/usr/share/pyshared/igraph/drawing/shapes.py is in python-igraph 0.6.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | # vim:ts=4:sw=4:sts=4:et
# -*- coding: utf-8 -*-
"""
Shape drawing classes for igraph
Vertex shapes in igraph are usually referred to by short names like
C{"rect"} or C{"circle"}. This module contains the classes that
implement the actual drawing routines for these shapes, and a
resolver class that determines the appropriate shape drawer class
given the short name.
Classes that are derived from L{ShapeDrawer} in this module are
automatically registered by L{ShapeDrawerDirectory}. If you
implement a custom shape drawer, you must register it in
L{ShapeDrawerDirectory} manually if you wish to refer to it by a
name in the C{shape} attribute of vertices.
"""
from __future__ import division
__all__ = ["ShapeDrawerDirectory"]
__license__ = u"""\
Copyright (C) 2006-2012 Tamás Nepusz <ntamas@gmail.com>
Pázmány Péter sétány 1/a, 1117 Budapest, Hungary
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
"""
from math import atan2, copysign, cos, pi, sin
import sys
from igraph.drawing.baseclasses import AbstractCairoDrawer
from igraph.drawing.utils import Point
from igraph.utils import consecutive_pairs
class ShapeDrawer(object):
"""Static class, the ancestor of all vertex shape drawer classes.
Custom shapes must implement at least the C{draw_path} method of the class.
The method I{must not} stroke or fill, it should just set up the current
Cairo path appropriately."""
@staticmethod
def draw_path(ctx, center_x, center_y, width, height=None):
"""Draws the path of the shape on the given Cairo context, without
stroking or filling it.
This method must be overridden in derived classes implementing custom shapes
and declared as a static method using C{staticmethod(...)}.
@param ctx: the context to draw on
@param center_x: the X coordinate of the center of the object
@param center_y: the Y coordinate of the center of the object
@param width: the width of the object
@param height: the height of the object. If C{None}, equals to the width.
"""
raise NotImplementedError("abstract class")
# pylint: disable-msg=W0613
@staticmethod
def intersection_point(center_x, center_y, source_x, source_y, \
width, height=None):
"""Determines where the shape centered at (center_x, center_y)
intersects with a line drawn from (source_x, source_y) to
(center_x, center_y).
Can be overridden in derived classes. Must always be defined as a static
method using C{staticmethod(...)}
@param width: the width of the shape
@param height: the height of the shape. If C{None}, defaults to the width
@return: the intersection point (the closest to (source_x, source_y) if
there are more than one) or (center_x, center_y) if there is no
intersection
"""
return center_x, center_y
class NullDrawer(ShapeDrawer):
"""Static drawer class which draws nothing.
This class is used for graph vertices with unknown shapes"""
names = ["null", "none", "empty", "hidden", ""]
@staticmethod
def draw_path(ctx, center_x, center_y, width, height=None):
"""Draws nothing."""
pass
class RectangleDrawer(ShapeDrawer):
"""Static class which draws rectangular vertices"""
names = "rectangle rect rectangular square box"
@staticmethod
def draw_path(ctx, center_x, center_y, width, height=None):
"""Draws a rectangle-shaped path on the Cairo context without stroking
or filling it.
@see: ShapeDrawer.draw_path"""
height = height or width
ctx.rectangle(center_x - width/2, center_y - height/2,
width, height)
# pylint: disable-msg=C0103, R0911
# R0911: too many return statements
@staticmethod
def intersection_point(center_x, center_y, source_x, source_y, \
width, height=None):
"""Determines where the rectangle centered at (center_x, center_y)
having the given width and height intersects with a line drawn from
(source_x, source_y) to (center_x, center_y).
@see: ShapeDrawer.intersection_point"""
height = height or width
delta_x, delta_y = center_x-source_x, center_y-source_y
if delta_x == 0 and delta_y == 0:
return center_x, center_y
if delta_y > 0 and delta_x <= delta_y and delta_x >= -delta_y:
# this is the top edge
ry = center_y - height/2
ratio = (height/2) / delta_y
return center_x-ratio*delta_x, ry
if delta_y < 0 and delta_x <= -delta_y and delta_x >= delta_y:
# this is the bottom edge
ry = center_y + height/2
ratio = (height/2) / -delta_y
return center_x-ratio*delta_x, ry
if delta_x > 0 and delta_y <= delta_x and delta_y >= -delta_x:
# this is the left edge
rx = center_x - width/2
ratio = (width/2) / delta_x
return rx, center_y-ratio*delta_y
if delta_x < 0 and delta_y <= -delta_x and delta_y >= delta_x:
# this is the right edge
rx = center_x + width/2
ratio = (width/2) / -delta_x
return rx, center_y-ratio*delta_y
if delta_x == 0:
if delta_y > 0:
return center_x, center_y - height/2
return center_x, center_y + height/2
if delta_y == 0:
if delta_x > 0:
return center_x - width/2, center_y
return center_x + width/2, center_y
class CircleDrawer(ShapeDrawer):
"""Static class which draws circular vertices"""
names = "circle circular"
@staticmethod
def draw_path(ctx, center_x, center_y, width, height=None):
"""Draws a circular path on the Cairo context without stroking or
filling it.
