This file is indexed.

/usr/share/pyshared/igraph/drawing/utils.py is in python-igraph 0.6.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""
Utility classes for drawing routines.
"""

from igraph.compat import property
from itertools import izip
from math import atan2, cos, sin
from operator import itemgetter

__all__ = ["BoundingBox", "FakeModule", "Point", "Rectangle"]
__license__ = "GPL"

#####################################################################

class Rectangle(object):
    """Class representing a rectangle."""

    __slots__ = ("_left", "_top", "_right", "_bottom")

    def __init__(self, *args):
        """Creates a rectangle.

        The corners of the rectangle can be specified by either a tuple
        (four items, two for each corner, respectively), four separate numbers
        (X and Y coordinates for each corner) or two separate numbers (width
        and height, the upper left corner is assumed to be at (0,0))"""
        coords = None
        if len(args) == 1:
            if isinstance(args[0], Rectangle):
                coords = args[0].coords
            elif len(args[0]) >= 4:
                coords = tuple(args[0])[0:4]
            elif len(args[0]) == 2:
                coords = (0, 0, args[0][0], args[0][1])
        elif len(args) == 4:
            coords = tuple(args)
        elif len(args) == 2:
            coords = (0, 0, args[0], args[1])
        if coords is None:
            raise ValueError("invalid coordinate format")

        try:
            coords = tuple(float(coord) for coord in coords)
        except ValueError:
            raise ValueError("invalid coordinate format, numbers expected")

        self.coords = coords

    @property
    def coords(self):
        """The coordinates of the corners.
        
        The coordinates are returned as a 4-tuple in the following order:
        left edge, top edge, right edge, bottom edge.
        """
        return self._left, self._top, self._right, self._bottom

    @coords.setter
    def coords(self, coords):
        """Sets the coordinates of the corners.

        @param coords: a 4-tuple with the coordinates of the corners
        """
        self._left, self._top, self._right, self._bottom = coords
        if self._left > self._right:
            self._left, self._right = self._right, self._left
        if self._top > self._bottom:
            self._bottom, self._top = self._top, self._bottom

    @property
    def width(self):
        """The width of the rectangle"""
        return self._right - self._left

    @width.setter
    def width(self, value):
        """Sets the width of the rectangle by adjusting the right edge."""
        self._right = self._left + value

    @property
    def height(self):
        """The height of the rectangle"""
        return self._bottom - self._top

    @height.setter
    def height(self, value):
        """Sets the height of the rectangle by adjusting the bottom edge."""
        self._bottom = self._top + value

    @property
    def left(self):
        """The X coordinate of the left side of the box"""
        return self._left

    @left.setter
    def left(self, value):
        """Sets the X coordinate of the left side of the box"""
        self._left = float(value)
        self._right = max(self._left, self._right)

    @property
    def right(self):
        """The X coordinate of the right side of the box"""
        return self._right

    @right.setter
    def right(self, value):
        """Sets the X coordinate of the right side of the box"""
        self._right = float(value)
        self._left = min(self._left, self._right)

    @property
    def top(self):
        """The Y coordinate of the top edge of the box"""
        return self._top

    @top.setter
    def top(self, value):
        """Sets the Y coordinate of the top edge of the box"""
        self._top = value
        self._bottom = max(self._bottom, self._top)

    @property
    def bottom(self):
        """The Y coordinate of the bottom edge of the box"""
        return self._bottom

    @bottom.setter
    def bottom(self, value):
        """Sets the Y coordinate of the bottom edge of the box"""
        self._bottom = value
        self._top = min(self._bottom, self._top)

    @property
    def midx(self):
        """The X coordinate of the center of the box"""
        return (self._left + self._right) / 2.0

    @midx.setter
    def midx(self, value):
        """Moves the center of the box to the given X coordinate"""
        dx = value - (self._left + self._right) / 2.0
        self._left += dx
        self._right += dx

    @property
    def midy(self):
        """The Y coordinate of the center of the box"""
        return (self._top + self._bottom) / 2.0

    @midy.setter
    def midy(self, value):
        """Moves the center of the box to the given Y coordinate"""
        dy = value - (self._top + self._bottom) / 2.0
        self._top += dy
        self._bottom += dy

    @property
    def shape(self):
        """The shape of the rectangle (width, height)"""
        return self._right - self._left, self._bottom - self._top

    @shape.setter
    def shape(self, shape):
        """Sets the shape of the rectangle (width, height)."""
        self.width, self.height = shape

    def contract(self, margins):
        """Contracts the rectangle by the given margins.

