5Dget_space_status(self.id, &status)
return <int>status
def get_type(self):
""" () => TypeID
Create and return a new copy of the datatype for this dataset.
"""
return typewrap(H5Dget_type(self.id))
def get_create_plist(self):
""" () => PropDCID
Create an return a new copy of the dataset creation property list
used when this dataset was created.
"""
return propwrap(H5Dget_create_plist(self.id))
def get_offset(self):
""" () => LONG offset or None
Get the offset of this dataset in the file, in bytes, or None if
it doesn't have one. This is always the case for datasets which
use chunked storage, compact datasets, and datasets for which space
has not yet been allocated in the file.
"""
cdef haddr_t offset
offset = H5Dget_offset(self.id)
if offset == HADDR_UNDEF:
return None
return offset
def get_storage_size(self):
""" () => LONG storage_size
Determine the amount of file space required for a dataset. Note
this only counts the space which has actually been allocated; it
may even be zero.
"""
return H5Dget_storage_size(self.id)
|