Height is ignored, it is the width that determines the diameter of the circle.
@see: ShapeDrawer.draw_path"""
ctx.arc(center_x, center_y, width/2, 0, 2*pi)
@staticmethod
def intersection_point(center_x, center_y, source_x, source_y, \
width, height=None):
"""Determines where the circle centered at (center_x, center_y)
intersects with a line drawn from (source_x, source_y) to
(center_x, center_y).
@see: ShapeDrawer.intersection_point"""
height = height or width
angle = atan2(center_y-source_y, center_x-source_x)
return center_x-width/2 * cos(angle), \
center_y-height/2* sin(angle)
class UpTriangleDrawer(ShapeDrawer):
"""Static class which draws upright triangles"""
names = "triangle triangle-up up-triangle arrow arrow-up up-arrow"
@staticmethod
def draw_path(ctx, center_x, center_y, width, height=None):
"""Draws an upright triangle on the Cairo context without stroking or
filling it.
@see: ShapeDrawer.draw_path"""
height = height or width
ctx.move_to(center_x-width/2, center_y+height/2)
ctx.line_to(center_x, center_y-height/2)
ctx.line_to(center_x+width/2, center_y+height/2)
ctx.close_path()
@staticmethod
def intersection_point(center_x, center_y, source_x, source_y, \
width, height=None):
"""Determines where the triangle centered at (center_x, center_y)
intersects with a line drawn from (source_x, source_y) to
(center_x, center_y).
@see: ShapeDrawer.intersection_point"""
# TODO: finish it properly
height = height or width
return center_x, center_y
class DownTriangleDrawer(ShapeDrawer):
"""Static class which draws triangles pointing down"""
names = "down-triangle triangle-down arrow-down down-arrow"
@staticmethod
def draw_path(ctx, center_x, center_y, width, height=None):
"""Draws a triangle on the Cairo context without stroking or
filling it.
@see: ShapeDrawer.draw_path"""
height = height or width
ctx.move_to(center_x-width/2, center_y-height/2)
ctx.line_to(center_x, center_y+height/2)
ctx.line_to(center_x+width/2, center_y-height/2)
ctx.close_path()
@staticmethod
def intersection_point(center_x, center_y, source_x, source_y, \
width, height=None):
"""Determines where the triangle centered at (center_x, center_y)
intersects with a line drawn from (source_x, source_y) to
(center_x, center_y).
@see: ShapeDrawer.intersection_point"""
# TODO: finish it properly
height = height or width
return center_x, center_y
class DiamondDrawer(ShapeDrawer):
"""Static class which draws diamonds (i.e. rhombuses)"""
names = "diamond rhombus"
@staticmethod
def draw_path(ctx, center_x, center_y, width, height=None):
"""Draws a rhombus on the Cairo context without stroking or
filling it.
@see: ShapeDrawer.draw_path"""
height = height or width
ctx.move_to(center_x-width/2, center_y)
ctx.line_to(center_x, center_y+height/2)
ctx.line_to(center_x+width/2, center_y)
ctx.line_to(center_x, center_y-height/2)
ctx.close_path()
@staticmethod
def intersection_point(center_x, center_y, source_x, source_y, \
width, height=None):
"""Determines where the rhombus centered at (center_x, center_y)
intersects with a line drawn from (source_x, source_y) to
(center_x, center_y).
@see: ShapeDrawer.intersection_point"""
height = height or width
if height == 0 and width == 0:
return center_x, center_y
delta_x, delta_y = source_x - center_x, source_y - center_y
# Treat edge case when delta_x = 0
if delta_x == 0:
if delta_y == 0:
return center_x, center_y
else:
return center_x, center_y + copysign(height / 2, delta_y)
width = copysign(width, delta_x)
height = copysign(height, delta_y)
f = height / (height + width * delta_y / delta_x)
return center_x + f * width / 2, center_y + (1-f) * height / 2
#####################################################################
class PolygonDrawer(AbstractCairoDrawer):
"""Class that is used to draw polygons.
The corner points of the polygon can be set by the C{points}
property of the drawer, or passed at construction time. Most
drawing methods in this class also have an extra C{points}
argument that can be used to override the set of points in the
C{points} property."""
def __init__(self, context, bbox=(1, 1), points = []):
"""Constructs a new polygon drawer that draws on the given
Cairo context.