        @return: a new L{Rectangle} object.
        """
        if isinstance(margins, int) or isinstance(margins, float):
            margins = [float(margins)] * 4
        if len(margins) != 4:
            raise ValueError("margins must be a 4-tuple or a single number")
        nx1, ny1 = self._left+margins[0], self._top+margins[1]
        nx2, ny2 = self._right-margins[2], self._bottom-margins[3]
        if nx1 > nx2:
            nx1 = (nx1+nx2)/2.
            nx2 = nx1
        if ny1 > ny2:
            ny1 = (ny1+ny2)/2.
            ny2 = ny1
        return self.__class__(nx1, ny1, nx2, ny2)

    def expand(self, margins):
        """Expands the rectangle by the given margins.

        @return: a new L{Rectangle} object.
        """
        if isinstance(margins, int) or isinstance(margins, float):
            return self.contract(-float(margins))
        return self.contract([-float(margin) for margin in margins])

    def isdisjoint(self, other):
        """Returns ``True`` if the two rectangles have no intersection.
        
        Example::
            
            >>> r1 = Rectangle(10, 10, 30, 30)
            >>> r2 = Rectangle(20, 20, 50, 50)
            >>> r3 = Rectangle(70, 70, 90, 90)
            >>> r1.isdisjoint(r2)
            False
            >>> r2.isdisjoint(r1)
            False
            >>> r1.isdisjoint(r3)
            True
            >>> r3.isdisjoint(r1)
            True
        """
        return self._left > other._right or self._right < other._left \
                or self._top > other._bottom or self._bottom < other._top

    def isempty(self):
        """Returns ``True`` if the rectangle is empty (i.e. it has zero
        width and height).

        Example::

            >>> r1 = Rectangle(10, 10, 30, 30)
            >>> r2 = Rectangle(70, 70, 90, 90)
            >>> r1.isempty()
            False
            >>> r2.isempty()
            False
            >>> r1.intersection(r2).isempty()
            True
        """
        return self._left == self._right and self._top == self._bottom

    def intersection(self, other):
        """Returns the intersection of this rectangle with another.
        
        Example::
            
            >>> r1 = Rectangle(10, 10, 30, 30)
            >>> r2 = Rectangle(20, 20, 50, 50)
            >>> r3 = Rectangle(70, 70, 90, 90)
            >>> r1.intersection(r2)
            Rectangle(20.0, 20.0, 30.0, 30.0)
            >>> r2 & r1
            Rectangle(20.0, 20.0, 30.0, 30.0)
            >>> r2.intersection(r1) == r1.intersection(r2)
            True
            >>> r1.intersection(r3)
            Rectangle(0.0, 0.0, 0.0, 0.0)
        """
        if self.isdisjoint(other):
            return Rectangle(0, 0, 0, 0)
        return Rectangle(max(self._left, other._left),
                max(self._top, other._top),
                min(self._right, other._right),
                min(self._bottom, other._bottom))
    __and__ = intersection

    def translate(self, dx, dy):
        """Translates the rectangle in-place.

        Example:

            >>> r = Rectangle(10, 20, 50, 70)
            >>> r.translate(30, -10)
            >>> r
            Rectangle(40.0, 10.0, 80.0, 60.0)

        @param dx: the X coordinate of the translation vector
        @param dy: the Y coordinate of the translation vector
        """
        self._left += dx
        self._right += dx
        self._top += dy
        self._bottom += dy

    def union(self, other):
        """Returns the union of this rectangle with another.
        
        The resulting rectangle is the smallest rectangle that contains both
        rectangles.

        Example::

            >>> r1 = Rectangle(10, 10, 30, 30)
            >>> r2 = Rectangle(20, 20, 50, 50)
            >>> r3 = Rectangle(70, 70, 90, 90)
            >>> r1.union(r2)
            Rectangle(10.0, 10.0, 50.0, 50.0)
            >>> r2 | r1
            Rectangle(10.0, 10.0, 50.0, 50.0)
            >>> r2.union(r1) == r1.union(r2)
            True
            >>> r1.union(r3)
            Rectangle(10.0, 10.0, 90.0, 90.0)
        """
        return Rectangle(min(self._left, other._left),
                min(self._top, other._top),
                max(self._right, other._right),
                max(self._bottom, other._bottom))
    __or__ = union

    def __ior__(self, other):
        """Expands this rectangle to include itself and another completely while
        still being as small as possible.

        Example::

            >>> r1 = Rectangle(10, 10, 30, 30)
            >>> r2 = Rectangle(20, 20, 50, 50)
            >>> r3 = Rectangle(70, 70, 90, 90)
            >>> r1 |= r2
            >>> r1
            Rectangle(10.0, 10.0, 50.0, 50.0)
            >>> r1 |= r3
            >>> r1
            Rectangle(10.0, 10.0, 90.0, 90.0)
        """
        self._left   = min(self._left,   other._left)
        self._top    = min(self._top,    other._top)
        self._right  = max(self._right,  other._right)
        self._bottom = max(self._bottom, other._bottom)
        return self

    def __repr__(self):
        return "%s(%s, %s, %s, %s)" % (self.__class__.__name__, \
            self._left, self._top, self._right, self._bottom)

    def __eq__(self, other):
        return self.coords == other.coords

    def __ne__(self, other):
        return self.coords != other.coords

    def __bool__(self):
        return self._left != self._right or self._top != self._bottom

    def __nonzero__(self):
        return self._left != self._right or self._top != self._bottom

    def __hash__(self):
        return hash(self.coords)

#####################################################################

class BoundingBox(Rectangle):
    """Class representing a bounding box (a rectangular area) that
    encloses some objects."""

    def __ior__(self, other):
        """Replaces this bounding box with the union of itself and
        another.

        Example::
            
            >>> box1 = BoundingBox(10, 20, 50, 60)
            >>> box2 = BoundingBox(70, 40, 100, 90)
            >>> box1 |= box2
            >>> print(box1)
            BoundingBox(10.0, 20.0, 100.0, 90.0)
        """
        self._left   = min(self._left, other._left)
        self._top    = min(self._top, other._top)
        self._right  = max(self._right, other._right)
        self._bottom = max(self._bottom, other._bottom)
        return self

    def __or__(self, other):
        """Takes the union of this bounding box with another.

        The result is a bounding box which encloses both bounding
        boxes.
        
        Example::
            
            >>> box1 = BoundingBox(10, 20, 50, 60)
            >>> box2 = BoundingBox(70, 40, 100, 90)
            >>> box1 | box2
            BoundingBox(10.0, 20.0, 100.0, 90.0)
        """
        return self.__class__(
                       min(self._left, other._left),
                       min(self._top, other._top),
                       max(self._right, other._right),
                       max(self._bottom, other._bottom)
        )


#####################################################################

# pylint: disable-msg=R0903
# R0903: too few public methods
class FakeModule(object):
    """Fake module that raises an exception for everything"""

    def __getattr__(self, _):
        raise TypeError("plotting not available")
    def __call__(self, _):
        raise TypeError("plotting not available")
    def __setattr__(self, key, value):
        raise TypeError("plotting not available")

#####################################################################

class Point(tuple):
    """Class representing a point on the 2D plane."""
    __slots__ = ()
    _fields = ('x', 'y')

    def __new__(cls, x, y):
        """Creates a new point with the given coordinates"""
        return tuple.__new__(cls, (x, y))