@param context: the Cairo context to draw on
@param bbox: ignored, leave it at its default value
@param points: the list of corner points
"""
super(PolygonDrawer, self).__init__(context, bbox)
self.points = points
def draw_path(self, points=None, corner_radius=0):
"""Sets up a Cairo path for the outline of a polygon on the given
Cairo context.
@param points: the coordinates of the corners of the polygon,
in clockwise or counter-clockwise order, or C{None} if we are
about to use the C{points} property of the class.
@param corner_radius: if zero, an ordinary polygon will be drawn.
If positive, the corners of the polygon will be rounded with
the given radius.
"""
if points is None:
points = self.points
self.context.new_path()
if len(points) < 2:
# Well, a polygon must have at least two corner points
return
ctx = self.context
if corner_radius <= 0:
# No rounded corners, this is simple
ctx.move_to(*points[-1])
for point in points:
ctx.line_to(*point)
return
# Rounded corners. First, we will take each side of the
# polygon and find what the corner radius should be on
# each corner. If the side is longer than 2r (where r is
# equal to corner_radius), the radius allowed by that side
# is r; if the side is shorter, the radius is the length
# of the side / 2. For each corner, the final corner radius
# is the smaller of the radii on the two sides adjacent to
# the corner.
points = [Point(*point) for point in points]
side_vecs = [v-u for u, v in consecutive_pairs(points, circular=True)]
half_side_lengths = [side.length() / 2 for side in side_vecs]
corner_radii = [corner_radius] * len(points)
for idx in xrange(len(corner_radii)):
prev_idx = -1 if idx == 0 else idx - 1
radii = [corner_radius, half_side_lengths[prev_idx],
half_side_lengths[idx]]
corner_radii[idx] = min(radii)
# Okay, move to the last corner, adjusted by corner_radii[-1]
# towards the first corner
ctx.move_to(*(points[-1].towards(points[0], corner_radii[-1])))
# Now, for each point in points, draw a line towards the
# corner, stopping before it in a distance of corner_radii[idx],
# then draw the corner
u = points[-1]
for idx, (v, w) in enumerate(consecutive_pairs(points, True)):
radius = corner_radii[idx]
ctx.line_to(*v.towards(u, radius))
aux1 = v.towards(u, radius / 2)
aux2 = v.towards(w, radius / 2)
ctx.curve_to(aux1.x, aux1.y, aux2.x, aux2.y,
*v.towards(w, corner_radii[idx]))
u = v
def draw(self, points=None):
"""Draws the polygon using the current stroke of the Cairo context.
@param points: the coordinates of the corners of the polygon,
in clockwise or counter-clockwise order, or C{None} if we are
about to use the C{points} property of the class.
"""
self.draw_path(points)
self.context.stroke()
#####################################################################
class ShapeDrawerDirectory(object):
"""Static class that resolves shape names to their corresponding
shape drawer classes.
Classes that are derived from L{ShapeDrawer} in this module are
automatically registered by L{ShapeDrawerDirectory} when the module
is loaded for the first time.
"""
known_shapes = {}
@classmethod
def register(cls, drawer_class):
"""Registers the given shape drawer class under the given names.
@param drawer_class: the shape drawer class to be registered
"""
names = drawer_class.names
if isinstance(names, (str, unicode)):
names = names.split()
for name in names:
cls.known_shapes[name] = drawer_class
@classmethod
def register_namespace(cls, namespace):
"""Registers all L{ShapeDrawer} classes in the given namespace
@param namespace: a Python dict mapping names to Python objects."""
for name, value in namespace.iteritems():
if name.startswith("__"):
continue
if isinstance(value, type):
if issubclass(value, ShapeDrawer) and value != ShapeDrawer:
cls.register(value)
@classmethod
def resolve(cls, shape):
"""Given a shape name, returns the corresponding shape drawer class
@param shape: the name of the shape
@return: the corresponding shape drawer class
@raise ValueError: if the shape is unknown
"""
try:
return cls.known_shapes[shape]
except KeyError:
raise ValueError("unknown shape: %s" % shape)
@classmethod
def resolve_default(cls, shape, default=NullDrawer):
"""Given a shape name, returns the corresponding shape drawer class
or the given default shape drawer if the shape name is unknown.
@param shape: the name of the shape
@param default: the default shape drawer to return when the shape
is unknown
@return: the shape drawer class corresponding to the given name or
the default shape drawer class if the name is unknown
"""
return cls.known_shapes.get(shape, default)
ShapeDrawerDirectory.register_namespace(sys.modules[__name__].__dict__)
|