    # pylint: disable-msg=W0622
    # W0622: redefining built-in 'len'
    @classmethod
    def _make(cls, iterable, new = tuple.__new__, len = len):
        """Creates a new point from a sequence or iterable"""
        result = new(cls, iterable)
        if len(result) != 2:
            raise TypeError('Expected 2 arguments, got %d' % len(result))
        return result

    def __repr__(self):
        """Returns a nicely formatted representation of the point"""
        return 'Point(x=%r, y=%r)' % self

    def _asdict(self):
        """Returns a new dict which maps field names to their values"""
        return dict(zip(self._fields, self))

    # pylint: disable-msg=W0141
    # W0141: used builtin function 'map'
    def _replace(self, **kwds):
        """Returns a new point object replacing specified fields with new
        values"""
        result = self._make(map(kwds.pop, ('x', 'y'), self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        """Return self as a plain tuple. Used by copy and pickle."""
        return tuple(self)

    x = property(itemgetter(0), doc="Alias for field number 0")
    y = property(itemgetter(1), doc="Alias for field number 1")

    def __add__(self, other):
        """Adds the coordinates of a point to another one"""
        return self.__class__(x = self.x + other.x, y = self.y + other.y)

    def __sub__(self, other):
        """Subtracts the coordinates of a point to another one"""
        return self.__class__(x = self.x - other.x, y = self.y - other.y)

    def __mul__(self, scalar):
        """Multiplies the coordinates by a scalar"""
        return self.__class__(x = self.x * scalar, y = self.y * scalar)
    __rmul__ = __mul__

    def __div__(self, scalar):
        """Divides the coordinates by a scalar"""
        return self.__class__(x = self.x / scalar, y = self.y / scalar)

    def as_polar(self):
        """Returns the polar coordinate representation of the point.

        @return: the radius and the angle in a tuple.
        """
        return len(self), atan2(self.y, self.x)

    def distance(self, other):
        """Returns the distance of the point from another one.
        
        Example:
            
            >>> p1 = Point(5, 7)
            >>> p2 = Point(8, 3)
            >>> p1.distance(p2)
            5.0
        """
        dx, dy = self.x - other.x, self.y - other.y
        return (dx * dx + dy * dy) ** 0.5
    
    def interpolate(self, other, ratio = 0.5):
        """Linearly interpolates between the coordinates of this point and
        another one.

        @param  other:  the other point
        @param  ratio:  the interpolation ratio between 0 and 1. Zero will
          return this point, 1 will return the other point.
        """
        ratio = float(ratio)
        return Point(x = self.x * (1.0 - ratio) + other.x * ratio, \
                     y = self.y * (1.0 - ratio) + other.y * ratio)

    def length(self):
        """Returns the length of the vector pointing from the origin to this
        point."""
        return (self.x ** 2 + self.y ** 2) ** 0.5

    def normalized(self):
        """Normalizes the coordinates of the point s.t. its length will be 1
        after normalization. Returns the normalized point."""
        len = self.length()
        if len == 0:
            return Point(x = self.x, y = self.y)
        return Point(x = self.x / len, y = self.y / len)

    def sq_length(self):
        """Returns the squared length of the vector pointing from the origin
        to this point."""
        return (self.x ** 2 + self.y ** 2)

    def towards(self, other, distance = 0):
        """Returns the point that is at a given distance from this point
        towards another one."""
        if not distance:
            return self

        angle = atan2(other.y - self.y, other.x - self.x)
        return Point(self.x + distance * cos(angle),
                     self.y + distance * sin(angle))

    @classmethod
    def FromPolar(cls, radius, angle):
        """Constructs a point from polar coordinates.

        `radius` is the distance of the point from the origin; `angle` is the
        angle between the X axis and the vector pointing to the point from
        the origin.
        """
        return cls(radius * cos(angle), radius * sin(angle))